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Correlations
X =R, P=-9% U(t):=sin(VPt)/VP

C(F,g)(t) ‘Lef/RU(t)fgdx, f.g c C(R).

1
C(f,g):z/Rfdx/Rgdx, t > T(suppf,suppg).



C(f,g) /fdx/gdx t > T(suppf,suppg).

This particular behaviour is due to the fact that the resolvent of P,
R\ Y (P =221 [A(R) — [2(R), Im\ >0,
has a pole A = 0. What does that mean?

R(N)f /G)\xy )dy

In this basic case we see this from an explicit formula,

G\, x,y) = ﬁe’-/\‘x_y'.



=924+ V(x), VelLX([RR), V>0,

(P— %)~ /G)\xy y)dy, Im\ >0, f,uecl?
G(\, x,y) continues meromorphically in A to the complex plane
Lax-Phillips:

Cf.e)t)= > e_i)‘ft/ fu; dx/guj dx 4+ O(e™A%),
R R

Im)\j>—A

Aj's are the poles of G(A,x,y).



C(f,g)(t) = Z e_i)‘ft/fuj'dx/guj-dx—i—O(e_At)’
_ R R

Im\;>—A
Im\>-A "/
Sum of Lorentzians corresponding to resonances
8 T T
6L 1
4+ 1
ol 1
0 .
0 5 10 15
Resonances obtained using splinepot([0,50,20,80,0],[-2 -1 01 2])
0 > % T
*
—05F * 1
*
“1r * 4
K %
-15 L L




Quantum Resonances describe the resonating waves:

Potential
T T T T T T T
100 B
50 B
[
I I I I I I I
-3 -2 -1 0 1 2 3 4 5
Pole locations
0 T 000 B0 00 Qoo T
o O o o
-02r ® _o °o_ o 1
% o o %
o4l i LS ]
wa® ® o ° °® ® g
PY o o e o °
-0.6 ~
_08 I I I I I I I
-20 -15 -10 -5 0 5 10 15 20

Computed using squarepot.m
http://www.cims.nyu.edu/~dbindel/resonant1d/



Here is how they sound:

time = linspace(0,500,5000);
sound (real (exp (-i*z*time)))



outs.mp4
Media File (video/mp4)


A real experimental example
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Resonances for three discs:

Barkhofen-Kuhl-Weich '13



husimi.swf
Media File (application/x-shockwave-flash)


Resonances for three discs:

Barkhofen-Kuhl-Weich '13 The outgoing set
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C(f,g)(t) = Z ei)‘ft/fujdx/gujdx—i—(’)(eAt),
R R

Im \;>—A

In general to have a finite expansion of correlations with
exponentially decaying remainders we need to know that

the number of poles of G(\) is finite in a strip Im A > —~.

and to have some effective bounds in G(\).

Hence exponetial decay of correlations is closely related to
resonance free strips.



How do we determine that gap at the high frequency limit when
the dynamics is hyperbolic?
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(b)3 Disk Simulation

Gaspard-Rice '89, Lu-Sridhar-Z '03, Potzuweit et al '12

lkawa '88, Burqg '93, Nonnenmacher-Z'09, Naud '04,'12,
Petkov-Stoyanov'11



We define the topological pressure associated to the unstable
Jacobian:

Ji (p) = det (dd>‘tEp+)

Pe(s) = Tlim %Iog Z JT(y)~*,

— 00
T—-1<Ty<T
where v are closed orbits with period T,.

Ikawa '88, Nonnemacher-Z '09, Petkov-Stoyanov '11:
If Pe(1/2) < 0 then no resonances with Im A > Pg(1/2).
(at high energies)



If Pe(1/2) < 0 then no resonances with Im A > Pg(1/2) (at high
energies)

The decay of correlations is closely related to resonance free strips.
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Lu-Sridhar-Z '03: concentration of decay rates at P(1)/2, PRL '03



A very different setting: chaotic dynamics (more precisely contact
Anosov flows)

pr: X — X, X compact

U(t) : C2(X) = C=(X), U(t)f & prif.

Dolgopyat '98, Liverani '04 , Tsujii '11:

/U(t)fgdx:/ fdx/gdx—l—O(e”t), t — oo.
X X X



A completely different setting:

Wave equation for Kerr-de Sitter black holes

X =(r_,ry) x$? U(t)= wave propagator .

5, A

Bony-Hafner'08, Melrose-S3 Barreto-Vasy'10, Dyatlov'11, Vasy'12:

T+

/U(t)fgdx—/ fdx/gdx+0(e_7t), t — oo.
X X X



/ U(t)fgdxz/ f dx / gdx+ 0(e™ ), t— oo.
X X X
X a compact manifold , U(t) = ¢}

X =(r_,ry)xS" 1 U(t) = wave group .

What do the two problems have in common?

1) Normally hyperbolic trapped set
2) A strip with finitely many resonances
3) A resonance at 0 (this is quite special)

At this point, except for one hyperbolic orbit, | do not know of an
experimental example of this set-up.



Trapped set:

Ke={pcp (E)C T*"X : exp tHy(x,£) £ o0, t — Foo}.
The flow is normally hyperbolic at K = U|E7E0\<5 Ke:
I >0, K2pm ES CT(TX), (exptHp)eE, = ES
T,KNESf=EFnE, ={0}, dimE; =d,,

T(T"X)=T,K+ES+E,

”(exp(:FtHP))*V||exp(¥th)(p) < CeiAOtHVHp? v e Epi



T,KNEFf=EFnE, ={0}, dmES = d,,

Tp(T*X) =T,K+ E: + Ep_,
[|(exp(FtHp)) sVl exp(eH,)(p) < Ce

]l

+
vEEp.




Resonance gap for normally hyperbolic trapping:

Nonnenmacher-Z '13: If the trapped set is normally hyperbolic
then there are no resonances with Im A > —v

(4 bounds on the Green function which allow consequences for
correlations).

v < I|m|nf7 |nf log det d(exp tH )|E+

t—o00 ,DE

Requires fine analysis near the trapped set then “glued to infinity”
using

1) Euclidean infinity: complex scaling of Aguilar-Combes, '71
Balslev-Combes '71, Simon '72, Helffer-Sjostrand, '85...
2) de Sitter black holes, hyperbolic infinities: Vasy '13, Dyatlov '11

3) dynamical systems: Faure-Sjostrand '11



Conclusions

Exponential decay of correlations comes from the high-energy
(semiclassical) resonance gap; in other words from a lower
bound on decay rates.

Resonance gap is determined by the dynamical structure of
the trapped set the set of points in phase space which do not
escape to infinity.

For hyperbolic (fractal) trapped sets the gap is measured using
topological pressure; it occurs when the set is filamentary.

For normally hyperbolic (smooth) trapped sets the gap is
estimated using transversal Lyapunov exponents

It is essential that the gap estimates are quantitative; that is
they come with estimates on the Green function.



Appendix

An alternative definition of the topological pressure

To define the pressure of ®* on Kg, one starts from an open cover
(Vb)pep of Ke. This cover is then refined T times through the
flow, producing sets

Vi = Ve N0V, N2V, NN T4y, beBT.
Keep the V} intersecting K.



We weigh each V; using the coarse-grained unstable Jacobian:

def — _ —_1))}
wr(Ve) € sup  (JE(p)) P~ e DA,
pEVEﬂKE

where )\ is an “average” stretching exponent for initial points in Vi
One then considers the partition function
def . . T
ZrEinf{> wr(Vg) : Brc BT, Kec |J 5}
EGBT BEBT

The pressure Pg(1/2) is finally given by

1
1/2) = li lim —logZr.
PE( / ) diam(lr\}:,)—m Tl;noo T o8 <1



Yet another definition (perhaps not rigorous but computationally
very successful):

1
P(s) = A first zero of (s(\)

eATY
G(A) = 1;[ (1 - W) )

¥
J+(f}/#) = exp (A IOg det dq)t(p)’E“(p)) .

P(0) = topological entropy, P(1) = — classical escape rate,

P(6) =0, where dimK =25+1, K C S*(R?\O), the trapped set.



