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Correlations

X = R, P = −∂2
x , U(t) := sin(

√
Pt)/

√
P

C (f , g)(t)
def
=

∫
R
U(t)fg dx , f , g ∈ C∞c (R).

U(t)g =
1

2

∫ x+t

x−t
g(y)dy

C (f , g) =
1

2

∫
R
f dx

∫
R
g dx , t ≥ T (supp f , supp g).



C (f , g) =
1

2

∫
R
f dx

∫
R
g dx , t ≥ T (supp f , supp g).

This particular behaviour is due to the fact that the resolvent of P,

R(λ)
def
= (P − λ2)−1 : L2(R)→ L2(R), Imλ > 0,

has a pole λ = 0. What does that mean?

R(λ)f (x) =

∫
G (λ, x , y)f (y)dy

In this basic case we see this from an explicit formula,

G (λ, x , y) =
i

2λ
e iλ|x−y |.



P = −∂2
x + V (x), V ∈ L∞c (R;R), V ≥ 0,

(P − λ2)−1f (x) =

∫
G (λ, x , y)f (y)dy , Imλ > 0, f , u ∈ L2.

G (λ, x , y) continues meromorphically in λ to the complex plane

Lax-Phillips:

C (f , g)(t) =
∑

Imλj>−A
e−iλj t

∫
R
fuj dx

∫
R
guj dx +O(e−At),

λj ’s are the poles of G (λ, x , y).



C (f , g)(t) =
∑

Imλj>−A
e−iλj t

∫
R
fuj dx

∫
R
guj dx +O(e−At),

Ĉ (f , g)(−λ) =
∑

Imλj>−A

cj
λj − λ

+O
(

1

A

)
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Quantum Resonances describe the resonating waves:
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http://www.cims.nyu.edu/∼dbindel/resonant1d/



Here is how they sound:

time = linspace(0,500,5000);

sound(real(exp(-i*z*time)))


outs.mp4
Media File (video/mp4)



A real experimental example

Potzuweit-Weich-Barkhofen-Kuhl-Stöckmann-Z ’12



Resonances for three discs:

Barkhofen-Kuhl-Weich ’13


husimi.swf
Media File (application/x-shockwave-flash)



Resonances for three discs:
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Barkhofen-Kuhl-Weich ’13 The outgoing set



incoming set trapped set outgoing set

Poon-Campos-Ott-Grebogi ’96



C (f , g)(t) =
∑

Imλj>−A
e−iλj t

∫
R
fuj dx

∫
R
guj dx +O(e−At),

In general to have a finite expansion of correlations with
exponentially decaying remainders we need to know that

the number of poles of G (λ) is finite in a strip Imλ > −γ.

and to have some effective bounds in G (λ).

Hence exponetial decay of correlations is closely related to
resonance free strips.



How do we determine that gap at the high frequency limit when
the dynamics is hyperbolic?

Gaspard-Rice ’89, Lu-Sridhar-Z ’03, Potzuweit et al ’12

Ikawa ’88, Burq ’93, Nonnenmacher-Z’09, Naud ’04,’12,
Petkov-Stoyanov’11
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We define the topological pressure associated to the unstable
Jacobian:

J+
t (ρ) = det

(
dΦt
|E+
ρ

)
PE (s) = lim

T→∞

1

T
log

∑
T−1<Tγ<T

J+(γ)−s ,

where γ are closed orbits with period Tγ .

Ikawa ’88, Nonnemacher-Z ’09, Petkov-Stoyanov ’11:
If PE (1/2) < 0 then no resonances with Imλ > PE (1/2).
(at high energies)



If PE (1/2) < 0 then no resonances with Imλ > PE (1/2) (at high
energies)

The decay of correlations is closely related to resonance free strips.

Potzuweit-Weich-Barkhofen-Kuhl-Stöckmann-Z, PRL ’13

Lu-Sridhar-Z ’03: concentration of decay rates at P(1)/2, PRL ’03



A very different setting: chaotic dynamics (more precisely contact
Anosov flows)

ϕt : X → X , X compact

U(t) : C∞(X )→ C∞(X ), U(t)f
def
= ϕ∗t f .

Dolgopyat ’98, Liverani ’04 , Tsujii ’11:∫
X
U(t)fg dx =

∫
X
f dx

∫
X
g dx + O(e−γt), t →∞.



A completely different setting:

Wave equation for Kerr-de Sitter black holes

X = (r−, r+)× S2, U(t) = wave propagator .

Bony-Häfner’08, Melrose-Sá Barreto-Vasy’10, Dyatlov’11, Vasy’12:∫
X
U(t)fg dx =

∫
X
f dx

∫
X
g dx + O(e−γt), t →∞.



∫
X
U(t)fg dx =

∫
X
f dx

∫
X
g dx + O(e−γt), t →∞.

X a compact manifold , U(t) = ϕ∗t

X = (r−, r+)× Sn−1, U(t) = wave group .

What do the two problems have in common?

1) Normally hyperbolic trapped set

2) A strip with finitely many resonances

3) A resonance at 0 (this is quite special)

At this point, except for one hyperbolic orbit, I do not know of an
experimental example of this set-up.



Trapped set:

KE = {ρ ∈ p−1(E ) ⊂ T ∗X : exp tHp(x , ξ) 6→ ∞, t → ±∞}.

The flow is normally hyperbolic at K =
⋃
|E−E0|<δ KE :

∃ λ0 > 0, K 3 ρ 7→ E±ρ ⊂ Tρ(T ∗X ), (exp tHp)∗E
±
ρ = E±exp tHp(ρ),

TρK ∩ E±ρ = E+
ρ ∩ E−ρ = {0} , dimE±ρ = dt ,

Tρ(T ∗X ) = TρK + E+
ρ + E−ρ ,

‖(exp(∓tHp))∗v‖exp(∓tHp)(ρ) ≤ Ce−λ0t‖v‖ρ, v ∈ E±ρ .



TρK ∩ E±ρ = E+
ρ ∩ E−ρ = {0} , dimE±ρ = dt ,

Tρ(T ∗X ) = TρK + E+
ρ + E−ρ ,

‖(exp(∓tHp))∗v‖exp(∓tHp)(ρ) ≤ Ce−λ0t‖v‖ρ, v ∈ E±ρ .



Resonance gap for normally hyperbolic trapping:

Nonnenmacher-Z ’13: If the trapped set is normally hyperbolic
then there are no resonances with Imλ > −γ

(+ bounds on the Green function which allow consequences for
correlations).

γ < lim inf
t→∞

1

t
inf
ρ∈K

log det d(exp tHp)|E+
ρ
.

Requires fine analysis near the trapped set then “glued to infinity”
using

1) Euclidean infinity: complex scaling of Aguilar-Combes, ’71
Balslev-Combes ’71, Simon ’72, Helffer-Sjöstrand, ’85...

2) de Sitter black holes, hyperbolic infinities: Vasy ’13, Dyatlov ’11

3) dynamical systems: Faure-Sjöstrand ’11



Conclusions

I Exponential decay of correlations comes from the high-energy
(semiclassical) resonance gap; in other words from a lower
bound on decay rates.

I Resonance gap is determined by the dynamical structure of
the trapped set the set of points in phase space which do not
escape to infinity.

I For hyperbolic (fractal) trapped sets the gap is measured using
topological pressure; it occurs when the set is filamentary.

I For normally hyperbolic (smooth) trapped sets the gap is
estimated using transversal Lyapunov exponents

I It is essential that the gap estimates are quantitative; that is
they come with estimates on the Green function.



Appendix

An alternative definition of the topological pressure

bV

K E

2

3V

V

V1 !

To define the pressure of Φt on KE , one starts from an open cover
(Vb)b∈B of KE . This cover is then refined T times through the
flow, producing sets

V~b = Vb0 ∩ Φ−1Vb1 ∩ Φ−2Vb2 ∩ · · · ∩ Φ−T+1VbT−1
, ~b ∈ BT .

Keep the V~b intersecting KE .



We weigh each V~b using the coarse-grained unstable Jacobian:

wT (V~b)
def
= sup

ρ∈V~b∩KE

(
J+
T (ρ)

)−1/2 ∼ e−T (d−1)λ̄/2 ,

where λ̄ is an “average” stretching exponent for initial points in V~b.

One then considers the partition function

ZT
def
= inf{

∑
~b∈BT

wT (V~b) : BT ⊂ BT , KE ⊂
⋃
~b∈BT

V~b} .

The pressure PE (1/2) is finally given by

PE (1/2) = lim
diam(Vb)→0

lim
T→∞

1

T
logZT .



Yet another definition (perhaps not rigorous but computationally
very successful):

P(s) =
1

i
first zero of ζs(λ)

ζs(λ) =
∏
γ#

(
1− e iλT

#
γ

J+(γ#)s

)
,

J+(γ#) = exp

(∫ T#
γ

0
log det dΦt(ρ)|Eu(ρ)

)
.

P(0) = topological entropy, P(1) = − classical escape rate,

P(δ) = 0, where dimK = 2δ+1, K ⊂ S∗(R2\O), the trapped set.


