Adam Wasserman

Department of Chemistry and Department of Physics and Astronomy Purdue University

> IPAM Summer School, 08/26/2016

PURDUE UNIVERSITY

PURDUE UNIVERSITY

John Purdue

Outline

- 1. Motivation
- 2. Partition potential theorem
- **3.** Partition-DFT

4. Fixing errors of approximate functionals with Partition-DFT

Partition Potential Theorem

$$v(\mathbf{r}) = \sum_{\alpha} v_{\alpha}(\mathbf{r})$$

$$\sum_{\alpha} N_{\alpha}(\mathbf{r}) = n(\mathbf{r})$$

$$v_{\alpha}(\mathbf{r}) + v_{p}(\mathbf{r})$$

For a given set of fragment occupation numbers $\{N_{\alpha}\}$ there is at most one potential $v_p(\mathbf{r})$ and set of densities $\{n_{\alpha}(\mathbf{r})\}$ such that each $n_{\alpha}(\mathbf{r})$ is the ensemble groundstate density of N_{α} electrons in $v_{\alpha}(\mathbf{r}) + v_p(\mathbf{r})$.

M.H. Cohen and A. Wasserman, J. Stat. Phys. **125**, 1121 (2006).

Proof of PPT (2 fragments, integer numbers)

$$v(\mathbf{r}) = v_1(\mathbf{r}) + v_2(\mathbf{r})$$

$$v_p(\mathbf{r}) \longrightarrow \{n_1(\mathbf{r}), n_2(\mathbf{r})\} \qquad v'_p(\mathbf{r}) \longrightarrow \{n'_1(\mathbf{r}), n'_2(\mathbf{r})\}$$

$$n_1(\mathbf{r}) + n_2(\mathbf{r}) = n(\mathbf{r}) \qquad n'_1(\mathbf{r}) + n'_2(\mathbf{r}) = n(\mathbf{r})$$

$$E_f[\mathbf{n}] = F[n_1] + \int d\mathbf{r} \left(v_1(\mathbf{r}) + v_p(\mathbf{r})\right) n_1(\mathbf{r}) + F[n_2] + \int d\mathbf{r} \left(v_2(\mathbf{r}) + v_p(\mathbf{r})\right) n_2(\mathbf{r})$$

$$= E[n_1] + E[n_2] + \int d\mathbf{r} v_p(\mathbf{r}) n(\mathbf{r})$$

$$< F[n'_1] + \int d\mathbf{r} \left(v_1(\mathbf{r}) + v_p(\mathbf{r})\right) n'_1(\mathbf{r}) + F[n'_2] + \int d\mathbf{r} \left(v_2(\mathbf{r}) + v_p(\mathbf{r})\right) n'_2(\mathbf{r})$$

$$= E[n'_1] + E[n'_2] + \int d\mathbf{r} v_p(\mathbf{r}) n(\mathbf{r})$$

Partition potential – Li₂

CADMium: 500 to 14,000 points Area ~ 300 a.u.²

J. Nafziger and A. Wasserman, J. Phys. Chem. A 118, 7623 (2014).

Partition potential along internuclear axis

J. Nafziger and A. Wasserman, J. Phys. Chem. A **118**, 7623 (2014).

Partition Potential – Water dimer

S. Gomez, J. Nafziger, A. Restrepo, and A. Wasserman, in preparation.

B3LYP / aug-cc-pvTz

Water dimer: Difference between actual density and sum of isolated monomer densities

B3LYP / aug-cc-pvTz

S. Gomez, J. Nafziger, A. Restrepo, and A. Wasserman, in preparation.

For given approximation to $E_{\rm xc}[n]$, exactly reproduces the results of a molecular DFT calculation.

P. Elliott, K. Burke, M.H. Cohen and A. Wasserman, Phys. Rev. A 82, 024501 (2010).

 Molecular calculation:
 -1.10263421949(5) a.u.

 PDFT calculation:
 -1.102634219497 a.u.

Comparison between molecular energies (a.u.) obtained from PDFT and from standard KS-DFT calculations using the same functional (B3LYP) and basis set (aug-cc-pvTz) for both.

	<i>E</i> (PDFT)	E(DFT)	Error
He ₂ ($R = 0.5$)	-5.569777622113	-5.569777624227	-3.80E-10
He ₂ ($R = 0.8$)	-5.709621657286	-5.709621657554	-4.69E-11
H ₂ (OSH)	-1.180048619032	-1.180048623628	-3.89E-09
H ₂ (CSH)	-1.180048619388	-1.180048623628	-3.59E-09

J. Nafziger, Q. Wu, and A. Wasserman, J. Chem. Phys. **135**, 234101 (2011).

NWChem

B3LYP / aug-cc-pvTz

For given approximation to $E_{\rm xc}[n]$, exactly reproduces the results of a molecular DFT calculation.

P. Elliott, K. Burke, M.H. Cohen and A. Wasserman, Phys. Rev. A 82, 024501 (2010).

Constrained minimization of:

$$E_f[\{n_\alpha\}] \equiv \sum_\alpha E_\alpha[n_\alpha]$$

where:

$$E_{\alpha}[n_{\alpha}] = \nu_{\alpha} E_{v_{\alpha}}[n_{p_{\alpha}+1}] + (1 - \nu_{\alpha}) E_{v_{\alpha}}[n_{p_{\alpha}}]$$

$$G[\{n_{\alpha}\}] = E_f[\{n_{\alpha}\}] + \int v_p(\mathbf{r}) \left(n_f(\mathbf{r}) - n(\mathbf{r})\right) d\mathbf{r} - \mu_m \left(\int n_f(\mathbf{r}) d\mathbf{r} - N\right)$$

M.H. Cohen and A. Wasserman, JPCA **111**, 2229 (2007).
P. Elliott, K. Burke, M.H. Cohen and A. Wasserman, Phys. Rev. A **82**, 024501 (2010).

P. Elliott, K. Burke, M.H. Cohen and A. Wasserman, PRA 82, 024501 (2010).

$$\begin{bmatrix} -\frac{1}{2} \nabla^2 + v_{s,f,\alpha}^{(0)}(\mathbf{r}) \end{bmatrix} \phi_j^{(1)}(\mathbf{r}) = \epsilon_j^{(1)} \phi_j^{(1)}(\mathbf{r}) \\ \left\{ n_{\alpha}^{(1)}(\mathbf{r}) \right\} = \left\{ \sum_{j=1}^{N_{\alpha}^{(0)}} |\phi_j^{(1)}(\mathbf{r})|^2 \right\} \quad \text{For all } \alpha$$

New promolecule:
$$n^{(1)}(\mathbf{r}) = \sum_{\alpha} n^{(1)}_{\alpha}(\mathbf{r})$$

New effective KS potential for fragment α :

$$v_{s,f,\alpha}^{(1)}(\mathbf{r}) = v_s[n_{\alpha}^{(1)}](\mathbf{r}) + \left\{ v_{\text{nuc}}(\mathbf{r}) + v_{\text{HXC}}[n^{(1)}](\mathbf{r}) - v_s[n^{(1)}](\mathbf{r}) \right\}$$

• etc

P. Elliott, K. Burke, M.H. Cohen and A. Wasserman, PRA 82, 024501 (2010).

New "external potential" for fragment α

$$\sum_{\alpha} n_{\alpha}(\mathbf{r}) = n(\mathbf{r})$$

Get the same molecular density and energy that would have been obtained by solving the KS equations for the molecule. In addition, get the unique set of PDFT fragment densities.

P. Elliott, K. Burke, M.H. Cohen and A. Wasserman, PRA 82, 024501 (2010).

LDA is convex

LDA is convex

LDA error

Linear behavior of *E* vs. *N*

Linear behavior of *E* vs. *N*

Linear behavior of *E* vs. *N*

Delocalization Error

Delocalization Error

Delocalization Error

Delocalization Error

Delocalization Error

Delocalization Error

Delocalization Error

Delocalization Error

Fixing Delocalization Error

Partition Energy:

$$E_p[\mathbf{n}] = E[n] - E_f[\mathbf{n}]$$

$$E_p[\mathbf{n}] = T_s^{\mathrm{nad}}[\mathbf{n}] + V_{\mathrm{ext}}^{\mathrm{nad}}[\mathbf{n}] + E_{\mathrm{HXC}}^{\mathrm{nad}}[\mathbf{n}]$$

$$T_s^{\mathrm{nad}}[\mathbf{n}] \equiv T_s[n_{\uparrow}, n_{\downarrow}] - \sum_{i\alpha} f_{i\alpha} T_s[n_{i\alpha\uparrow}, n_{i\alpha\downarrow}]$$

$$v_p(\mathbf{r}) = \left. \frac{\delta E_p[\mathbf{n}]}{\delta n_\alpha(\mathbf{r})} \right|_{\min}$$

Partition Energy:

$$E_p[\mathbf{n}] = T_s^{\text{nad}}[\mathbf{n}] + V_{\text{ext}}^{\text{nad}}[\mathbf{n}] + E_{\text{HXC}}^{\text{nad}}[\mathbf{n}]$$
$$T_s^{\text{nad}}[\mathbf{n}] \equiv T_s[n_{\uparrow}, n_{\downarrow}] - \sum_{i\alpha} f_{i\alpha} T_s[n_{i\alpha\uparrow}, n_{i\alpha\downarrow}]$$

Overlap approximation:

$$E_{\rm HXC}^{\rm nad,OA}[\mathbf{n}] = E_{\rm H}^{\rm nad}[\mathbf{n}] + S[\mathbf{n}]E_{\rm XC}^{\rm nad}[\mathbf{n}] + (1 - S[\mathbf{n}])\Delta E_{\rm H}^{\rm nad}[\mathbf{n}]$$
$$S[\mathbf{n}] = \operatorname{erf}\left(2\int [n_A(\mathbf{r})n_B(\mathbf{r})]^{1/2} d\mathbf{r}\right)$$

J. Nafziger and A. Wasserman, JCP **143**, 234105 (2015).

exact

LDA

Approximate PDFT

J. Nafziger and A. Wasserman, JCP **143**, 234105 (2015).

exact

LDA

Approximate PDFT

J. Nafziger and A. Wasserman, JCP **143**, 234105 (2015).

$$\operatorname{Li}_{2}^{+} \operatorname{Fragment} A \begin{cases} N_{1A} = 2 & \uparrow & \uparrow & f_{1A} = \frac{1}{2} \\ N_{2A} = 3 & \uparrow & \uparrow & f_{2A} = \frac{1}{2} \end{cases}$$

Li₂ Fragment A
$$\begin{cases} N_{1A} = 3 & \uparrow & \downarrow & \uparrow & f_{1A} = \frac{1}{2} \\ N_{2A} = 3 & \uparrow & \downarrow & \uparrow & f_{2A} = \frac{1}{2} \end{cases}$$

Fragment densities – Li₂

Fragment densities – Li₂

Partition potential components – Li₂

Non-additive Hartree correction:

$$\Delta E_{\rm H}^{\rm nad}[\mathbf{n}] \equiv \frac{1}{4} \sum_{\alpha \neq \beta} \sum_{i,j} g_{ij} f_{i\alpha} \int \frac{n_{iA}(\mathbf{r}) n_{jB}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' - E_{\rm H}^{\rm nad}[\mathbf{n}]$$

$$g_{ij} = \begin{cases} 0 & N_{i\alpha} + N_{j\beta} \neq N \\ 1 & N_{i\alpha} + N_{j\beta} = N \end{cases}$$

T	•
	л ₂

$$\Delta E_{\rm H}^{\rm nad} = 0$$

Non-additive Hartree correction:

$$\Delta E_{\rm H}^{\rm nad}[\mathbf{n}] \equiv \frac{1}{4} \sum_{\alpha \neq \beta} \sum_{i,j} g_{ij} f_{i\alpha} \int \frac{n_{iA}(\mathbf{r}) n_{jB}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d\mathbf{r} d\mathbf{r}' - E_{\rm H}^{\rm nad}[\mathbf{n}]$$

$$g_{ij} = \begin{cases} 0 & N_{i\alpha} + N_{j\beta} \neq N \\ 1 & N_{i\alpha} + N_{j\beta} = N \end{cases}$$

т	.+
	1 ₂

Solid lines: without OA

Dashed lines: with OA

exact

LDA

Approximate PDFT

But inversions are expensive...

$T_s^{\rm nad}$ at LDA Equilibrium for Li₂

Exact	TF	LP	APBE	TW02(1)
0.0048	-0.0080	-0.0088	-0.0072	-0.0073
VW	GE2	LIEB	ABSP1	GR
-0.2195	-0.0265	-0.0393	-0.2285	-0.2221
	011			
PEARSON	OLI	FR(888)	FR(PW86)	PERDEW
-0.0085	-0.0197	-0.0097	-0.0082	-0.0086
VSK	VJKS	LC94	LLP	THAKKAR
-0.2296	0.0648	-0.0114	-0.0099	-0.0101

$T_s^{\rm nad}$ at LDA Equilibrium for Li₂

Exact	TF	LP	APBE	TW02(1)
0.0048	-0.0080	-0.0088	-0.0072	-0.0073
VW	GE2	LIEB	ABSP1	GR
-0.2195	-0.0265	-0.0393	-0.2285	-0.2221
PEARSON	OL1	FR(B88)	FR(PW86)	PERDEW
-0.0085	-0.0197	-0.0097	-0.0082	-0.0086
VSK	VJKS	LC94	LLP	THAKKAR
-0.2296	0.0648	-0.0114	-0.0099	-0.0101

$T_s^{\rm nad}$ at LDA Equilibrium for Li₂

Exact	TF	LP	APBE	TW02(1)
0.0048	-0.0080	-0.0088	-0.0072	-0.0073
VW	GE2	LIEB	ABSP1	GR
-0.2195	-0.0265	-0.0393	-0.2285	-0.2221
PEARSON	OL1	FR(B88)	FR(PW86)	PERDEW
-0.0085	-0.0197	-0.0097	-0.0082	-0.0086
VSK	VJKS	LC94	LLP	THAKKAR
-0.2296	0.0648	-0.0114	-0.0099	-0.0101

"Best" functional...

$$T_s^{\mathrm{nad}}[n] = 0$$

Re-parameterizing TW02

• TW02^[5]

$$T_{s}[\rho] = \frac{3}{10} (3\pi^{2})^{2/3} \int \rho^{5/3}(\mathbf{r}) F_{t}(s(\mathbf{r})) d\mathbf{r}$$

$$\mathbf{K}$$

$$F_t(s) = 1 + \kappa - \frac{\kappa}{1 + \frac{\mu}{\kappa}s^2}$$

[5] F. Tran and T. A. Wesołowski, Int. J. Quantum Chem. 89, 441 (2002).

Re-parameterizing TW02

Functional	K	μ
TW02(1)	0.8239	0.2335
TW02(2)	0.6774	0.2371
TW02(3)	0.8438	0.2319
TW02(4)	0.8589	0.2309
Re-parameterized TW02*	1.9632	0.0198

[5] F. Tran and T. A. Wesołowski, Int. J. Quantum Chem. 89, 441 (2002).

* K. Jiang, J. Nafziger, and A. Wasserman, to be published.

 He_2 - LDA

 He_2 - LDA

He_2 - LDA

Only two are magic-numberable: NWJ16, and Perdew's GGA for $T_s[n]$

Occupation Number Optimization

Double-well 1D-potential with 4 non-interacting electrons.

Partition Density Functional Theory

Constrained minimization of:

$$E_f[\{n_\alpha\}] \equiv \sum_\alpha E_\alpha[n_\alpha]$$

where:

$$E_{\alpha}[n_{\alpha}] = \nu_{\alpha} E_{v_{\alpha}}[n_{p_{\alpha}+1}] + (1 - \nu_{\alpha}) E_{v_{\alpha}}[n_{p_{\alpha}}]$$

$$G[\{n_{\alpha}\}] = E_f[\{n_{\alpha}\}] + \int v_p(\mathbf{r}) \left(n_f(\mathbf{r}) - n(\mathbf{r})\right) d\mathbf{r} - \mu_m \left(\int n_f(\mathbf{r}) d\mathbf{r} - N\right)$$

M.H. Cohen and A. Wasserman, JPCA **111**, 2229 (2007).
P. Elliott, K. Burke, M.H. Cohen and A. Wasserman, Phys. Rev. A **82**, 024501 (2010).

Lithium Hydride

B3LYP / aug-cc-pVQZ

$$v(x) = -Z_A \cosh^{-2}(x-a)$$
$$-Z_B \cosh^{-2}(x+a)$$

4 non-interacting "electrons"

R. Tang, J. Nafziger, and A. Wasserman, Phys. Chem. Chem. Phys. 14, 7880 (2012).

Forcing occupation numbers to integers:

Main conclusion

An alternative to developing more sophisticated XC-functionals (to be used in standard KS-DFT) is to develop simple E_{ρ} - functionals (to be used in PDFT).

Thanks to:

Jonathan Nafziger, Kaili Jiang

NSF, DOE