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Algorithmic Reasoning Tasks

(Johnson et al., 2017a; Weston et al., 2015; Hu et al., 2017; Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016; Watters et al., 
2017; Fragkiadaki et al., 2016; Chang et al., 2017; Saxton et al., 2019; Chang et al., 2019; Santoro et al., 2018; Zhang et al., 2019, …)

What are the colors
of the farthest pair

of objects?

What is the shortest path 
to the monster?

Reasoning and perception

Color of her sweater?

Furthest pair of objects?

Next position of the block?

?

Perception

Reasoning

What is the next state 
of the system?

Perception “Reasoning
Network”
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How well do (Graph) Neural Networks learn such tasks?
What does this depend on?

• Generalization and architectural structure
K. Xu, J. Li, M. Zhang, S. Du, K. Kawarabayashi, S. Jegelka. ICLR 2020

• Extrapolation, structure and nonlinearities
K. Xu, J. Li, M. Zhang, S. Du, K. Kawarabayashi, S. Jegelka, ICLR 2021 



Generalization Analysis of GNNs

• Complexity-based
(VC-dim/ Rademacher/ PAC-Bayes)
Scarselli et al 2018, Garg et al 2020, 
Liao et al 2021

• Trajectory-based (NTK)
Du et al 2019

• Structural Inductive Biases
(structured functions)
Xu et al 2020, 2021

More 
Assumptions / 
More refined



Graph Neural Networks

(Merkwirth & Lengauer 2005; Scarselli et al 2009; Bruna et al 2014; Dai et al 2016; Battaglia et al., 2016; Defferrard et al., 2016; Duvenaud et al., 2015; Hamilton 
et al., 2017; Kearnes et al., 2016; Kipf & Welling, 2017; Li et al., 2016; Velickovic et al., 2018; Verma & Zhang, 2018; Ying et al., 2018; Zhang et al., 2018; …)

In each round k:
Aggregate over neighbors

Combine with current node

………………………………..
Graph-level readout
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feature description
of node u in round k-1

<latexit sha1_base64="FZ++IOElrGm3aQfaP6kwtnfhDns="></latexit>

h(k)
v = COMBINE(k)

⇣
h(k�1)
v ,m(k)

N (v)
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Graph Neural Networks

In each round k:
Aggregate over neighbors

Combine with current node
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Graph-level readout

no
de

 e
m

be
dd

in
g

gr
ap

h 
em

be
dd

in
g

<latexit sha1_base64="fEg26rguK4MKAcnLV/JosPntxYs="></latexit>

m(k)
N (v) = AGGREGATE(k)

⇣��
h(k�1)
u : u 2 N (v)
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Under review as a conference paper at ICLR 2021

In summary, we analyze how MLPs extrapolate and provide two insights: (1) MLPs cannot extrapolate
most non-linear tasks, because they quickly converge to directionally linear functions (Theorem 3);
and (2) MLPs can extrapolate well when the target function is linear, provided the training distribution
is “diverse” (Theorem 5). In the next section, these results will help us understand how more complex
networks extrapolate, specifically, GNNs for non-linear algorithmic tasks.

4 HOW GRAPH NEURAL NETWORKS EXTRAPOLATE

Above, we saw that extrapolation in non-linear tasks is hard for MLPs (Theorem 3). Despite this
limitation, GNNs have been shown to extrapolate well in some non-linear algorithmic tasks, such as
intuitive physics (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018), graph algorithms (Battaglia
et al., 2018; Velickovic et al., 2020), and symbolic mathematics (Lample & Charton, 2020). To address
this discrepancy, we build on our MLP results and study how GNNs trained by GD extrapolate.

4.1 HYPOTHESIS: LINEAR ALGORITHMIC ALIGNMENT HELPS EXTRAPOLATION

We begin with an example: training GNNs to solve the shortest path problem. For this task, prior
works observe that a modified GNN architecture with min-aggregation can generalize to graphs larger
than those in the training set (Battaglia et al., 2018; Velickovic et al., 2020):

h(k)
u = min

v2N (u)
MLP(k)

�

h(k�1)

u ,h(k�1)

v ,w
(v,u)

�

. (2)

We first provide an intuitive explanation (Fig 2a). Shortest path can be solved by the Bellman-Ford
(BF) algorithm (Bellman, 1958) with the following update:

d[k][u] = min

v2N (u)
d[k � 1][v] +w(v, u), (3)

where w(v, u) is the weight of edge (v, u), and d[k][u] is the shortest distance to node u within k
steps. The two equations are similar: GNNs can simulate the BF algorithm if the MLP modules learn
a linear function d[k� 1][v] +w(v, u). Since MLPs can extrapolate well in linear tasks (Theorem 5),
this “alignment” might explain why min-aggregation GNNs can extrapolate well in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly used
sum-aggregation (Eqn. 1) to extrapolate well in this task. With sum-aggregation, the MLP modules
need to learn a non-linear function to simulate the BF algorithm, but Theorem 3 suggests that they
will not extrapolate for most nonlinearities outside the training support.

We can extend the above intuition to other algorithmic tasks. Many target tasks where GNNs
extrapolate well can be solved by dynamic programming (DP) (Bellman, 1966), an algorithmic
paradigm with a recursive structure similar to GNNs’ (Eqn. 1) (Xu et al., 2020).
Definition 6. Dynamic programming (DP) is a recursive procedure with updates

Answer[k][s] = DP-Update({Answer[k � 1][s0]} , s0 = 1...n), (4)

where Answer[k][s] is the solution to a sub-problem indexed by iteration k and state s, and DP-Update
is a task-specific update function that solves the sub-problem based on the previous iteration.

Building on the extrapolation behavior of MLPs, we hypothesize that: given a DP task, if we can
encode appropriate non-linearity in the model architecture and input representations so that the MLP
modules only need to learn a linear step, then GNNs can extrapolate well.
Hypothesis 7. (Linear algorithmic alignment). Let f : X ! R be an algorithm and N a neural
network with m MLP modules. Suppose there exist m linear functions {gi}mi=1

so that by replacing
N ’s MLP modules with gi’s, N simulates f . Given ✏ > 0, there exists {(xi, f(xi))}ni=1

⇢ D ( X
so that N trained on {(xi, f(xi))}ni=1

by GD with squared loss learns ˆf with k ˆf � fk < ✏.

Our hypothesis builds on the algorithmic alignment framework of (Xu et al., 2020), which suggests
that GNNs can interpolate well if MLP modules are “aligned” to easy-to-learn (possibly non-linear)
functions. Successful extrapolation is harder: MLP modules need to align with linear functions.

To satisfy the linear algorithmic alignment assumption, we can encode appropriate non-linear oper-
ations in either the architecture or input representation (Fig. 2). The shortest path example shows

6
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v2N (u)

(Merkwirth & Lengauer 2005; Scarselli et al 2009; Bruna et al 2014; Dai et al 2016; Battaglia et al., 2016; Defferrard et al., 2016; Duvenaud et al., 2015; Hamilton 
et al., 2017; Kearnes et al., 2016; Kipf & Welling, 2017; Li et al., 2016; Velickovic et al., 2018; Verma & Zhang, 2018; Ying et al., 2018; Zhang et al., 2018; …)



Algorithmic Reasoning Tasks

(Johnson et al., 2017a; Weston et al., 2015; Hu et al., 2017; Fleuret et al., 2011; Antol et al., 2015; Battaglia et al., 2016; Watters et al., 
2017; Fragkiadaki et al., 2016; Chang et al., 2017; Saxton et al., 2019; Chang et al., 2019; Santoro et al., 2018; Zhang et al., 2019, …)
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Architectures
MLP



Architectures
MLP Deep Sets

(Zaheer et al 2017)



Architectures
MLP Deep Sets

(Zaheer et al 2017)
Graph Neural Network

(Battaglia et al, 2018)



Architectures
MLP Deep Sets

(Zaheer et al 2017)

“equivalent” by representational power, 
But big empirical differences in learning!

Graph Neural Network
(Battaglia et al, 2018)



Idea

• Algorithms are structured arrangements of subroutines

• Neural networks are structured arrangements of learnable “modules”

formalize inductive bias?

Algorithmic Alignment: Network can mimic algorithm 
via few, easy-to-learn “modules”

Hypothesis: Alignment facilitates learning



Algorithmic Alignment

Algorithmic Alignment: Network can mimic algorithm 
via few, easy-to-learn “modules”

Bellman-Ford GNN



Empirical Evidence

Ac
cu

ra
cy

Alignment leads to a hierarchy / classification of tasks.
Predicts which architectures suit which tasks.



Formalization:
A neural network              -aligns with an algorithm if it can mimic the algorithm via n
different (shared) network modules, each of which is PAC-learnable with at most           
samples.

Alignment more generally

More generally: GNNs align with Dynamic Programming

Many algorithmic / physical reasoning tasks are DPs!



Theorem (informal)
Assume the network and some algorithm for the target task    

-align.
Then, under assumptions*, the task is                             -learnable by 
the network.

* algorithmic stability, Lipschitz continuous modules, layer-wise training. 
Implemented e.g. in Veličković et al 2020.

E.g. via NTK-bounds, can get separation of sample complexity for MLP and 
GNN.

Implications



How well do (Graph) Neural Networks learn such tasks?
What does this depend on?

• Generalization and architectural structure
K. Xu, J. Li, M. Zhang, S. Du, K. Kawarabayashi, S. Jegelka. ICLR 2020

• Extrapolation, structure and nonlinearities
K. Xu, J. Li, M. Zhang, S. Du, K. Kawarabayashi, S. Jegelka, ICLR 2021 



Extrapolation

What happens outside the support of the training distribution?

Generalize across 
graph structures, 
degrees, 
node features…?

Extrapolation

What function does a neural network trained by GD implement 
outside the support of the training distribution? 

* In-distribution generalization: train = test distribution

Train Test

Generalize across graph structure, size, node & edge features?
Prior works:
GNNs can sometimes successfully extrapolate to larger graphs.
(Battaglia et al. 2016, 2018; Lample and Charton 2020, Velickovic et al., 2020 ...)

MLPs and ConvNets can “fail” out of distribution.
(Barnard and Wessels,1992; Haley and Soloway, 1992; Santoro et al. 
2018; Arjovsky et al. 2019...) 



ReLu feedforward networks

(Linear regions: Montufar et al 2014, Arora et al 2018, Hanin & Rolnick, 2019; Hein et al., 2019, XZDKJ20)

Neural network

Training data

Neural network
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tv

Theorem (XLZDKJ21)
Let    be a 2-layer ReLu MLP tained by GD. For any direction         
let            . As               :                                          with rate            .
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What could this mean for GNNs?
Shortest Path 
(target):

GNN (sum):

Under review as a conference paper at ICLR 2021

In summary, we analyze how MLPs extrapolate and provide two insights: (1) MLPs cannot extrapolate
most non-linear tasks, because they quickly converge to directionally linear functions (Theorem 3);
and (2) MLPs can extrapolate well when the target function is linear, provided the training distribution
is “diverse” (Theorem 5). In the next section, these results will help us understand how more complex
networks extrapolate, specifically, GNNs for non-linear algorithmic tasks.

4 HOW GRAPH NEURAL NETWORKS EXTRAPOLATE

Above, we saw that extrapolation in non-linear tasks is hard for MLPs (Theorem 3). Despite this
limitation, GNNs have been shown to extrapolate well in some non-linear algorithmic tasks, such as
intuitive physics (Battaglia et al., 2016; Sanchez-Gonzalez et al., 2018), graph algorithms (Battaglia
et al., 2018; Velickovic et al., 2020), and symbolic mathematics (Lample & Charton, 2020). To address
this discrepancy, we build on our MLP results and study how GNNs trained by GD extrapolate.

4.1 HYPOTHESIS: LINEAR ALGORITHMIC ALIGNMENT HELPS EXTRAPOLATION

We begin with an example: training GNNs to solve the shortest path problem. For this task, prior
works observe that a modified GNN architecture with min-aggregation can generalize to graphs larger
than those in the training set (Battaglia et al., 2018; Velickovic et al., 2020):

h(k)
u = min

v2N (u)
MLP(k)

�
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(v,u)

�

. (2)

We first provide an intuitive explanation (Fig 2a). Shortest path can be solved by the Bellman-Ford
(BF) algorithm (Bellman, 1958) with the following update:

d[k][u] = min

v2N (u)
d[k � 1][v] +w(v, u), (3)

where w(v, u) is the weight of edge (v, u), and d[k][u] is the shortest distance to node u within k
steps. The two equations are similar: GNNs can simulate the BF algorithm if the MLP modules learn
a linear function d[k� 1][v] +w(v, u). Since MLPs can extrapolate well in linear tasks (Theorem 5),
this “alignment” might explain why min-aggregation GNNs can extrapolate well in this task.

For comparison, we can reason why we would not expect GNNs with the more commonly used
sum-aggregation (Eqn. 1) to extrapolate well in this task. With sum-aggregation, the MLP modules
need to learn a non-linear function to simulate the BF algorithm, but Theorem 3 suggests that they
will not extrapolate for most nonlinearities outside the training support.

We can extend the above intuition to other algorithmic tasks. Many target tasks where GNNs
extrapolate well can be solved by dynamic programming (DP) (Bellman, 1966), an algorithmic
paradigm with a recursive structure similar to GNNs’ (Eqn. 1) (Xu et al., 2020).
Definition 6. Dynamic programming (DP) is a recursive procedure with updates

Answer[k][s] = DP-Update({Answer[k � 1][s0]} , s0 = 1...n), (4)

where Answer[k][s] is the solution to a sub-problem indexed by iteration k and state s, and DP-Update
is a task-specific update function that solves the sub-problem based on the previous iteration.

Building on the extrapolation behavior of MLPs, we hypothesize that: given a DP task, if we can
encode appropriate non-linearity in the model architecture and input representations so that the MLP
modules only need to learn a linear step, then GNNs can extrapolate well.
Hypothesis 7. (Linear algorithmic alignment). Let f : X ! R be an algorithm and N a neural
network with m MLP modules. Suppose there exist m linear functions {gi}mi=1

so that by replacing
N ’s MLP modules with gi’s, N simulates f . Given ✏ > 0, there exists {(xi, f(xi))}ni=1

⇢ D ( X
so that N trained on {(xi, f(xi))}ni=1

by GD with squared loss learns ˆf with k ˆf � fk < ✏.

Our hypothesis builds on the algorithmic alignment framework of (Xu et al., 2020), which suggests
that GNNs can interpolate well if MLP modules are “aligned” to easy-to-learn (possibly non-linear)
functions. Successful extrapolation is harder: MLP modules need to align with linear functions.

To satisfy the linear algorithmic alignment assumption, we can encode appropriate non-linear oper-
ations in either the architecture or input representation (Fig. 2). The shortest path example shows
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Importance of training graphs

Lemma (XZDKJ21): A max-aggregation GNN in the NTK regime learns 
Max-degree in the NTK regime under conditions on the training data:
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Summary: Task Structure and generalization

• Generalization within distribution: 
algorithmic alignment formalizes inductive bias

• Extrapolation:
nonlinearities matter: linear algorithmic alignment
è encode nonlinearities in architecture (aggregation) or features
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