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1. Introduction 

• Warm Dense Matter (WDM) regime 

• Thermal Density Functional Theory (TDFT),  

2. Stochastic TDFT: Theory and  computational 
advantage 

3.    Preliminary results   



Introduction- WDM Regime 

Figure is taken from: http://www.lanl.gov/projects/dense-plasma-theory/background/warm-dense-
matter.php (Los Alamos National Labs website) 3 
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Presenter
Presentation Notes
As the name suggests this phase is characterized by high temperature on the one hand, and dense materials on the other. We’re looking at densities where De Broglie wave length, which becomes smaller as temperature increases is of the order of magnitude of the mean distance between atoms in the system. This means we cant treat the electrons as classical particles but rather we have to consider both quantum and thermal effects. The temperature ranged roughly between 10^3-10^5 and the density is of the order of 1 gr per cubic cm. We can find this phase in cores of plants, in nuclear fusion and in the labs using intense lasers. ICF= Inertial confinement fusion 

http://www.lanl.gov/projects/dense-plasma-theory/background/warm-dense-matter.php
http://www.lanl.gov/projects/dense-plasma-theory/background/warm-dense-matter.php


Introduction - TDFT 
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𝐻� = 𝑇� + 𝑈�𝑒𝑒 + 𝑉�  
⇓ 

𝐸 𝐷 𝒓 = 𝑇 𝐷 𝒓 + 𝑈𝑒𝑒 𝐷 𝒓
𝐹𝐻𝐻 𝑛 𝒓

+ ∫ 𝑣 𝒓 𝐷(𝒓) 

𝝉 = 𝟎 Hohenberg & Kohn 

Ω� = 𝐻� − 𝜏�̂� − 𝜇𝑁� 
⇓ 

Ω𝑣−𝜇𝜏 𝐷 𝒓 = 𝑇 𝐷 𝒓 + 𝑈𝑒𝑒 𝐷 𝒓 − 𝜏𝑆 𝐷 𝑔
𝐹𝑀 𝑛 𝒓

+ ∫ 𝑣 𝒓 − 𝜇 𝐷(𝒓) 

𝝉 > 𝟎 Mermin 

𝑣 𝒓 ⟷ 𝐷(𝒓) 

min
𝑛(𝒓)

Ω𝑣−𝜇𝜏 → 𝐹𝑔𝐷𝐷 𝐸𝐷𝐷𝑔𝑔𝐷 

N. David Mermin, Phys. Rev. 137, A1441 – Published 1 March 1965 

Presenter
Presentation Notes
A lot of the theoretical research is done using DFT. The theory is based on Mermin’s expansion to the Hohenberg-Kohn theorem (that was discussed in the first talk this week). In temperatures that are higher than zero, the size that interests us is the grand canonical free energy which is marked with the letter Ω. In the same way we could define a universal functional in zero temp. DFT, that would describe all electronic systems with N particles, we can define a universal functional in finite temperature that would describe all electronic systems in temperature 𝜏  and the external potential v(r) determines the density. Mermin also showed in his paper, that the density that will minimize the free energy will give the actual free energy.  



Introduction- Thermal Kohn-Sham 
DFT 

 𝐹𝑀 𝐷 𝑔 = 𝑻𝒔 𝒏 𝒓 − 𝜏𝑺𝒔 𝒏 𝒓 + 𝑬𝑯 𝒏 𝒓 + 𝐹𝑋𝑋 𝐷 𝒓  

𝑭𝑿𝑿 𝒏 𝒓 = 𝑻 𝒏 − 𝑻𝒔 𝒏 − 𝝉 𝑺 𝒏 − 𝑺𝒔 𝒏 + 𝑽𝒆𝒆 𝒏 − 𝑬𝑯 𝒏  

𝐸𝐻 𝐷 𝑔 =
1
2�

𝐷 𝑔 𝐷 𝑔′

𝑔 − 𝑔′ 𝑑3𝑔 𝑑3𝑔′ 

𝑆𝑠 𝐷 𝑔 = −𝑘𝐵 ⋅ 𝐷𝑔 𝑓𝐹𝐹 ℎ� ⋅ ln𝑓𝐹𝐹 ℎ� + 1 − 𝑓𝐹𝐹 ℎ� ln 1 − 𝑓𝐹𝐹 ℎ�

= −𝑘𝐵�𝑓𝑖 ⋅ ln𝑓𝑖 + 1 − 𝑓𝑖 ⋅ ln 1 − 𝑓𝑖
𝑖

 

𝑇𝑠 𝐷 𝑔 = �𝑓𝑖 �𝜙𝑖∗ 𝒓 −
1
2𝛻

2 𝜙𝑖(𝒓)
𝑖
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Presenter
Presentation Notes
As we have seen in previous lectures, Kohn sham seems to give the most accurate results. To use Kohn-Sham we again (as seen in Burke’s talk) assume the existence of a non-interacting system with temperature 𝜏 and density n(r).  As we do in zero temperature DFT, we place all the unknown parts of the functional in the exchange correlation part. We are then left with the explicitly known parts. The kinetic energy, the Hartree energy which is the coulomb repulsion between two charge densities and the one particle entropy.  



Thermal Kohn-Sham DFT  
Scaling 

 

𝐷 𝑔 = �𝑓𝑖 𝜙𝑖 𝒓 2

𝑖

 

𝒇𝒊 = 𝟏 + 𝒆𝜷(𝝐𝒊−𝝁) −𝟏  

𝜙(𝒓)  

𝐷𝐷𝐷𝑔𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ∝ 𝑁𝑜𝑜𝑜3  

−
1
2𝛻

2 + 𝑣𝑠 𝑔 𝜙𝑖 𝒓 = 𝜖𝑖𝜙𝑖(𝒓) 

𝑣𝑠 𝒓 = 𝑣𝐻 𝐷 𝒓 + 𝑣𝑋𝑋 𝐷 𝒓 + 𝑣(𝒓) 
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𝜙𝑖 ℎ� 𝜙𝑗  

 ∝ 𝑁𝑔 log𝑁𝑔 ⋅ 𝑁𝑜𝑜𝑜2  
 
 

Presenter
Presentation Notes
When using a wave function on a grid the actual calculation is performed in the describes manner. Where applying the Hamiltonian on the wave function scales like the number of grid points and the Hamiltonian diagonalization goes like the number of occupied wave functions to the power of 3. 



Thermal Kohn-Sham dDFT 
Occupied States 

 𝒇𝒊 = 𝟏 + 𝒆𝜷(𝝐𝒊−𝝁) −𝟏  
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𝑂𝑐𝑐𝑂𝑂𝐷𝐷𝐷𝐷𝐷 𝑐𝑂𝐷𝐷𝑓𝑓  
∼ 0.08  

𝑯𝟑𝟑 

Presenter
Presentation Notes
When going to high temperatures the number of occupied wave functions increases dramatically and the calculation becomes very expansive, which is what I will try to demonstrate in the following slide. The upper figure shows the electronic occupation of a 32 Hydrogen cluster with the described configuration, as a function of the index of the energy level - in different temperatures. You can see that in low temperatures (high 𝛽’s) the function is very sharp and as the temperature increases the function becomes smoother. To decide how many KS orbitals are needed in a finite temperature calculation we need to define an occupation cutoff, from which on we assume the wave function is not occupied. Say we decide this cutoff to be 0.08. We can then see that as we go higher in temperature the number of occupied states increases and if we draw it in a graph, we can see that it almost increases exponentially. This means, calculations using KS will get more and more demanding as temperature rises.



Kohn-Sham Orbital-Free DFT 

𝑆𝑐𝐷𝐷𝐷𝐷𝑔 ∝ 𝑆𝐷𝐷𝐷𝐷𝑚 𝑆𝐷𝐷𝐷 
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Corrections to Thomas-Fermi for kinetic energy 

ℎ� → {𝜙𝑖} → 𝐷(𝒓) 

R. Baer, D. Neuhauser, E. Rabani  “Self-averaging stochastic Kohn-Sham density 
functional theory”, Phys. Rev. Lett. 111, 106402 (2013) 

Orbital-Free DFT: 

Stochastic DFT: 

Presenter
Presentation Notes
Which leads me to our stochastic method. The method we’re proposing is a sort of Kohn Sham Orbital free method. It is orbital free in the sense that we are not finding the KS orbitals , but unlike Orbital free we do not use corrections to Thomas Fermi in order to describe the kinetic energy. Instead we use the KS Hamiltonian to find the electronic density and skip the part of finding the KS orbitals by using random wave functions. 



Stochastic representation of the 
unit operator  

𝜒 𝑔𝑔 =
𝐷𝑖𝜽𝒈

ℎ3
 

ℎ 
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𝜒𝑚 = �𝜶𝒊𝒎 𝜓𝑖
𝑖

 

〈|𝜒⟩⟨𝜒|⟩ =
1
𝑀 � 𝜒𝑚 𝜒𝑚

𝑀→∞

𝑚

= � 𝜶𝒊∗𝜶𝒋 𝜓𝑗 𝜓𝑖 = � 𝜓𝑖 𝜓𝑖
𝑖𝑖,𝑗

= 𝐼 

⟨𝜶𝒊𝒎𝜶𝒋𝒎⟩ = �ℎ3𝜓𝑖∗ 𝑔𝑔 𝜓𝑗 𝑔𝑔′ 𝐷𝑖 𝜃𝑔
𝑚−𝜃𝑔′

𝑚

𝛿𝑔,𝑔′𝑔,𝑔′

= �ℎ3𝜓𝑖∗ 𝑔𝑔 𝜓𝑗 𝑔𝑔 = 𝛿𝑖,𝑗
𝑔

  

𝜶𝒊𝒎 = 𝜓𝑖 𝜒𝑚 = �ℎ3𝜓∗ 𝑔𝑔  
𝑔

𝐷𝑖𝜃𝑔

ℎ3
 

Random val. 0,2𝜋  

Presenter
Presentation Notes
The stochastic wave function that we’re working with is constructed of N grid points, each point is assigned with the value e to the power of theta over the square root of h which is the difference between two grid points, where theta is a random number between 0 and 2 pi . We can theoretically expand this function using a full basis set of functions psi, where alpha I’s will be the expansion coefficients. Alpha by definition is defined to be the overlap between psi and the random function chi. Now, if we average over an infinite amount of wave functions on the multiplication of  𝛼 𝑖  and  𝛼 𝑗  the average over e to the power of the difference between the thetas turn to  𝛿 𝑔, 𝑔 ′   so that we eventually get an integration over all space if the multiplication of two orthonormal wave functions and that’s equal to  𝛿 𝑖,𝑗 . With that we can now construct the unit operator by averaging over an infinite amount of stochastic projection operators.    



1
𝑀
� 𝜒𝑚 𝐴 𝜒𝑚  
𝑚

= ⟨ 𝜒 𝐴 𝜒 ⟩ 

 

Stochastic TDFT- Trace  
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𝐷𝑔 �̂� = 𝐷𝑔 𝜒 𝜒 �̂� = 

1
𝑀
�� 𝜒𝑚 𝐴 𝜓𝑖 𝜓𝑖 𝜒𝑚 =

𝑖𝑚

 

1
𝑀
�� 𝜓𝑖 𝜒𝑚 𝜒𝑚 𝐴 𝜓𝑖 =

𝑖𝑚

 

 M. F. Hutchinson, Comm. Stat., Simul. and Comp., 19, 433 (1990) 

Presenter
Presentation Notes
Now that we have a unit operator we can use it to calculate the trace of any operator A.  We place it in the trace, and get two brackets , one is the overlap between 𝜓 and 𝜒  and the other is between 𝐴𝜓 and 𝜒. Since these are scalars we can shift their locations and after taking out the unit operator out we get the trace as the average over observation value’s of A. 



Stochastic TDFT- Trace  

𝐷 𝒓 = 𝐷𝑔 𝑓𝐹𝐹 ℎ� 𝐷� 𝒓 = 𝜒 𝑓𝐹𝐹 ℎ� 𝐷� 𝒓 𝜒  

𝜁 = 𝑓𝐹𝐹 ℎ� 𝜒  

⇓ 

〈 𝜁 𝐷� 𝒓 |𝜁 = 𝐷(𝒓) 
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�̂� → 𝑓𝐹𝐹 ℎ� 𝐷� 𝒓  

Presenter
Presentation Notes
In order to perform the DFT calculation our operator is going to be the occupation operator that is defined to be the Fermi Dirac operator ,times the density operator. The density is then defined to be an infinite average of the operator’s observation value using the stochastic orbitals.  The projection operator is defined as Θ and we define a new state  which is the results of applying the square root of Θ on the stochastic  orbital. The inner product of the two wave functions will give the exact density if we average over an infinite number of wave functions. Of course if we don’t do that we’ll get the density with a certain error, which we will be able to control by averaging over a larger value of observation values.



Stochastic TDFT- SCF 

𝜿 ∝ 𝜷𝚫𝑬 

𝑓𝐹𝐹 ℎ�𝑠 = �𝛼 𝜇𝑠,𝛽𝑠 𝑇𝑛(ℎ�𝑠)
𝜅

𝑛=0

 

Rescaling h,𝛽, 𝜇 → −1,1   

𝜁 𝐷 𝒓 𝜁 = 𝐷𝑚(𝒓) 𝑴 𝐷 𝒓 =
1
𝑀�𝐷𝑚(𝒓)

𝑀

𝑚
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Expansion using Chebyshev  

* R. Baer and M. Head-Gordon,”Electronic structure of large systems: coping with small gaps using the 
energy renormalization group method”, J. Chem. Phys. 109, 10159 (1998). 

* 

𝜁𝑚 = 𝑓𝐹𝐹 ℎ� 𝜒𝑚  

Presenter
Presentation Notes
The process itself is, we first create 𝜁 by applying the square root of  Θ  on a random wave function. We do that by expanding the operator using Chebyshev expansion. In order to do that we need to firsr erscale our Hamiltonian so that it would be between -1 and 1.  The number of terms in the expansion of the function - 𝜅 is proportional to 𝛽Δ𝐸 which makes sense since we the Fermi Dirac tends to be less sharp as the temperature grows, which means we will need less expansion terms to describe it accurately. Once we have 𝜁 we calculate the density. This process is done M times , depending on the error we’re willing to allow. Since this the M processes are independent we can parallelize this process. Once we obtain the M densities we average over them to obtain our average density.



Stochastic TDFT-SCF 

𝐸 −𝜏𝑆 −𝜇𝑵 + + 

Ωnew − Ω𝑜𝑜𝑜 ≤ 𝐷𝐷𝐷𝐷𝑔𝐷𝐷𝑐𝐷 ?  
yes no 

Done! 𝜁 𝒓 𝑚 = Θ�𝛽(𝐻� − 𝜇) 𝜒𝑚  
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𝜁𝑚 = 𝑓𝐹𝐹(ℎ�) 𝜒𝑚  

Presenter
Presentation Notes
We then calculate the Free energy in the approximate interacting system and check if the difference between it and the older Free energy is smaller then a tolerance we agree upon. I fit is, the process is done, otherwise we use the new density to construct the new kohn-sham Hamiltonian and do the process again. 



Stochastic TDFT-  
Free Energy Calculation 

Ω = 𝑻𝒔 − 𝜏𝑆𝑠 + ∫ 𝐷 𝑔 𝑣 𝑔 − 𝜇 𝑑3𝑔 + 𝐸𝐻[𝐷] + 𝐸𝑋𝑋 𝐷  

𝒏 𝒓 = 𝜻 𝜹 𝒓 − 𝒓� 𝜻 = 𝜻 𝒓 𝟑  

𝑻𝒔 = 𝜻 𝑻� 𝜻 = −
𝟏
𝟑𝒎

𝜻 𝛁𝟑𝜻  

𝑺𝒔 = 𝝌 𝒇𝐥𝐥 𝒇 + 𝟏 − 𝒇 𝐥𝐥 𝟏 − 𝒇 𝝌  
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Presenter
Presentation Notes
The calculation of the free energy for most of the terms is straightforward because they functionals of the density. The kinetic energy is calculated as the observation value of the non interacting system operator. The entropy is a function of the KS Hamiltonian, so to calculate the moments we again expand  the function using Chebyshev series. 



Expected Scaling  
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𝜁𝑚 = 𝑓𝐹𝐹 ℎ� 𝜒𝑚  

𝐷1(𝒓) 𝐷2(𝒓) 𝐷𝑀(𝒓) … 

𝐷 𝒓 =
1
𝑀�𝐷𝑚(𝒓)

𝑀

𝑚

 𝛀 

𝐄𝐥𝐄 

𝑵
 𝑺
𝑿𝑭

 𝑿
𝑪𝑪
𝑪𝒆
𝒔 

𝑵 

Applying 
Hamiltonian  

𝑴 

Applying 
Chebyshev 

∝ 𝜿 

∝ 𝑵𝒈𝑪𝒍𝒈 𝑵𝒈  

Scaling 

SCF Cycles 

Stochastic 
Orbitals 

Linear Scaling  

Presenter
Presentation Notes
If we consider computation time: We apply Chebyshev 𝜅 times, where applying the Hamiltonian scales as the number of grid points. We do this procedure M times depending on the accuracy we wish to have. All this is done N times, until the process is converged. Since 𝜅 depends on the systems temperature, and assuming we will not need more Stochastic orbitals to acquire a defined accuracy – we expect the process to be linear scaling with the system size. 



sDFT vs. dDFT for 𝐻32 Cluster 
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𝛽 = 20𝐸ℎ−1 

𝜏 = 1.6 ⋅ 104𝐾 

𝜇 = −0.2 𝐸ℎ 

Presenter
Presentation Notes
I will now show you some very preliminary results. These first figures are a comparisom between deterministic Kohn-Sham calculations and our stochastic method. They were done on the Hydrogen cluster I have mentioned before in temperature of 1.6 times 10 to the power of  4. In the upper figure we see the free energy where the green dots are the result of a deterministic calculation and the orange ones are the stochastic results. The bottom figure shows the same result s for the number of electrons since we are looking at the grand canonical system. You can see that the deterministic results fall in the error of the stochastic ones.  The calculations were made before we implemented the option for periodic boundary conditions.



Convergence with M: Si at Γ point 
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𝛽 = 40 𝐸ℎ−1 

𝜏 = 7.9 ⋅ 103 𝐾 

𝜇 = 0.2𝐸ℎ 

𝐷𝐷𝐷𝐷𝐷𝑐𝐷 𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝐷
= 10.6 𝐷0 

Presenter
Presentation Notes
These calculations were done on a Silicon bulk unit cell containing 8 atoms with periodic boundary conditions. In the figure above you can see the convergence of the free energy as a function of the number of stochastic orbitals used in the calculation.  We can see that the free energy converges to a value as the number of orbitals increases.I the upper figure we see the standard deviation in the free energy as a function of the number of stochastic orbitals. You can see the standard deviation decreases like the number of orbitals to the power of -0.5 like we would expect from central limit theorem. This means we can control the accuracy by considering more or less stochastic orbitals.  



Convergence of Γ point calculation 
as function of system size  
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𝝈/
𝛀

 

Presenter
Presentation Notes
Now we wanted to look at the convergence as a function of the system size.  We took three systems, the first is si8 unit cell I mentioned before, the second is a unit cell containing 8 Si8 unit cells – 64 atoms and a system containing 27 Si8 unit cells – 216 silicon atoms. Since we are calculating the energy in real space we expect to see convergence to the bulks properties as we increase our unit cell. In the upper left figure we see the convergence in the number of electrons per Si8 unit cell. In the figure next to it we can see the convergence  in the free energy. Below we see the standard deviation per Si8 unit cell of the free energy as a function of the number of the si atoms in a unit cell. Self averaging?



Scaling as a function of System size  
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 Linear Scaling     

80 Stochastic 
Orbitals  

Presenter
Presentation Notes
The last thing I’m going to show is the scaling. In the upper figure we can see the computation time in minutes as a function of system size. We can see the increase is approximately linear as expected.  In the figure below we see the calculation time as a function of  𝛽 and we can see that as we go to higher temperatures the calculation time decreases, which is the opposite of the deterministic KS calculation.



Preliminary results: Ω 𝑉 ,Ω′(𝑉) 
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𝑀 = 80 
𝛽 = 40 𝐸ℎ−1,𝜇 = 0.2 𝐸ℎ 

Different 
seeds 

Presenter
Presentation Notes
The last thing I want to show is preliminary results. We see here the free energy and number of electrons per lattice constant, where every color represents a different random seed- meaning an independent stochastic calculation. Although there is obviously a stochastic error the results does not seem very noisy which leads us to believe we can maybe calculate derivatives without having to average over many different runs. One example is the pressure, which I plotted below as the derivative of the free energy with volume, and we see that it also has stochastic noise but the different curves are very similar. If we’ll be able to calculate the pressure with a relatively small error, we’ll be able to obtain equations of state.



Conclusions & Future Plans 
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Future Plans: 

• Mean force calculations for nuclear dynamics 

• Calculations of impurities (perhaps using the fragment 

method) 

• Implement a “more suitable” XC functional  for finite 

temperature 

• Suggestions are welcome! 

• Linear-scaling calculation (or better) of free-energy 

using sDFT 

• More efficient the higher the temperature 

• Error controlled by number of stochastic orbitals 

• Enable calculation of equation of state 𝑂 𝛽, 𝜇  
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