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Effective potential energy; mixed functionals — 1
Begin with Hohenberg–Kohn (1964),

Egs = min
n

E [n] with E [n] = Ekin[n] +
∫

(dr)Vext(r)n(r) + Eint[n]

and the constraint N =

∫

(dr)n(r) .

Then incorporate the constraint with the aid of a Lagrange multiplier,

Egs = extr
n,ζ

E [n, ζ] with E [n, ζ] = E [n]− ζN + ζ

∫

(dr)n(r) ,

and introduce the effective potential energy V (r) in accordance with

δEkin[n] = −

∫

(dr)
[
V (r) + ζ

]
δn(r) or V (r) = −

δ

δn(r)
Ekin[n]− ζ .

Then, E1 = Ekin[n] +
∫

(dr)n(r)
[
V (r) + ζ

]
is a functional of V (r) + ζ, because

δE1 =

∫

(dr)n(r)
[
δV (r) + δζ

]
.
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Effective potential energy; mixed functionals — 2

We now have
Egs = extr

V ,n,ζ
E [V , n, ζ]

with the density-potential functional

E [V , n, ζ] = E1[V + ζ]−

∫

(dr)
[
V (r)− Vext(r)

]
n(r) + Eint[n]− ζN .

The extremum condition implies

(a) δV (r) : n(r) =
δ

δV (r)
E1[V + ζ] ,

(b) δn(r) : V (r) = Vext(r) +
δ

δn(r)
Eint[n] ,

(c) δζ : N =
∂

∂ζ
E1[V + ζ] .

We get E [V , n, ζ] → E [n, ζ] upon enforcing (a); we get E [V , n, ζ] → E [n]
(“density functional”) upon enforcing (a) and (c); we get E [V , n, ζ] → E [V , ζ]
(“potential functional”) upon enforcing (b).
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Effective potential energy; mixed functionals — 3
Example: Atomic Thomas–Fermi functionals, Vext = −

Z
r

(in atomic units).

ETF[V , n, ζ] =
∫

(dr)
(

−
1

15π2

)(
−2

[
V (r) + ζ

])5/2

︸ ︷︷ ︸

=ETF
1 [V + ζ]

−

∫

(dr)
(

V (r) +
Z
r

)

n(r)

+
1
2

∫

(dr)(dr′)
n(r)n(r′)
∣
∣r − r′

∣
∣

︸ ︷︷ ︸

=ETF
int [n]

−ζN

implies

(a) δV (r) : n(r) =
1

3π2

(
−2

[
V (r) + ζ

])3/2
,

(b) δn(r) : V (r) = −
Z
r
+

∫

(dr′)
n(r′)
∣
∣r − r′

∣
∣
,

(c) δζ : N =

∫

(dr)
1

3π2

(
−2

[
V (r) + ζ

])3/2
.

Enforcing (a) gives ETF[n, ζ] with ETF
kin[n] =

∫

(dr)
1

10π2

[
3π2n(r)

]5/3, while

enforcing (b) gives
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Effective potential energy; mixed functionals — 4

ETF[V , ζ] = ETF
1 [V + ζ]−

1
8π

∫

(dr)
[

∇

(

V (r) +
Z
r

)]2
− ζN .

Note that

ETF
gs = min

n
ETF[n] with constraint N =

∫

(dr)n(r) ,

whereas
ETF

gs = max
V ,ζ

ETF[V , ζ] .

For N = Z , this gives simple upper and lower bounds on Baker’s constant B

in ETF
gs = −

3B
7a

Z 7/3 with a =
1
2

(3π
4

)2/3
= 0.8853.

Significance of E1[V + ζ]:

E1[V + ζ] = Ekin[n] +
∫

(dr)n(r)
[
V (r) + ζ

]
=

〈
gs
∣
∣

N∑

j=1

[
H(p̂j , r̂j) + ζ

]∣
∣gs

〉

with the single-particle Hamiltonian H(p, r) =
1

2m
p2 + V (r).
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Effective potential energy; mixed functionals — 5
Significance of E1[V + ζ]:

E1[V + ζ] =
〈
gs
∣
∣

N∑

j=1

[ 1
2m

p̂2
j + V (̂rj)

︸ ︷︷ ︸

=H(p̂j , r̂j)

+ζ
]∣
∣gs

〉
= tr{f (H + ζ)}

with a single-particle trace of a function of H + ζ that one needs to determine
(or guess).

The noninteracting-particles approximation f (H + ζ) ≃ (H + ζ)η(−H − ζ)
has a very good track record (“put one fermion each into the eigenstates of H
with eigenvalues H ′ < −ζ ”).

We can use Wigner functions to evaluate the trace, for example

tr{f (H + ζ)} = 2
∫

(dr) (dp)
(2π~)3

[
f (H + ζ)

]

W
(r,p)

for spin- 1
2 fermions with no spin preference. Here,

[
f (H + ζ)

]

W
(r,p)

≃ f
(
H(p, r) + ζ

)
is the extreme semiclassical approximation that reproduces

the TF version of E1[V + ζ].
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Effective potential energy; mixed functionals — 6
History

1– E. H. Lieb
Density Functionals for Coulomb Systems
Int. J. Qu. Chem. 24, 243–277 (1983)

2– BGE
Energy functionals and the Thomas–Fermi model in momentum space
Phys. Rev. A 45, 127–134 (1992)
precursor: pages 104–110 in LNP 300 (1988); E [V , n, ζ] is used much there

3– W. Yang, P. W. Ayers, Q. Wu
Potential Functionals: Dual to Density Functionals and Solution to the
v-Representability Problem
Phys. Rev. Lett. 92, 146404 (2004) [4 pages]

4– A. Cangi, E. K. U. Gross, K. Burke
Potential functionals versus density functionals
eprint arXiv:1307.4235 (2013) [16 pages]

Confession: I don’t really understand many of the details in papers 1,3,4 and
don’t know how their approaches are related to mine.
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Approximate Wigner functions — 1
Question: Given operator A and its Wigner function AW, how do we
express the Wigner function of a function of A in terms of AW? That
is:

[

g(A)
]

W
= ?

Extreme semiclassical approximation (TF):
[

g(A)
]

W
≃ g(AW).

Leading quantum correction:

[

g(A)
]

W
≃ g(AW)−

~
2

16

{

AWΛ2AW

}

g′′(AW)+
~

2

24

{

AWΛAWΛAW

}

g′′′(AW)

where Λ is the two-sided differential operator of the Poisson bracket,

{

FΛG
}

=
∂F
∂r

·
∂G
∂p

−
∂F
∂p

·
∂G
∂r

.

Alternatively one can use

[

g(A)
]

W
≃

∫

dx Ai(x)
[

f (AW,x )−
~

2

16

{

AWΛ2AW

}

f ′′(AW,x )

]

with AW,x = AW +
x
2

[

~
2{AWΛAWΛAW

}]1/3
.
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Approximate Wigner functions — 2
These order-(~Λ)2 approximations are pretty good and quite sufficient
for many applications. If the transition E [V , n, ζ] → E [n] is made, they
reproduce the known von Weizsäcker corrections to the kinetic
energy in 3D and 1D and give a corresponding term (6= 0) in 2D.
For the perturbative evaluation of the contribution to the ground-state
energy and other purposes, it is better, however, to stick to the
potential functional.

Example: Density n(r) = 2
∫

(dp)
(2π~)D

[

η(−H − ζ)]W(r,p) ≃ · · ·

0.98 0.99 1.01 1.02
r�r0

1

2

nHrL�Μm2

nTFHrL

nexactHrL

nAiryHrL

(by Martin Trappe)
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Approximate Wigner functions — 3
The interaction energy Eint =

∫

(dr)(dr′)Vint(r − r′)n(2)(r, r′; r, r′)

needs the diagonal part of the two-particle density matrix, which can
be approximated (reasonably well) in terms of the one-particle
density matrix (Dirac 1930),

n(2)(r1, r2; r′1, r
′

2) ≃ n(1)(r1; r′1)n
(1)(r2; r′2)−

1
2

n(1)(r1; r′2)n
(1)(r2; r′1)

and we get the one-particle density matrix n(1)(r; r′) from the
corresponding Wigner function ν(r,p),

n(1)(r; r′) =
∫

(dp)
(2π~)3 ν

(

1
2 (r + r′),p)eip · (r − r′)/~ ,

where we can use the TF approximation

ν(r,p) ≃ 2η
(

P(r)2 − p2)
∣

∣

∣

3π2
~

3n = P3
= 2η

(

[3π2
~

3n(r)]2/3 − p2) .

This is good enough for many purposes, and one can improve on it if
one wishes.
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