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DEEP LEARNING AND COMBINATORIAL OPTIMIZATION

» What can DL do for CO?

The quadratic assignment problem (QAP)
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SPARSE INFERENCE

» Sparse Linear Recovery:. Canonical Template for Combinatorial |
Optimization [Natarajan]:

» Given dictionary W € R>*™ m > d, and = = Wz, recover Z by
exploiting a sparsity prior.

fur(x) ;== argmin{||z|o; z = W2z}.

[Olshausen & Field]

» Basic framework to understand/analyse power of nonlinear
approximation relative to linear approximation [DeVore].
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» Sparse Linear Recovery:. Canonical Template for Combinatorial
Optimization [Natarajan]:

» Given dictionary W € R**™ m > d, and = = Wz, recover Z by
exploiting a sparsity prior.

fu(x) ;== argmin {||z||g; x = Wz}.

» Basic framework to understand/analyse power of nonlinear
approximation relative to linear approximation [DeVore].

» Convex Relaxation: replace ¢y with /1 norm.

» Compressed Sensing [Candes, Romberg, Tao, Donoho]

» Efficient Algorithms leveraging convex geometry.
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» Memorization in Overparametrised Shallow Networks

» Given dataset {(2;,Y;) € R® x R}i<n , find “smallest” shallow net f (-, ©*) such }
that f(:l:i,@*) = Y; ,1 E [n] o dv

» Guarantees in the Mean-Field infinitely wide limit back to finite-width?

» Neural function approximation of sparse inference

» Given high-dimensional input * & R and dictionary W & Rdxm, sparse
regression defined as fyy,(x) := argmin{||z|o; * = Wz}.

» Neural network approximation of fw?

» In particular, is depth needed in the high-dimensional regime?
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MEMORIZATION IN SHALLOW NEURAL NETWORKS: SET-UP

» Single hidden-layer ReLU network with input in R and

O
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» Goal: Memorize training set {(7i,%;) € R* x R};<,, , ie find ©* Blanc et al, COLT’20]
such that f(z;;©™) = y; , with small complexity, e.g. smallest Models trained via SGD (without noise)

ossible )/, or smallest weights 1
P M IS > 16517

7=1

» Questions:

» How does gradient-descent behave under different over-
parametrisation scaling and regularisation?

Models trained via SGD, with label noise

» Towards optimization guarantees for finite width?
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» How large should we expect M to be in order to memorize 1 points in dimension d ?
» M > p, Tollows directly from Universal Approximation and Convex Geometry [Caratheodory]
» In fact, M ~ n/d is possible [Baum’88 for threshold units, Bubeck et al’20 for ReLU].
» However, number of neurons is not necessarily good notion of complexity.

» Moreover, previous memorization algorithms do not correspond to gradient descent.

» Tychonov Regularisation (aka weight decay, path-norm): Z 10:]]%.

~

» Sparsity 5(n/d) with total weight R(f) = O(v/n) sufficient [Bubeck et al], but not gradient-descent.

» Gradient Descent analysis in the random feature (=kernel) regime
» [Daniely’20] shows 5(n/d) are sufficient, but poor generalisation.

» How about active, non-linear regime?
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LIFTING TO MEASURES OVER PARAMETERS

» For each choice of parameters © = {§, =

i, b, )ERdexR} we ®

O
can associate an empirical measure i = % defined in ® °
O =RYxR xR, so that i1 0;
F(@:0) = | e(a’x+b)sdpla.b,o "
Q
» Tychonov-Regularised Memorization problem becomes Jl

» From the Representer Theorem, sparse solution exists with at most 1 atoms.

Z(Sei

» Similar geometry using implicit regularisation with label noise [Blanc et al.’20]

» Structure of general solutions?

‘Rosset et al, Bengio et al, Bach]
‘Mei et al, Chizat et al]
Rotskoff et al, Sirignano et al]
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» Overparametrised memorization “hides” an underlying finite-
dimensional linear program:

Neurons

Datapoints

» What is the nature of this linear program?

» Each datapoint defines a hyperplane in {2 = R Projective Duality

» n datapoints define a hyperplane arrangement in {2 with § = O(n)O(d)
cells.

* : : : ) oy
» 1L necessarily concentratesgn at most one point 6, for each cell. Datapoint

» As a result, minimisers p* = » 2,65, are solutions of

s=1

Neurons
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CURRENT AND FUTURE QUESTIONS

» The sensing matrix A is highly coherent/redundant (S > n)

» We know a solution exists with support at most n. (Representer
theorem)

» Open: RIP at levelpoly(d,n) ?

» Towards gradient Descent Guarantees for finite width:

» We have local curvature of the loss in the measure space [Chizat’19,
Ge, Jin'21]

» Main technical challenge: lack of smoothness of the training map.
» Current/Open: leverage piece-wise smoothness of the map.

» Average-vs-worst case rates (SQ-lower bounds) [Goel et al, Diak.]

Neurons

Datapoints

Datapoint:

Neurons
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FUNCTION APPROXIMATION OF SPARSE INFERENCE

» Recall sparse inference task: given dictionary W € R*™ m > d, and = = Wz, recoverZ

» Main algorithmic paradigm: relax o to ¢1 and consider the penalized quadratic program

» Solved e.g using lterative Soft-Thresholding Algorithm (ISTA, Proximal Gradient descent).

» By unrolling this iterative scheme, [Gregor & LeCun] propose a neural network
approximation, LISTA:

ISTA — Recurrent Neural Network LISTA — Unfolded Neural Network
» Unrolling iterative algorithm is sufficient. Is it also necessary?

» Depth-width tradeoffs for such sparse inference?



DEPTH SEPARATION PRIOR WORK

» Rich literature in boolean [Rossman, Hastad’68] or threshold [Hajnal’93]
circuit lower bounds.

» [Martens et al’13] shows lower bounds for RBMs.

» [Telgarsky’15] Exploits combinatorial limitations of shallow networks

» Refined periodicity analysis in [Chatziafratis et al’20].

[Telgarsky, "15]

» [Montufar et al.] bound number of linear regions of deep RelLU nets.

» [Eldan, Shamir, Safran, Daniely] construct oscillatory functions with
depth-separation. Provably require exp(d) width for shallow model,
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DEPTH SEPARATION BEYOND RADIAL FUNCTIONS

» Key ingredients for depth separation: functions with oscillatory behavior and heavy-
tailed input data distributions:

D,(f,9) =E,|f(z) — g(x)|?




DEPTH SEPARATION BEYOND RADIAL FUNCTIONS

» Key ingredients for depth separation: functions with oscillatory behavior and heavy-
tailed input data distributions:

Du(fag) —

() = g()]7

» Deep Piece-wise linear functions over compact domains are easier to approximate with

shallow models:

» Extends previous results in [Safran, Eldan, Shamir'19] for radial functions.
» Rate is polynomial in d, but exponential in 6_1.



APPLICATION TO SPARSE INFERENCE

» Since ISTA iterations are piece-wise linear, we can leverage this upper bound for sufficiently
incoherent dictionaries:

» Rate is polynomial in d, but exponential in 6_1.
» Depth can still provide substantial improvements in approximation.

» Data adaptivity: rates may be improved by localizing.



APPLICATION TO SPARSE INFERENCE

» Since ISTA iterations are piece-wise linear, we can leverage this upper bound for sufficiently
incoherent dictionaries:

» Rate is polynomial in d, but exponential in 6_1.
» Depth can still provide substantial improvements in approximation.

» Data adaptivity: rates may be improved by localizing.
» Current: formalize lower bound in weaker sparsity / coherent assumptions.
» Open: optimization guarantees of learnt sparse coding.

» Open: refined analysis under more stringent sparsity conditions [Liu et al]



TAKE-HOME

» Sparse regression: rich CO problem where data geometry enables efficient algorithms.

» Sparse regression in data memorization using overparametrised shallow models:
» Important tool to establish generic efficient learnability.

» Geometry of hyperplane arrangement sensing matrices.

» Function Approximation of Sparse Regression

» Shallow neural approximation not cursed by dimension.
» Which inverse problems provably require depth? Learnability guarantees?

» Towards structured problems (eg in graphs, grids).
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