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Going beyond DFT

Electronic structure problem
• What atoms, molecules and solids can exist?
• What properties (ground-state energy, electron density

geometry, bond distances, angles, nuclear vibrations, ionization
energies, bond dissociation, etc.) do they have?

PFT is an alternative approach
• Enables ab-initio calculations of very large molecular systems.
• Avoids most-costly step by approximating the KS kinetic and

exact exchange energy as a functional of the KS potential.

Combines elements of today’s lectures on Hohenberg-Kohn
theorem, KS equations, Local density approximation, Density
matrices and holes.



Hamiltonian and ground-state energy

Atomic units throughout (e2 = ~ = me = 1); suppress spin
indices.

Ground-state energy of N electrons:

E0 = min
Ψ
〈Ψ | Ĥ |Ψ〉 = min

Ψ
〈Ψ | T̂ + V̂ee + V̂ |Ψ〉 ,

where

T̂ = −1
2
∑
j

∇2
j , V̂ee = 1

2
∑
j

∑
j 6=k

1
|rj − rk|

, V̂ =
∑
j

v(rj) ,

and Ψ are N -particle wave functions that are antisymmetric,
normalized, and have finite kinetic energy.



Universal functional in PFT

Use Hohenberg-Kohn mapping for interacting and
noninteracting particles:

v(r)↔ n(r)↔ vS(r) .

Write universal part of Hohenberg-Kohn functional as
functional of the KS potential:

F [ṽS] = TS[ṽS] + U [ṽS] + EXC[ṽS] .

Obtain true gs energy from the variational principle

E0 = min
ṽS

(
F [ṽS] +

∫
dr nS[ṽS](r) v(r)

)
.



Self-consistent equations

At the minimum the gs energy satisfies

δE0[ṽS]
δṽS(r)

∣∣∣∣
vS

= 0 .

Given nS[vS](r) and EXC[vS],

v′S[vS](r) = v(r) +
∫
dr′ χ−1

S [vS](r′, r) δEHXC[ṽS]
δṽS(r′)

∣∣∣∣
vS

,

v′S[vS](r) = −
∫
dr′ χ−1

S [vS] δTS[ṽS]
δṽS

∣∣∣∣
vS

determine the minimizing vS(r), and hence, the true gs
energy, where

χS[vS](r′, r) = δnS[ṽS](r′)/δṽS(r)
∣∣
vS

denotes the one-body density-density response function.



KS kinetic energy

Introduce a coupling-constant λ ∈ [0, 1] in the KS potential:

vλS (r) = λ vS(r) + (1− λ) vR(r) , ∆vS(r) = vS(r)− vR(r) .

Obtain the KS kinetic energy just from the density as a
functional of the KS potential

TS[vS] = ERS +
∫
dr {n̄S(r) ∆vS(r)− nS[vS](r) vS(r)} ,

where n̄S[vS](r) =
∫ 1

0 dλnS[vλS ](r) .



Exchange energy

Obtain the exchange energy through the 1RDM:

EX[vS] =
∫
dr
∫
dr′ γ∗S [vS](r, r′)γS[vS](r, r′) vee(r, r′) .

The corresponding exchange hole is defined as:

nX(r, r′) = −γ
∗
S [vS](r, r′)γS[vS](r, r′)

n(r) ,

obeying the sum rule
∫
dr′ nX(r, r′) = −1 ∀ r.



Up to now everything was exact.



Semiclassical approxmiation to the 1RDM

γscS (x, x′) =
∑
λ=±

λ sin[θλF(x, x′)]cosec[αλF(x, x′)/2]
2TF

√
kF(x)kF(x′)

.

Classical momentum: k(x) =
√

2 (ε− vS(x)) .

Classical action: θ(x) =
∫ x

0 dx
′ k(x′) , θF(L) = (N + 1/2)π.

Classical time: t(x) =
∫ x

0
1

k(x′) , T = t(L) , α(x) = πt(x)/T .

Abbreviations:
θ±(x, x′) = θ(x)± θ(x′) , α±(x, x′) = α(x)± α(x′) .



Semiclassical exchange hole



Non-variational calculations
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Figure 1: Energy error made by LDA exchange (LDAX), non-variational
semiclassical exchange (scX*), and semiclassical kinetic and exchange
(scKX*) for N spin-unpolarized, interacting fermions in a 1d well.



Variational calculations

Table 1: Total EXX energy and respective errors of variational
calculations within LDAX, scX, and scKX for N spin-unpolarized
fermions interacting via exp(−4u) in an external potential
v(x) = −5 sin2(πx) within a box of unit length.

N EEXX EEXX
X error·103

LDAX scX scKX
2 2.81 -0.52 41.72 -3.10 -29.60
4 39.04 -1.26 58.41 -3.86 - 1.14
6 126.10 -2.10 70.24 -1.20 0.47
8 283.70 -2.98 77.91 -0.10 - 1.76



Conclusions

• Our exchange approximation (scX) is as accurate as EXX and
comes at almost no cost.

• Our orbital-free, pure PFT calculation (scKX) has comparable
accuracy and comes at even smaller computational cost.

• Analogous formulas highly desired for potentials in 3D.



Appendix: LDA exchange in 1D

The (spin-polarized) LDAX energy per electron in 1D:

εLDA
X (n(x)) = −arctan β

π
+ ln(1 + β2)

2πβ , β = 2π n/α .



Appendix: Non-variational calculations (energetics)

Non-variational, semiclassical exchange approximation
evaluated on KS potential from LDAX.

Table 2: Total EXX energy and respective errors of perturbative
post-LDAX(*) calculations within LDAX, scX, and scKX for N
spin-unpolarized fermions interacting via exp(−4u) in an external
potential v(x) = −5 sin2(πx) within a box of unit length.

N EEXX EEXX
X error·103

LDAX scX* scKX*
2 2.81 -0.52 41.72 -1.79 1.40
4 39.04 -1.26 58.41 -0.15 5.89
6 126.10 -2.10 70.24 0.14 0.53
8 283.70 -2.98 77.91 0.08 -0.40



Appendix: Variational calculations (KS potentials)
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Figure 2: Upper plot: Converged KS potentials of EXX, LDAX, scX,
and scKX runs. Lower plot: Error in the respective, converged densities
with respect to EXX.



Appendix: Variational calculations (energy density)

-0.02

 0

 0.02

 0.04

 0.06

-0.4 -0.2  0  0.2  0.4

e
rr

o
r 

(a
.u

.)

x (a.u.)

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0
E

X
 e

n
e

rg
y
 d

e
n

s
it
y
 (

a
.u

.)

EXX LDAX scX scKX

Figure 3: Exchange energy density (upper) and its error (lower).



Appendix: Variational calculations (energy components)

Table 3: Energy components of variational calculations within LDAX,
semiclassical exchange (scX), and a semiclassical approximation of all
energy components (scKX) for 4 ‘electrons’ in the same problem as in
Tab. 2.

EXX error·103

LDAX scX scKX
E 39.04 58.41 -3.86 -1.14
TS 49.44 1.22 0.34 1.22
Vext -12.72 -1.38 0.07 4.56
U 3.58 0.003 0.02 -5.90
EX -1.26 58.56 -4.29 -1.02


