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Workshop Overview

In recent years, deep learning has significantly improved the tields of computer
vision, natural language processing and speech recognition. Beyond these traditional
fields, deep learning has been expanded to quantum chemistry, physics,
neuroscience, and more recently to combinatorial optimization (CO).

e DL is particularly attractive to address CO problems given its high flexibility,
approximate nature, and self-learning paradigm.

e |n other words, DL has the potential to learn universal high-quality algorithms and
therefore could lead to a breakthrough in traditional CO, where algorithms are

hand-crafted.

 On the other hand, synergies between DL and CO algorithms could lead to the
possibility of taking the best of the two domains and deriving new algorithms,

especially for applied problems.
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Quarks, Gluons, and Jets
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Physicists’' Model For Jets

Cvolution of the tree is latent
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Jet Clustering

Physicists would like to reconstruct the unobserved latent tree z from observed x

e Hierarchical clustering can be seen as inverting the generative process

e Standard techniques use bottom-up / greedy / agglomerative clustering HAC
e Similarity measure is motivated by underlying physics: QCD, relativity, etc.

Genel’athe 5 The anti-k; jet clustering algorithm #1
CluSterlng Matteo Cacciari (Paris, LPTHE), Gavin P. Salam (Paris, LPTHE), Gregory Soyez (Brookhaven) (Feb, 2008)
process Published in: JHEP 04 (2008) 063 « e-Print: 0802.1189 [hep-ph]
» > pdf & DOI [= cite %) 7,676 citations
z x z, FastJet User Manual #1

Matteo Cacciari (Paris, LPTHE and Diderot U., Paris), Gavin P. Salam (CERN and Princeton U. and Paris, LPTHE),
Gregory Soyez (Saclay, SPhT) (Nov, 2011)

Published in: Eur.Phys.J.C 72 (2012) 1896 - e-Print: 1111.6097 [hep-ph]

—

pdf ¢ DOI [= cite %) 3,945 citations

Dispelling the N3 myth for the k; jet-finder #1

Matteo Cacciari (Paris, LPTHE), Gavin P. Salam (Paris, LPTHE) (Dec, 2005)
Published in: Phys.Lett.B 641 (2006) 57-61 - e-Print: hep-ph/0512210 [hep-ph]

pdf & DOI [3 cite %) 1,988 citations



Impact of clustering on downstream tasks

Optimal solutions tor many down-stream tasks would be ~trivial it an oracle could give
us the correct / ground-truth tree, but

e Several trees could potentially lead to the same set of leaves, so we need to think
porobabilistically

Traditional approaches for downstream tasks (eq. classification, regression, etc.)
interpret the HAC tree as an estimate tor ground truth, and additional work is needed
to characterize how properties of the clustering algorithm impact downstream
oerformance




Deep Learning

Deep learning has been usead
successtfully for solving
downstream tasks without
explicitly inferring the latent state

e Rich research area for networks
working on structured data like
sets, trees, and graphs

e Some hybrid deep learning
algorithms exploit physics

<nowledge directly (eg. Include

HAC clustering internally)

've been interested in hybrid
physics-DL models that treat
latent state probabilistically
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Louppe, Cho, Becot, KC [arXiv:1702.00748]
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Serviansky, KC, et. al. [arXiv:2002.087/2]

J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in
particle physics”, (2020). In Preparation.


https://arxiv.org/abs/2002.08772

Generative Model
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 Forward model is a
Markov process with a Reframe jet physics in statistical terms

A

re\atlve‘y S|mp‘e e Joint likelihood p(x, 2|6)

orobability model tor

e Maximum likelihood history: ArgMax, p(x, z|0)

Reconstruction

each splitting
sarametrize d by 0 e Marginal likelihood p(z|0) = / dz p(x, z|0)

e Maximum likelihood parameter: ArgMax, p(x|0)

p(tree | 0) = H p(left, right| parent, 9)
nodes * Posterior distribution on histories: p(z|x, 0)

Generative process

Inference on 8 would be new e Posterior distribution on 6 : p(6|x)



. Glnkgo by Sebastian Macaluso and Duccio Pappadopulo, and KC
G e n e r a t I V e M O d e | %ﬂ https://github.com/SebastianMacaluso/ginkgo
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Ginkgo is a simplified jet simulator written in pyro to facilitate research on
exact / approximate optimization and marginalization over hierarchical

clusterings (the latent tree) using

Sebastian Macaluso

¢ P o b d b | ‘ IStl C P ro 9 ramimnin 9 Algorithm 1: Toy Parton Shower Generator
1 function NodeProcessing (pf, tp, teut, A, tree)
® D I-F-F are ﬂtl 3 b ‘ e P ro g ramm | N 9 Input : parent momentum p, par.ent r.nas.s sq.uared tp., cut-off mass squared
teut, rate for the exponential distribution A, binary tree tree
2 Add parent node to tree.
e Dynamic Programming s if t, > L., then
4 Sample t;, and ti from the decaying exponential distribution.
. . 5 Sample a unit vector from a uniform distribution over the 2-sphere.
¢ va [l atl Ond ‘ ‘ nfe rence 6 Compute the 2-body decay of the parent node in the parent rest frame.
7 Apply a Lorentz boost to the lab frame to each child.
. . . 8 NodeProcessing (ph, tL, teut, A, tree)
Captures essential physics: ' NodsProomming (56t tos A tee
° E / M : tr, ~ f(tI\ tp) = ! ot tr o~ fENtp,t) = 1 — 4 ze_WEjﬁﬂt
nergy omentum conservation R Y L= e (Ve — Vir)

e Dokshitzer-Gribov-Lipatov-Altarelli-Parisi—like evolution



Going beyond agglomerative clustering

With this probabilistic view, interesting to revisit standard agglomerative
clustering

AR?
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e Similarity heuristic: dg = min(p2®, p3%)

e Generative model for jets: piree]0) = || pdeft right]parent,6)
nodes

* It prodellett, right|parent, 0) is monotonic with heuristic, then agglomerative
clustering is a greedy algorithm to find an approximate MAP estimate

7= argmax_ p(z|x, 0)

Immediately suggests we can do better with beam search or some other search
algorithm



Combinatorial Optimization

The immediate problem is that the search space (the number of binary trees on

unordered leaves) is enormous!! (2N — 3)!!

e Fortunately, when Sebastian Macaluso was at UMass we connected with
Nicholas Monath, Craig Greenberg, and Andrew McCallum'’s group

Number of clustering histories
for N leaves grows as

a(N) = (2N — 3)!!

# of Approx. #
leaves of trees
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The fifteen different rooted binary trees (with
unordered children) on a set of four labeled leaves,
illustrating 15 = (2 < 4 — 3)!! (see article text).
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The Trellis Data Structure



The trellis

We consider cost / energy / likelihood tunctions that are products over siblings

S(X[H) ) (_
Z0x) Vith (X [H) = 1[I v(Xe Xg)

X1, X g Esibs(H) ¢( ; )

(@), (@) w((w), (@)
w(#), ()

e the likelihood for tree-like Markov models like our physics use case,

P(H|X) =

Z(X)

|
]
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e
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This includes:

e a cost function used in cancer genomics,

e the Dasgupta cost

AISTATS 2021 [arXiv:2002.11661]



The trellis

A trellis is constructed, where nodes
correspond to all subsets ot elements

e The full trellis is large (2X), but the number
of trees is super-exponentially larger than

the number of nodes in the trellis

Data Structures & Algorithms for Exact Inference
in Hierarchical Clustering

Craig S. Greenberg* 12 Sebastian Macaluso*?, Nicholas Monath!, Ji-Ah Lee?,
Patrick Flaherty?, Kyle Cranmer?, Andrew McGregor', and Andrew McCallum?

1College of Information and Computer Sciences, University of Massachusetts Amherst, USA
2National Institute of Standards and Technology, USA
3Center for Cosmology and Particle Physics & Center for Data Science, New York University, USA
“Department of Mathematics and Statistics, University of Massachusetts Amherst, USA

Sebastian Mac:aluso Craig Greenberg Nicholas Monath AISTATS 2021 [a rXiv:2002.11661 ]
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Dynamic programming

The trellis is an efficient data structure for storing memoized values of the the partition
function Z(V) and (V| H*) tor the MAP clustering H* for each of subset of elements V

e This admits a dynamic programming algorithm to eftficiently compute the exact
partition

function and MAP over all possible clusterings

Exhaustive Computation of the

Partition Function - O((2N-3)!!)
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The sparse trellis

The problem with the tull trellis is that it still grows exponentially

e But there is a natural sparse trellis that admits an approximate algorithm for
the MAP clustering and partition function

e One simply removes nodes from the trellis (subject to a consistency condition)

————————————————————————————————————————————————————————————————————————————————————————————————————————————

e One can also construct a sparse trellis from

[
N

samples (e.g., ground truth from a simulator,

greedy, or beam search)
or randomly sample

051 f S mmee Full Trellis
BY M BS
0.0 p===-==7=--==- -----—- Greedy n

'
DEOOOE i,/ Ewmen
05{A i —— Sim. Trellis (pr) |
@@@@ 10_4 10._3 1()._2 10._1 100

Sparsity

pairwise splittings

log p(x,H”) relative to greedy




Efficient Sampling
Combinatorial Marginalization

Variational Inference



Sampling
The partition function values Z(V) for each node in

the trellis encode a distribution over all possible trees

e One can populate a trellis with samples and think
of the resulting trellis as a histogram over the

discrete space of possible binary trees

Transversing the trellis from top to bottom mirrors
the (Markov) generative model we have in physics

e A softmax over the partition functions for nodes at
each level leads to categorical distribution for
splitting at that level

e This leads to a natural, efticient, and exact
sampling algorithm

p(£| x)
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Maximum Likelihood & Variational Inference

The partition function values Z(V) for each node in the

trellis encode a distribution over all possible trees

* This leads to a parametrization of distributions over the

discrete space of possible binary trees

e \We can also use a neural network or some other model
to reparametrize NN : ¢p — Z(V)

* \We can fit this parametrized distribution to samples of

trees with maximum likelihooo

We can also construct something like Variational Auto

Encoder to approximate the posterior distribution p(z | x)
with a neural network parametrized trellis: NN : x, ¢ — Z(V)

e Together with efficient sampling could lead to efficient
variational inference over the structured latent space

p(£| x)
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A* search + trellis

Preliminary work by:
Craig Greenberg*
Sebastian Macaluso*
Nicholas Monath*
Avinava Dubey
Patrick Flaherty
Manzil Zaheer
Amr Ahmed

Kyle Cranmer
Andrew McCallum



A* search + trellis

Most recently, we combined the trellis with A* search to find an efficient algorithm
to find the global MAP hierarchical clustering that can leverage a heuristic

e Compactly encode states in the space of hierarchical clusterings (as paths from
the root to the leaves of the trellis), and

e Compactly represent the search frontier (as nested priority queues).

(2
Min-Heap o () oXo Partial Hierarchical Clustering State
Over Child Pairs ® cXo SRO Leaf nodes with
Store a separate heap _— o) (& un-initialized heaps (m = )
at each node. to be explored next.

2N

{a,b,e}

{a,b,c} {c,d,e}

&
(@)




Approximate A* search + trellis

We can limit the size of the priorities queues and/or number of trees explored
e Yields an approximate A* search
e \We can control the computational complexity of the search

e This allows us to scale the algorithms to many more elements

(2
Min-Heap o () oXo Partial Hierarchical Clustering State
Over Child Pairs ® cXo SRO Leaf nodes with
Store a separate heap _— o) (& un-initialized heaps (m = )
at each node. to be explored next.

A\

{a,b,e}

{a,b,c} {c,d,e}

&
(@)




Results

The resulting algorithm allows us to extend the search for the exact MAP / lowest-

cost hierarchical clustering to more elements (from 1012 to 1075 trees)

The approximate algorithm improves over baselines, even in enormous search

spaces with 150 elements (10300 trees)

* Also non-physics benchmark with 500 elements (more than 10190 trees)
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Scaling

The approximate A* algorithm has
controlled run time even for ~150 elements

Run Time (sec)

The number of trees explored by the 01|
approximate A* algorithm is tiny compared  102{

to the 3N nodes in the trellis, which is super-

exponentially smaller than the number of 10
trees. m 107
3 10
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trees are explored in this case Fiz
10-14

= =
o o
w EEN

[
o
N

Greedy
—— Beam Search
——- ExactA”
=~ Approx. A"
--------- Exact Trellis

Run Time (seg)

20 30

Number of elements

="
. —  —

| ——- ExactA* N

{ ——- Approx. A"

Trees explored / 3V

20 30

Number of elements

104; .................
10°;
Greedy
102_E —— Beam Search
' ——- Approx. A”

101'/
10°-

80 100 120 140

Number of elements
10730
\.\

—-41 ’

10 \.\
\.\

—46 | ’
10 \.\'\
10-51 AN

\‘\
10-56 AN
\‘\
1061 ‘\’\.
\.
1096
——- Approx. A"
80 100 120, 140

Number.of Elements



Hierarchical Clustering as a
Markov Decision Process
+ Reinforcement Learning



Hierarchical Clustering as an MDP

In a separate, but related thread of research, we

framed the hierarchical clustering as a Markov

Decision Process

e Interfaced to Open Al Gym

e Used various Reinforcement Learning algorithms

Markov Decision Process (MDP). We treat the problem of clustering as an MDP (S, A, P, R):

The state space S is given by all possible particle sets at any given point during the clustering
process, s = 2.

T
T

ne actions A are the choice of two particles a = (7, 5) with 1 <7 < j < n; to be merged.

ne state transitions [ are deterministic and update z; to z;_; by replacing the particles p; ;

and p; ; with a parent p;_1 ; = p;; + p¢,j. All other particles are left unchanged, each state
transition thus reduces the number of particles by one.

T
T

e rewards R are the splitting probabilities, R(s = z¢,a = (1,7)) = logps(2¢|2:—-1(%,7)).

he MDP 1s episodic and terminates when only a single particle is left.

Johann Brehmer, Sebastian Macaluso, Duccio Pappadopulo, KC [arXiv:2011.08191]
NeurlPS 2020 ML4Physical Sciences workshop
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Figure 1: Jet clustering as a Markov Decision Pro-
cess. States s (squares) represent (partial) cluster-
ings of the original particles (small circles), the
agent begins in the unclustered state (top square).
Each action a chooses a pair of particles in the cur-
rent state (which may be either part of the original
particle set or the result of a partial clustering) to

be merged next. The reward 7 1s the log likelihood
of the corresponding 1 — 2 splitting.



https://arxiv.org/search/cs?searchtype=author&query=Brehmer%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Macaluso%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Pappadopulo%2C+D

Reinforcement Learning

Johann Brehmer, Sebastian Macaluso, Duccio Pappadopulo, KC [arXiv:2011.08191]
NeurlPS 2020 ML4Physical Sciences workshop

In particular, we compared the performance ot

e Monte Carlo Tree Search (MCTYS)

e |Imitation learning / Behavioral Cloning (BC).

to traditional baselines:
e Greedy

e Beam Search

And the exact MLE/MAP found by
using the trellis algorithm
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Figure 2: Mean log likelihood of clustered trees (larger is better). We show the mean and its standard error
between five models trained with different random seeds. Left: against the computational cost, measured as
the number of evaluations of the splitting likelihood ps required by the different algorithms. For beam search
and MCTS we show four different hyperparameter settings. Right: as a function of the number of final-state
particles (leaves of the tree), using the best-performing (and most computationally expensive) hyperparameter
setup for each algorithm. MCTS (solid, red) gives the highest-quality tree clusterings.


https://arxiv.org/search/cs?searchtype=author&query=Brehmer%2C+J
https://arxiv.org/search/cs?searchtype=author&query=Macaluso%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Pappadopulo%2C+D

Conclusion

Hierarchical clustering is a common task in particle physics and many other areas

* The probabilistic view of hierarchical clustering as inverting generative model to inter
a structured latent space is interesting and connects mechanistic models, variational
inference, deep learning, and combinatorial optimization

The trellis data structure + dynamic programs tor MAP and partition function look like a
more classical algorithm, but

* The trellis represents a parametrized distribution over hierarchies
* \We can ditferentiate the MAP and partition function w.r.t. these parameters

 \We can parametrize this distribution with some model, like a neural network, and have
amortized posteriors with efficient sampling (great for a VAE over discrete structures)

e All of these could be useful tor reinforcement learning or model-based planning
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