The Transformer Network for the
Traveling Salesman Problem

Xavier Bresson

ENTEN NANYANG School of Computer Science and Engineering
e e NOLOGICAL NATIONAL RESEARCH FOUNDATION

3 P M 's O
UNIVERSITY Data Science and Al Research Centre RIME MINISTER'S OFFICE

SINGAPORE Nanyang Technological University (NTU), Singapore

Joint work with Thomas Laurent (LMU)

AM-UCLA Workshop on

Deep Learning and Combinatorial Optimization
February 22th 2021

ORGANIZING COMMITTEE

Peter Battaglia (DeepMind Technologies)
Xavier Bresson (Nanyang Technological University, Singapore)

https: / / WWW.ipam_uc]_a_edu / programs / WOI‘kShODS / Stefanie Jegelka (Massachusetts Institute of Technology)
Y

ann LeCun (New York University, Canadian Institute for Advanced Research)

deep-learning-and-combinatorial-optimization Andres Lo Ecoe Potechniaue de Monta)

Stanley Osher (University of California, Los Angeles (UCLA), Mathematics)

Oriol Vinyals (DeepMind Technologies)

Max Welling (University of Amsterdam)

Xavier Bresson 1

https://www.ipam.ucla.edu/programs/workshops/deep-learning-and-combinatorial-optimization

Xavier Bresson

History of TSP
Traditional Solvers
Neural Network Solvers
Proposed Architecture
Decoding Technique
Numerical Results
Discussion

Conclusion

Outline

Outline

e History of TSP
o

Xavier Bresson

Traveling Salesman Problem (TSP)

@ TSP : “Given a list of cities and the distances between each pair of cities,
what is the shortest possible path that visits each city exactly once and
returns to the origin city?” — First mathematical formulation by W.
Hamilton 1805-1865.

@ TSP belongs to the class of routing problems which are used every day in
industry (warehouse, transportation, supply chain, hardware design,
manufacturing, etc).

@ TSP is NP-hard, exhaustive search has a complexity in O(n!).

@ TSP is the most popular and most studied combinatorial problem, starting
with von Neumann (1951).

@ TSP has driven the discovery of several important optimization techniques :
Cutting Planes!!l, Branch-and-Bound?, Local Searchl3, Lagrangian
Relaxation!, Simulated Annealingldl.

[1] Dantzig, Fulkerson, Johnson, 1954

[2] Bellman, Held, Karp, 1962

[3] Croes, A method for solving traveling-salesman problems, 1958

[4] Fisher, The Lagrangian Relaxation Method for Solving Integer Programming Problems, 1981
[6] Kirkpatrick, Gelatt, Vecchi, Optimization by Simulated Annealing, 1983

Xavier Bresson

Xavier Bresson

Traditional Solvers

Outline

Traditional TSP Solvers

@ Two traditional approaches to tackle combinatorial problems :

Xavier Bresson

@ Exact algorithms : Exhaustive search, Dynamic or Integer Programming. These algorithms
are guaranteed to find optimal solutions, but they become intractable when n grows.

® Approximate/heuristic algorithms : These algorithms trade optimality for computational
efficiency. They are problem-specific, often designed by iteratively applying a simple man-
crafted rule, known as heuristic. Their complexity is polynomial and their quality depends

on an approximate ratio that characterizes the (worst/average-case) error w.r.t the optimal
solution.

Exact TSP Solvers

@ Exact algorithms :
@ Dynamic programminglll : O(n? 27), intractable for n>40.

@ Gurobil? : General purpose Integer Programming (IP) solver with Cutting Planes (CP) and
Branch-and-Bound (BB).

@ Concordel3l : Highly specialized linear IP+CP+BB for TSP. Concorde is widely regarded as
the fastest exact TSP solver, for large instances, currently in existence.

@ TSP can be formulated as Integer Linear Programming (ILP) problem :

mrgn Z dex. S.t.

Z Te=2 YveV
ecCut({v},V—{v})

Y =2 VSCV,S#0,S#V
eeCut(S,S¢)
where Cut(A, A%) = {e, s.t. v € A,0" € A°}
z. € {0,1} Vee E

[1] Held, Richard, A dynamic programming approach to sequencing problems, 1962
[2] Gu, Rothberg, Bixby, Gurobi, 2008
[3] Applegate, Bixby, Chvatal, Cook, The Traveling Salesman Problem: A Computational Study, 2006

Xavier Bresson

-

IP Solvers

@ Interpretation :

Z To=2 YoeV
e€Cut({v},V—{v})

<>

minE dex. s.t.
X

Z To.=2 YveV
eeCut({v},V—{v})

Y we>2 VSCV,S#DS#V
ceCut(S,5°)
where Cut(A, A°) = {ey s.t. v € A0 € A%}
ze € {0,1} Vee FE

Sub-contour constraints that
guarantee a feasible tour.

Y, ze22 VSCV Satisfied Not satisfied

Xavier Bresson e€Cut(S,5¢)

IP Solvers

ILP problems are NP-hard because the space of optimization is binary x. € {0,1}.

ILP can be relaxed as a Linear Programming (LP) problem!!l with x, € [0,1] of the standard
form :

min d'z st. Ax <b,xz >0 Polytope
e

Solution

LP problems can be solved in O(n25) but all possible sets S makes the problem intractable.
Candidates S that violate the sub-group constraint must be identified and added to the LP
problem to get a valid tour.

This leads to the Cutting Planes techniquelll, which iteratively solves LP problems by adding

linear inequality constraints.

Solution

[1] Dantzig, Fulkerson, Johnson, 1954

Xavier Bresson

IP Solvers

@ Solving a LP problem does not guarantee a discrete solution x,
€ {0,1}, and continuous values lead to a choice to select or not
the edge in the tour (hence changing the candidates S). This
leads to a tree of possible solutions, and the branch-and-bound
techniquelll discards branches of the search space that provably
do not contain an optimal solution. / \

Discarded solution with a

° . . 2.5 . upper bound solution (for
Overall complexity for Concorde/Gurobi is O(n?5b(n)), with discrete) and lower bound

O(n??) for LP and O(b(n)) for the number of branches to (for continuous z).
explore.

[2] Bellman, Held, Karp, 1962

Xavier Bresson

Concordelll Complexity

@ Experimental complexity :

Concorde Experimental Complexity
Concorde in dark, Approximated polynomial function in bleu

2500 ~

2000 ~

1500 A

Time (sec)

1000 A

500 A

0 200 400 600 800 1000 1200 1400
Number of cities/nodes

Polynomial complexity
O(n2™)

[1] Applegate, Bixby, Chvatal, Cook, The Traveling Salesman Problem, 2006

Xavier Bresson

Time (sec)

Concorde Experimental Complexity

Concorde in dark, Approximated exponential function in red

2500 4

2000

1500 A

1000 A

500 A

200 400 600 800 1000 1200 1400
Number of cities/nodes

Exponential complexity
O(e0-0057)

Heuristic Solvers

@ Approximate/heuristic algorithms :

@ Christofides algorithmlll: Approximation based on minimum spanning tree. Polynomial-
time algorithm with O(n? logn) that is guaranteed to find a solution within a factor 3/2 of

the optimal solution.

@ Farthest/nearest/greedy insertion algorithml? : Complexity is O(n?) and the approximation
ratio is 2.43 for farthest insertion (best insertion in practice).

@ Google OR-Toolskl : Highly optimized program that solves TSP and a larger set of vehicle
routing problems. This program applies different heuristics s.a. Simulated Annealing,
Greedy Descent, Tabu Search, to navigate in the search space, and refines the solution by
Local Search techniques.

Farthest Farthest Farthest
O Insertion O Insertion Insertion
X ‘ e = — & 50 = & 0
O O O

[1] Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, 1976
[2] Johnson, Local Optimization and the Traveling Salesman Problem, 1990
[3] Google OR-tools: Google's Operations Research tools, 2015

Xavier Bresson 12

Heuristic Solvers

@ Approximate/heuristic algorithms :

@ 2-Opt algorithm(!:2l : Heuristic is based on a move that replaces two edges to reduce the
tour length. Complexity is O(n? m(n)), where n?is the number of node pairs and m(n) is
the number of times all pairs must be tested to reach a local minimum with worst-case
being O(27/2). The approximation ratio is then 4/vn.

o Extension to 3-Opt move (replacing 3 edges) and morel3l.

@ LKH-3 algorithm!4 : Extension of the original LKHI! and LKH-2[6l. It is the best heuristic
for solving TSP. It is an extension of 2-Opt/3-Opt where edge candidates are estimated
with a Minimum Spanning Treel®l. It tackles various TSP-type problems.

2-Opt move 3-Opt move
— —

[1] Lin, Computer solutions of the traveling salesman problem, 1965

[2] Johnson, McGeoch, The traveling salesman problem: A case study in local optimization, 1995

[3] Blazinskas, Misevicius, Combining 2-Opt, 3-Opt and 4-Opt with K-SWAP-KICK perturbations for the traveling salesman problem, 2011

[4] Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling Salesman and Vehicle Routing Problems, 2017
[6] Lin, Kernighan, An Effective Heuristic Algorithm for the Traveling-Salesman Problem, 1973

[6] Helsgaun, An Effective Implementation of the Lin-Kernighan Traveling Salesman Heuristic, 2000

Xavier Bresson 13

Traditional Solvers

@ Hierarchy of traditional TSP algorithms :

2.43 3/2 0-4/vn 0 0 0
Exactness
| | | | | | >
| | | | |
O(n?) O(n?logn) O(n*m(n)) O(n?*°b(n)) O(n?27) O(n!)
Complexity
| | | | | | S
| | | | | |
Farthest Christofidesl®! 2-OptH Concordel?l/ Dynamic Exhaustive
Insertion!” LKH-3I5 Gurobil¥l Programmingl!l search
Tractable (w/ Intractable for n>20

[1] Held, Richard, A dynamic programming approach to sequencing problems, 1962
[2] Applegate, Bixby, Chvatal, Cook, The Traveling Salesman Problem, 2006
[3] Gu, Rothberg, Bixby, Gurobi, 2008

one computer)
up to n=2,000 Intractable for n>40

[4] Johnson, McGeoch, The traveling salesman problem: A case study in local optimization, 1995
[5] Helsgaun, An Extension of the Lin-Kernighan-Helsgaun TSP Solver for Constrained Traveling Salesman and Vehicle Routing Problems, 2017
[6] Christofides, Worst-case analysis of a new heuristic for the travelling salesman problem, 1976

[7] Johnson, Local Optimization and the Traveling Salesman Problem, 1990

Xavier Bresson

Neural Network Solvers

Outline

15

Deep Learning for the TSP Combinatorial Problem

@ DL has significantly improved Computer Vision, Natural Language Processing and Speech

Recognition in the last decade by replacing hand-crafted visual/text/speech features by features
learned from datall2l,

@ For combinatorial problems, the main question is whether DL can learn better heuristics from
data, i.e. replacing human-engineered heuristics?

@ This is appealing because developing algorithms to tackle efficiently NP-hard problems
may require years of research (TSP has been actively studied for 70 years). Besides, many
industry problems are combinatorial by nature.

@ The last five years have seen the emergence of promising techniques where (graph) neural
networks have been capable to learn new combinatorial algorithms with supervised or
reinforcement learning.

[1] LeCun, Bottou, Bengio, Haffner, Gradient Based Learning Applied to Document Recognition, 1998
[2] LeCun, Bengio, Hinton, Deep learning, 2015

Xavier Bresson

16

Neural Network Solvers

o Hopfield Netsl!l : First NN to solve (small) T'SPs.

@ PointerNetsl? : Pioneer paper using modern DL to tackle TSP and combinatorial optimization
problems. Combine recurrent networks to encode the cities and decode the node sequence of the
tour (auto-regressive decoding), and attention mechanisml® (similar idea thanl!¥ that was
applied to NLP with great success). Supervised learning with approximate TSP solutions.

-
-
-
—>
-
-

-

Encoder Decoder

[1] Hopfield, Tank, Neural computation of decisions in optimization problems, 1985
[2] Vinyals, Fortunato, Jaitly, Pointer networks, 2015
[3] Bahdanau, Cho, Bengio, Neural machine translation by jointly learning to align and translate, 2014

Xavier Bresson

Neural Network Solvers

PointerNets+RL!! : Improvel?l with Reinforcement Learning (no TSP solutions required). Two
RL approaches : A standard unbiased reinforce algorithm/3l and an active search algorithm that
can explore more candidates. The tour length is used as the reward.

Order-invariant PointerNets+RLI4 : Improvel? which is not invariant by permutations of the
order of the input cities (which is important for NLP but not for TSP). That requiresl? to
randomly permute the input order to make the network learn this invariance.

S2V-DQNDBI : A graph network that takes a graph and a partial tour as input, and outputs a
state-valued function Q to estimate the next node in the tour. Training is done by RL and

memory replayl®, which allows intermediate rewards that encourage farthest node insertion
heuristic.

Quadratic Assignment Problem!”l : TSP can be formulated as a QAP, which is NP-hard and
hard to approximate. A graph network based on the powers of adjacency matrix of node
distances is trained in supervised manner. The loss is the KL distance between the adjacency

matrix of the ground truth cycle and its network prediction. A feasible tour is computed with
beam search.

[1] Bello, Pham, Le, Norouzi, Bengio, Neural combinatorial optimization with reinforcement learning, 2016

[2] Vinyals, Fortunato, Jaitly, Pointer networks, 2015

[3] Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, 1992

[4] Nazari, Oroojlooy, Takac, Snyder, Reinforcement Learning for Solving the Vehicle Routing Problem, 2018

[5] Dai, Khalil, Zhang, Dilkina, Song, Learning combinatorial optimization algorithms over graphs, 2017

[6] Mnih et al, Playing Atari with Deep Reinforcement Learning, 2013

[7] Nowak, Villar, Bandeira, Bruna, A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks, 2017

Xavier Bresson

18

Xavier Bresson

Neural Network Solvers

Permutation-invariant Pooling Networkl!l : Solve a variant of TSP with multiple salesmen. The
network is trained by supervised learning and outputs a fractional solution, which is
transformed into a feasible integer solution by beam search. Non-autoregressive approach.

Tranformer-encoder+2-Opt heuristicl?l : Use standard transformer to encode the cities and
decode sequentially with a query composed of the last three cities (the cities before are
ignored). Train with Actor-Critic RL, and solution is refined with a standard 2-Opt heuristic.

Tranformer-encoder+Attention-decoderl3 : Also use standard transformer to encode the cities
and decode sequentially with a query composed of the first city, the last city in the partial tour
and a global representation of all cities. Train with reinforce and a deterministic baseline.

GraphConvNetl4 : Learn a deep graph network by supervision to predict the probabilities of an
edge to be in the TSP tour. A feasible tour is generated by beam search. Non-autoregressive
approach.

[1] Kaempfer, Wolf, Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Network, 2018
[2] Deudon, Cournut, Lacoste, Adulyasak, Rousseau, Learning Heuristics for the TSP by Policy Gradient, 2018

[3] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

[4] Joshi, Laurent, Bresson, An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem, 2019

19

Neural Network Solvers

@ 2-Opt Learningl!l : Design transformer-based network to learn to select nodes for the 2-Opt

heuristics (original 2-Opt may require O(2"/2) moves before stopping). Learn by RL and actor-
critic.

@ GNNs with Monte Carlo Tree Searchl?l : Inspired by AlphaGol3l, augment graph network with

Xavier Bresson

MCTS to improve the search exploration of tours by evaluating multiple next node candidates
in the tour (auto-regressive methods cannot go back to the selection of the nodes).

[1] Wu, Song, Cao, Zhang, Lim, Learning Improvement Heuristics for Solving Routing Problems, 2020
[2] Xing, Tu, A Graph Neural Network Assisted Monte Carlo Tree Search Approach to Traveling Salesman Problem, 2020
[3] D. Silver et al, Mastering the game of go with deep neural networks and tree search, 2016

Xavier Bresson

Proposed Architecture

Outline

21

Our Approach

@ We cast TSP as a “translation” problem :

@ Source is a set of 2D points.

@ Target is a tour (sequence of indices) with minimal length.
@ Motivation : The translation problem has seen significant progress with Transformers/l.
@ We train by reinforcement learning, with the same setting asl?l for comparison.

@ The reward is the tour length and the baseline is simply updated if the train network
improves it on a set of TSPs.

Input/source Output/target

[1] Vaswani et al, Attention is all you need, 2017
[2] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

Xavier Bresson

[\]
[\]

Xavier Bresson

Proposed Architecture

Index i, 12 13

Samplin 4 +. 4
At

»| Mask of Visited
Nodes M1

Encoded Nodes H°*¢

> Final Attention Layer between h; and Encoded Nodes b —

t, ! ;

RIS

A

[!

o ol o] - "

t

]\

Self-Attention Layer applied to (z,x1,@s,...,2,) X Lene

ot

Self-Attention Layer applied to (h,3%, hyde, hyde ... h.dec)

N

I
I
|
|
I
I
I
I
|
|
I
I
I
|
|
I
I
I
: D> Attention Layer between node t and Encoded Nodes €
|
I
I
I
I
|
|
I
I
I
I
|
|
I
I
I
I

Decoding is auto-
hdses hiee| | hgee . regressive, one node
at a time.
+PEy +PE; +PE,
- J

DO
w

@ Standard Transformer encoder :

@ Multi-head attention, residual
connection, batch normalization are

Encoded Nodes H°®"¢
A\
h(,rELI]C
used.

A
4
Self-Attention Layer applied to (z,x1,%,...,2,) X Ler¢

S . t

SN

enc __ {=L°"¢ (n+1)xd
H =H cR Start token,

|
|
|
|
|
|
|
|
L3 L3 I
@ Memory/speed complexity is O(n?). |
|
|
|
|
|
|
o e . I
where initialized at random. |

¥
H*Y = Concat(z, X) e R"TH*x2 ¢ R? X ¢ R**2

eKeT

/41 _ V4 (n+1)xd 3?1. enc
H softmax(—\/a WoPeR : . . o
© o of all cities e e
Qe = HEWCEQ c R(n+1)Xd P (single pass)
’332 O
K= H'W ¢ R(vTDxd ° = ° .
h" @
¢ bt (n+1)xd e e ®
V—HWVER o - O ® 5

. enc
Xavier Bresson X H

Xavier Bresson

Decoder

The decoding is auto-regressive, one city
at a time.

Suppose we have decoded the first ¢ cities
in the tour, and we want to predict the
next city.

The decoding process has four steps :

@ Part 1 : Start with encoding of the ¢,
city + positional encoding.

@ Part 2 : Encode ¢t city with the
partial tour using self-attention.

@ Part 3 : Query the next city with the
non-visited cities using multi-head

attention.
@ Part 4 : Final query using a single-
head attention + index sampling.

Hel'lC

I
: Index i i2 i3 | Mask of Visited
I Sampling,r 1\ T Nodes M1
I
: [péif';rt] [p‘f“] [pé‘ec] (-
| L N |
I
-+ Final Attention Layer between h; and Encoded Nodes b —
h(sltart] [hcll:| [hg] () °ee
Attention Layer between node ¢t and Encoded Nodes <€
ilstart] {31] {32] eee X Ldec

Self-Attention Layer applied to (h,d, h 3 hydec ... h.dec)

I
|
|
|
I
I
I
|
TP
I
I
I
|
|
|
I
I
I
|
|
|
I
I
I
|
|

N

Decoding is auto-
hdee | |hiee| | hge oo regressive, one node
{ / at a time.
+PEy +PE; +PE; +PE;
- __
Decoder

Xavier Bresson

Decoder — Part 1

Part 1 : Start decoding with the encoding
of the previously selected 1, city :

hi®® = h{" + PE, € R?
he2G = higse + PEi—o € RY, with hgSs

__1.enc
start start — hz

Add positional encoding (PE) to order the
nodes in the tour :

PE, € R?

PE;; = {

sin(27 f;t) if i is even,
cos(2m f;t) if 4 is odd,

10, 000 27T

(s

hgec]

Decoding is auto-
regressive, one node
at a time.

lel

__ penc
= he!

dec __ pence
= hy,

ec — hf;]C

enc
hi4

+PE, +PE, +PE, +PE,
Decoder
o Start with 0, hG* = B
o ¥ | proviowy o i
° n selected city
. . + add PE 2.l
- h
h e ¢ o 0
o 4, hee =
. . hGIlC .
ki
He"e h{*® + PE,

26

Decoder — Part 2

@ Part 2 : Encode ¢t city with the partial
tour using self-attention.

@ Multi-head attention, residual

connection, layer normalization are
used.

® Memory/speed complexity is O(t) at
each recursive step.

epeet
Vd
¢ = iLfo c R¢

K¢ = BE WL € RO
vt = H{ Wy € R4

hitl WEeR?Y, £=0,.., L —

= softmax(

hdec if £ =0

2 J2 N/ N4 10
Hl,t_ [hlv"7ht]7 ht _{]’L?’E if >0

Xavier Bresson

A A
I
I
I
| { RS S |
: [ﬁstart] |:iL1] |:iL2] e X Ldec:
| e '
I
I
I
: Self-Attention Layer applied to (h,, hydec hydec . .. hdec) :
I
I
I
I
: T T T T Decoding is auto- I
I hiSe| [hfee| [hgec| | hgec «e+ regressive, one node :
: at a time. |
e e — — —— —— — —— —— — — — —— — —— —— —— —— —— —— ———— —— — — —
1
Decoder
0 0
Encode the new
O
- ! city with the o ¢ 1
Un-vigited 5 partial tour)
cities @ @
3 j 3
© , Partial tour © fl
* Cu * @
hdeC _|_ PE iL
t t t

[\
-J

Decoder — Part 3

@ Part 3 : Query the next city with the non-
visited cities using attention.

@ Multi-head attention residual

connection, layer normalization are
used.
® Memory/speed complexity is O(n) at
each recursive step.
et
R — softmax(7 OMHVEeRY ¢=0,.., L% —1

qg = iLf+1W5 e R4
Kﬁ — HenCWé c Rtxd
Vﬁ — HenCWé c Rtxd

Xavier Bresson

I
I
I
I
I
I
I
I
Henc+>
I
I
I
I
I
I
I

¢

h’gtart] [hcll
-1

¢

|

t

hy

A\
] () L)

Mask of Visited
Nodes M

Attention Layer between node ¢t and Encoded Nodes €

¢

}Alstart] [

¢

)

THE -

cities

© 1
o
Un-vigited

Decoder

Query the

next city to
add the tour

=

rtial tour

Xavier Bresson

Decoder — Part 4

Part 4 : Final query using attention +
index sampling.

@ Single-head attention is used to get a
distribution over the non-visited
cities.

@ Finally, the next node %, ; is sampled
from the distribution using Bernoulli
during training and greedy (index
with max probability) at inference
time.

@ Memory/speed complexity is O(n).

dec _ goftma (Cta h(qKT O M) € R”
= max nh(—— :
pt \/E t
with
q = hiW, € R?

K = HencWK < RnXd

Index i, i9 i3
Sampling,r 1‘ T
Pt | |PI°] [P Mask of Visited
T 1‘ T Nodes M;
Final Attention Layer between h; and Encoded Nodes b S—

)

q
[hstart

|

¢

hy

o

I

Decoder

Un-vig

citie

Query the next
city to add the
tour with single-
head attention

) =

Parstial tour

dec
Dy

Architecture Comparison

@ Transformers for NLP (translation) vs. TSP (combinatorial optimization) :
@ Order of input sequence is not relevant for TSP.
@ Order of output sequence is coded with PEs for both TSP and NLP.
@ TSP-Encoder benefits from Batch Normalization (one-shot encoding of all cities).
@ TSP-Decoder uses Layer Normalization as with NLP (auto-regressive decoding).

@ TSP transformer is learned by Reinforcement Learning (no TSP solutions/approximations
required).

@ Both transformers for NLP and TSP have quadratic complexity O(n?L).

Xavier Bresson

@ Models of Kool-etallll and Deudon-etall?! :

Architecture Comparison

@ We use the same transformer-encoder (with BN).

@ Our decoding architecture is different :

Our query uses all cities in the partial tour with a self-attention module.

Kool-etal use the first and last cities with a global representation of all cities as the

query for the next city.

Deudon-etal define the query with the last three cities in the partial tour.

Un-vig

citie

0

YN

Our query

tial tour

Un-vig

citie

ited

rtial tour

Kool-etal’s query

[1] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018
[2] Deudon, Cournut, Lacoste, Adulyasak, Rousseau, Learning Heuristics for the TSP by Policy Gradient, 2018

Xavier Bresson

Un-vis
citi

ited

ES

0

o "\
N

o
4

»

2

3
Paj

Deudon-etal’s query

tial tour

Architecture Comparison

@ Our decoding process starts differently :

@ We use a token city z. This city does not exist and aims at starting the decoding at the
best possible location by querying all cities with a self-attention module.

[— —— i —

o .Encodnllg. P
_________________________ with all cities
Decoder ; ® o
_________________________ O
o
I [)
i . ‘

E - f

e e e e e o — o — — — —— — — — — — — —

Encoder
Xavier Bresson

Architecture Comparison

@ Our decoding process starts differently :

Kool-etallll starts the decoding with the mean representation of the encoding cities and a,

random token of the first and current cities.

Deudon-etall? starts the decoding with the mean representation of the encoding cities and
a random token of the last three cities.

o
o
T
o
< O
<
[R
<
O O
PY o
Tp

Encoder
of all cities
(single pass)

—

[1] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

[2] Deudon, Cournut, Lacoste, Adulyasak, Rousseau, Learning Heuristics for the TSP by Policy Gradient, 2018

Xavier Bresson

Kool-etal’s starting query :

d
hste;:rt - Concat(zo, Zt—1, g):
1 n
with zg, z;_1 € N¢ = — here e RY
0y <t—1 0,1> g n; 7

Deudon-etal’s starting query :

hdec

start — COI’lC&t(Zt_l, Zt—2, zt—3)7

. d
with z;_1, 249, 2/ 3 € No,l

33

Xavier Bresson

Decoding Technique

Outline

34

Tour Decoding

® A tour is represented as an ordered sequence of city indices : seq,={i, iz, ... i,}

@ TSP can be cast as a sequence optimization problem :

max P™7(seq,|r) = P™ (i1, ..., in|T)

seq,,=q{%1,...,in } \

Probability of the sequence to be a solution of the TSP
given a set x of n 2-D points.

19

PP (seq? |z) < P™"(seq? |r)

Xavier Bresson

35

Xavier Bresson

Tour Decoding

For auto-regressive decoding, i.e. selecting a city one at a time, PTSP can be factorized with the
chain rule :

PP (i, o in|x) = Pliaz) . Piglin, o) . Pliglia, i1,).

.
J \

Y Y Y
Probability of =~ Probability of Probability of
selecting city ¢ selecting city i, selecting city 3

given x given ,x given i,%;,T

f)(inun—la in—27 e x)}

Y
Probability of
selecting city 1,
given ,.1,%,.2,...,&

The decoding problem aims at finding the sequence ¢; %, ... 1, that maximizes the objective :

7;HlEL}iC H?:l P(’Lt ’it—la it_g, ...il, ZB)
1y---9tm
Conditional probability
approximated by a neural network

w

Decoding Techniques
@ Exact search : Exhaustive search is intractable with O(n!).
@ Greedy search : At each time step, select the next city with

the highest probability :

iy = arg max P(ilit—1,9t—2,...11,)

Complexity is O(mn). n-depth

@ Sampling techniques such as beam search or Monte Carlo Tree Search (MTCS) are known to
improve results in NLP[1 and TSPI[271,

Complexity is O(Bn).

[1] Tillmann, Ney, Word reordering and a dynamic programming beam search algorithm for statistical machine translation, 2003
[2] Nowak, Villar, Bandeira, Bruna, A Note on Learning Algorithms for Quadratic Assignment with Graph Neural Networks, 2017
[3] Kaempfer, Wolf, Learning the Multiple Traveling Salesmen Problem with Permutation Invariant Pooling Network, 2018

[4] Kool, Van Hoof, Welling, Attention, learn to solve routing problems!, 2018

[6] Joshi, Laurent, Bresson, An Efficient Graph Convolutional Network Technique for the Travelling Salesman Problem, 2019

[6] Wu, Song, Cao, Zhang, Lim, Learning Improvement Heuristics for Solving Routing Problems, 2020

[7] Xing, Tu, A Graph Neural Network Assisted Monte Carlo Tree Search Approach to Traveling Salesman Problem, 2020

Xavier Bresson

W
~

Beam Search!!!

t=1
@ Beam search is a breadth-first search (BFS) technique where the
breath has a limited size B.
. =2
@ Beam search decoding problem :
B b b b b b’ b’ / O
L max 1L P(iy,...,i)|x) st {i], i} A i, .00}, YOF#Db
LGERRE pa Two beams are different. BF'S explores the search space by
B sequences/ expanding to all children nodes first.
beams
@ For B=1, the solution is given by greedy decoding. t=1

@ For B>1, the solution at t is determined by considering all possible
extensions of B beams, and only keeping the Top-B probabilities : t—9

B.(n—t)
-b -b\ B _ t b |-b -b -b
{7’17 sty Zt}bzl - TOp—B {szlp(zk‘zkz—la (T YREPRAT x)}b—l
Beam Search explores the search space
by expanding to a limited set of
B.(n—t) children nodes selected by a criteria.

t
-b -b B -b|-b -b -b
{217---7%}1):1 = Top-B { E logp(zkhk—lazk—m'--711733)}6_1 Beam size is B=2.
k=1 \ v J -

Score S(4|t 1,5 05--+511,X)

Or equivalently (for better numerical stabilities) :

[1] Lowerre, The Harpy Speech Recognition System, 1976
Xavier Bresson 38

At t=1, run the
net and get the
starting cities
with the top-B
scores.

Xavier Bresson

Beam Search

At t=2, run the
net for each beam
that can expand to

B(n-1) possible

cities. Keep the
beams with top-B

scores:

s(ialir,) + s(iy|x)

At t=3, run the
net for each beam
that can expand
to B(n-2) possible
cities. Keep the
beams with top-B
scores:

8(’i3|i2, ’il, ZL’)+

s(ialiy,) + s(i1|z)

= ——> € ——> — — —)

39

Xavier Bresson

Numerical Results

Outline

Numerical Experiments

@ Proposed technique vs. SOTA

‘ TSPS0 ‘ TSP100 @ Test with 10k TSP50 and
Method ‘ Obj Gap T Time I Time ‘ Obj Gap T Time I Time TSP100
o, Concorde’06 5.689 0.00% 2m* 0.05s | 7.765 0.00% 3m* 0.22s o Results* are reported from
= Gurobi’08 - 0.00%* 2m* _ 7.765% 0.00%* 17m* _ P
other papers.
© Nearest insertion 7.00% 22.94%* 0s* - 9.68* 24.73%* 0s* - i)
Z Farthest insertion 6.01* 553%* 2g* - 8.35% T.50%* Ts* ; ® T Time means total time
5 OR tools'15 5.80% 183%* - - | 799% 200%¢ - ; for 10k TSP (in parallel).
= LKH-3'17 - 0.00%* 5m* - 7.765% 0.00%* 2lm* - o I Time means inference
Vinyals et-al’l5 7.66% 34.48%* - - - - - - time to run a single TSP
o Bello et-al’16 5'95i 4.46%: - - 8.30i 6.90%: - - (in serial).
Lmean wmnem o s e i
E % Kool ot.al’ Do : 0* .] o : 0* .] Xeon Gold 6132 CPU.
3 ool et-al’18 5.80 1.76% 2s 8.12 4.53% 6s
'@ 2 Kool et-al’18 (our version) - - - - 8.092 4.21% - - ® The Concorde
5 9 Joshi et-al’19 5.87 3.10% 55s - 8.41 8.38% 6m - library includes over
“ 0 Our model 5.707 137s 0.07s | 7.875 46s 0.12s 700 functions.
Kool et-al’18 (B=1280) | 5.73* 0.52%* 24m* - 7.94% 2.26%* 1h* - @ Neural networks run on
Kool et-al’18 (B=5000) | 5.72% 0.47%* 2h* - 7.93% 2.18%* 5.5h* - Nvidia 2080Ti GPU.
% Joshi et-al'l9 (B=1280) | 5.70 0.01% 18m - 787 1.39% 40m - .
%5 Xing et-al’20 (B=1200) | - 0.20%* - 358% | - L04%* - 27 6s* ® 300 lines of code.
% 5 Wu et-al’20 (B=1000) 5.74* 0.83%* 16m* - 8.01* 3.24%* 25m* - @ Soon release on
7 2 Wuet-al20 (B=3000) | 5.71% 034%* 45m* - 7.91* 1.85%* 1.5h* - GitHub.
F & Wuet-al20 (B=5000) | 5.70% 0.20%* 1.5h* - 7.87% 1.42%* 2h* -
Z &8 Our model (B=100) 5692 0.04% 23m 0.09s | 7.818 0.68% 4m 0.16s (1] httpe://ithub.com /{vkersch/pyconcorde
2 Ourmodel (B=1000) |5.690 0.01% 17.8m 0.15s | 7.800 0.46% 35m 0.27s
Our model (B=2500) | 5.689 48m 033 | 7.795 1.5h 0.62s

Xavier Bresson A1

https://github.com/jvkersch/pyconcorde

Numerical Experiments

@ Proposed technique (B=2500) vs. Concorde for TSP50 :

Length w/ NNetwork : 5.576 Length w/ Concorde : 5.585 Length w/ NNetwork : 5.960 Length w/ Concorde : 5.962

@ Concorde is an exact solver
when all edge lengths
\ \ - - (distances between two cities)
i ((can be represented in a fixed-
~ - ~ o point arithmetic (32 bits
before/after the decimal
- - place).

@ The Concorde code starts by
converting all distances to the
fixed-point arithmetic.

@ If the distances are initially
Length w/ NNetwork : 5.892 Length w/ Concorde : 5.894 Length w/ NNetwork : 5.929 Length w/ Concorde : 5.933 encoded by ﬂoating_point
numbers (when using Python)
then Concorde rounds the
distances to the nearest
integer for the fixed-point
arithmetic. This means that
the computed tour may not
necessarily be the optimal tour
for floating-point distances.

@ See Section 5.4 inl!.

[1] Applegate, Bixby, Chvatal, Cook, The
Traveling Salesman Problem: A
Computational Study, 2006

Xavier Bresson 49

Numerical |

. :
L Xperiments

@ Proposed technique (B=1000) vs. Concorde for TSP100 :

Xavier Bresson

Length w/ NNetwork : 7.892

Length w/ Concorde : 7.779

Length w/ NNetwork : 7.523

Length w/ Concorde : 7.469

Length w/ NNetwork : 7.820

Length w/ Concorde : 7.821

Length w/ NNetwork : 7.938

Length w/ Concorde : 7.927

43

Numerical |

. :
L Xperiments

@ Proposed technique (B=1000) vs. Concorde for TSP50=TSP100 :

Xavier Bresson

Length w/ NNetwork : 7.901

Length w/ Concorde : 7.779

Length w/ NNetwork : 7.470

Length w/ NNetwork : 7.950

Length w/ Concorde : 7.821

Length w/ NNetwork : 7.959

| TSP50 — TSP100

Method ‘ Obj Gap T Time I Time
Concorde 7.765 0.00% 3m* 0.22s
Our model (greedy) | 8.008 3.12% 4.4sec 0.13s
Our model (B=1000) | 7.872 1.37% 1h 0.50s
Length w/ Concorde : 7.469
Length w/ Concorde : 7.927

Numerical Experiments

| TSP100 — TSP200

@ Proposed technique (B=1000) vs. Concorde for TSP100=TSP200 : Method | Obj Gap T Time I Time

Concorde 10.708 0.00% - 1.29s
Our model (greedy) | 11.353 6.02% 10.7s 0.24s
Our model (B=1000) | 11.181 4.41% 2.2h 0.96s

Length w/ NNetwork : 11.22 Length w/ Concorde : 10.64 Length w/ NNetwork : 11.15 Length w/ Concorde : 10.70

Length w/ NNetwork : 11.31 Length w/ Concorde : 10.81 Length w/ NNetwork : 11.52 Length w/ Concorde : 10.71

Xavier Bresson 45

Our Model vs. Concordel!l Complexity

@ Experimental complexity (inference time for a single TSP) :

Time (sec)

Concorde vs. Transformer Experimental Complexity
Concorde in dark, Transformer in bleu.

2500 A

2000 A

=

wu

o

o
L

1000 A

500 A

0 200 400 600 800 1000 1200 1400
Number of cities/nodes

Complexity

[1] Applegate, Bixby, Chvatal, Cook, The Traveling Salesman Problem, 2006

Xavier Bresson

log(Time) (sec)

Concorde vs. Transformer Experimental log(Complexity)
Concorde in dark, Transformer in bleu.

4.0 4.5 5.0 5.5 6.0 6.5 7.0
log(Number of cities/nodes)

Logarithmic complexity

46

Xavier Bresson

Discussion

Outline

Future Work

@ In this work, we essentially focused on the architecture.

@ Like for NLP and CV, the Transformer architecture can be successful to solve
Combinatorial Optimization problem(s).

@ It improves recent learned heuristics with an optimal gap of 0.004% for TSP50 and 0.39%
for TSP100.

@ Further developments :

@ Better sampling techniques such as group beam-searchl’2l or MCTSEl are known to
improve results.

@ Use of heuristics like 2-Opt to get intermediate rewards has also shown improvementsl4
(the tour length as global reward requires to wait the end of the tour construction).

[1] Vijayakumar, Cogswell, Selvaraju, Sun, Lee, Crandall, Batra, Diverse beam search: Decoding diverse solutions from neural sequence models, 2016
[2] Meister, Vieira, Cotterell, Best-first beam search, 2020

[3] Xing, Tu, A Graph Neural Network Assisted Monte Carlo Tree Search Approach to Traveling Salesman Problem, 2020

[4] Wu, Song, Cao, Zhang, Lim, Learning Improvement Heuristics for Solving Routing Problems, 2020

Xavier Bresson

18

Discussion

@ Curb your enthusiasm !

@ Traditional solvers like Concorde/LKH-3 outperform learning solvers in terms of (1)
performance and (2) generalization. o

@ But neural network solvers offer faster inference time, O(n2 L) vs. O(n?5b(n)). - LRKK

@ What’s next ?

sssss

@ The Bitter Lesson, R. Sutton, 2019 : Learn longer as we can generate an infinite number of
training data in CO.

@ Can we improve further the architecture? The learning paradigm?
@ Scaling to larger TSP sizes, n>1000, n>1M cities?

@ GPU memory is limited with O(n?) (Transformer architectures and auto-regressive
decoding are in O(n?)).

@ Consider “harder” TSP problems where traditional solvers like Gurobi/LKH-3 can only
provide weaker solutions or would take very long to solve.

Xavier Bresson 19

Discussion

@ What’s next ?

@ Consider “harder” combinatorial problems where traditional solvers s.a. Gurobi cannot be

used :
. T : _
min c'x st. Ax<b, x>0 = min f(z) s.t. g(x) <0, h(x) =0
xze{0,1}n xz€{0,1}n
Linear/convex Convex Non-convex Non-linear
objective polytope objective constraints

@ Leverage learning techniques to improve traditional solvers :

@ Traditional solvers leverage Branch-and-Bound techniquelll. Selecting the variables to
branch is critical for search efficiency, and relies on human-engineered heuristics s.a.
Strong Branchingl?l which is a high-quality but expensive branching rule. Recent
works/34 have shown that neural networks can be successfully used to imitate expert
heuristics and speed-up the BB computational time.

@ Future work may focus on going beyond imitation of human-based heuristics, and
learning novel heuristics for faster Branch-and-Bound technique.

[1] Bellman, Held, Karp, 1962
[2] Achterberg, Koch, Martin, Branching rules revisited, 2005
[3] Gasse, Chetelat, Ferroni, Charlin, Lodi, Exact Combinatorial Optimization with Graph Convolutional Neural Networks, 2019

[4] Nair et al, Solving Mixed Integer Programs Using Neural Networks, 2020
Xavier Bresson

Xavier Bresson

Conclusion

Outline

Conclusion

@ Combinatorial optimization is pushing the limit of deep learning.

Xavier Bresson

Traditional solvers still provide better solutions than learning models.

Traditional solvers have been studied since the 1950s and the interest of applying deep
learning to combinatorial optimization has just started.

This topic of research will naturally expend in the coming years as combinatorial problems
problems s.a. assignment, routing, planning, scheduling are used every day by companies.

Novel software will be developed that combine continuous, discrete optimization and
learning techniques.

Xavier Bresson

| Thank you

Xavier Bresson

xbresson@ntu.edu.sg

3 http://www.ntu.edu.sg/home/xbresson

() https://github.com/xbresson

¥ https://twitter.com/xbresson

K1 https://www.facebook.com/xavier.bresson.1

[https://www.linkedin.com/in/xavier-bresson-738585b

mailto:xbresson@ntu.edu.sg
http://www.ntu.edu.sg/home/xbresson
https://github.com/xbresson
https://twitter.com/xbresson
https://www.facebook.com/xavier.bresson.1
https://www.linkedin.com/in/xavier-bresson-738585b

