Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

Introductio

Observables

Wigner measure

Dynamical result

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint works with Z. Ammari

sept. 5th, 2013

Outline

Phase-space approach to bosonic mean field dynamics

Francis Mier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

. . . .

vvigner measur

Dynamical result

- 1 Introduction
- 2 Observables
- 3 Wigner measures
- 4 Dynamical results

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint worl with Z. Amma

Introduction

Wigner measu

Dynamical results

Let $\mathcal{Z}=L^2(X,m;\mathbb{C})$ be the one particle space. e.g. $(X,m)\subset$ measured add. group. \mathcal{Z} separable. $X\subset\mathbb{R}^d$, $X\subset\mathbb{Z}^d$, $X=\mathbb{Z}^d/(K\mathbb{Z})^d$. The bosonic N-particle space is $L^2_s(X^N,m^{\otimes N};\mathbb{C})=\bigvee^N\mathcal{Z}$. (A,D(A)) is a s.a. operator on \mathcal{Z} V(x)=V(-x) is a real function on X.

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with 7. Ammar

Introduction

Obscivables

Wigner measu

Dynamical results

Let $\mathcal{Z}=L^2(X,m;\mathbb{C})$ be the one particle space. e.g. $(X,m)\subset$ measured add. group. \mathcal{Z} separable. $X\subset\mathbb{R}^d$, $X\subset\mathbb{Z}^d$, $X=\mathbb{Z}^d/(K\mathbb{Z})^d$. The bosonic N-particle space is $L^2_s(X^N,m^{\otimes N};\mathbb{C})=\bigvee^N\mathcal{Z}$. (A,D(A)) is a s.a. operator on \mathcal{Z} V(x)=V(-x) is a real function on X.

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Wigner meas

vvigner measi

Dynamical result

Let $\mathcal{Z} = L^2(X, m; \mathbb{C})$ be the one particle space. e.g. $(X, m) \subset$ measured add. group. \mathcal{Z} separable. $X \subset \mathbb{R}^d$, $X \subset \mathbb{Z}^d$, $X = \mathbb{Z}^d/(K\mathbb{Z})^d$.

The bosonic N-particle space is $L^2_s(X^N, m^{\otimes N}; \mathbb{C}) = \bigvee^N \mathcal{Z}$.

(A, D(A)) is a s.a. operator on \mathcal{Z} V(x) = V(-x) is a real function on X.

N-body quantum dynamics

$$\begin{cases} i\partial_t \Psi = \sum_{i=1}^N A_i \Psi + \frac{1}{N} \sum_{i < j} V(x_i - x_j) \Psi \\ \Psi(t = 0) = \Psi_0 \in \bigvee^N \mathcal{Z} \end{cases}$$

with
$$A_i = \operatorname{Id}_{\mathcal{Z}} \otimes \cdots \otimes \underbrace{A}_i \otimes \cdots \otimes \operatorname{Id}_{\mathcal{Z}}$$
.

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

. . . .

Wigner measu

Dynamical result

Let $\mathcal{Z} = L^2(X, m; \mathbb{C})$ be the one particle space. e.g. $(X, m) \subset$ measured add. group. \mathcal{Z} separable. $X \subset \mathbb{R}^d$, $X \subset \mathbb{Z}^d$, $X = \mathbb{Z}^d/(K\mathbb{Z})^d$.

The bosonic N-particle space is $L^2_s(X^N, m^{\otimes N}; \mathbb{C}) = \bigvee^N \mathcal{Z}$.

(A, D(A)) is a s.a. operator on \mathcal{Z} V(x) = V(-x) is a real function on X.

N-body quantum dynamics

$$\begin{cases} i\partial_t \Psi = \sum_{i=1}^N A_i \Psi + \frac{1}{N} \sum_{i < j} V(x_i - x_j) \Psi \\ \Psi(t = 0) = \Psi_0 \in \bigvee^N \mathcal{Z} \end{cases}$$

with $A_i = \operatorname{Id}_{\mathcal{Z}} \otimes \cdots \otimes \underbrace{A}_{:} \otimes \cdots \otimes \operatorname{Id}_{\mathcal{Z}}$.

Mean field limit $N \to \infty$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Wigner meas

Dynamical results

Let $\mathcal{Z} = L^2(X, m; \mathbb{C})$ be the one particle space.

e.g.
$$(X, m) \subset$$
 measured add. group. $\mathcal Z$ separable.

$$X \subset \mathbb{R}^d$$
 , $X \subset \mathbb{Z}^d$, $X = \mathbb{Z}^d/(K\mathbb{Z})^d$.

The bosonic N-particle space is $L^2_s(X^N, m^{\otimes N}; \mathbb{C}) = \bigvee^N \mathcal{Z}$.

 $(A, \mathcal{D}(A))$ is a s.a. operator on \mathcal{Z}

$$V(x) = V(-x)$$
 is a real function on X .

N-body quantum dynamics

$$\begin{cases} i\varepsilon\partial_t \Psi = \varepsilon \sum_{i=1}^N A_i \Psi + \varepsilon^2 \sum_{i< j} V(x_i - x_j) \Psi \\ \Psi(t = 0) = \Psi_0 \in \bigvee^{\frac{1}{\varepsilon}} \mathcal{Z} \end{cases}$$

with
$$A_i = \operatorname{Id}_{\mathcal{Z}} \otimes \cdots \otimes \underbrace{A}_{:} \otimes \cdots \otimes \operatorname{Id}_{\mathcal{Z}}$$
.

Mean field limit $N o \infty$ $\varepsilon o 0$.

Divide by N and set $\varepsilon = \frac{1}{N}$.

Fock space formulation

Phase-space approach to bosonic mean field dynamics

Introduction

Rewriting in the bosonic Fock space $\Gamma(\mathcal{Z}) = \bigoplus_{n=0}^{\infty} \bigvee^{n} \mathcal{Z}$.

$$\left\{ \begin{array}{l} i\varepsilon\partial_t\Psi^\varepsilon=H^\varepsilon\Psi^\varepsilon\\ \Psi^\varepsilon(t=0)=\Psi^\varepsilon_0\in\Gamma(\mathcal{Z})\,, \end{array} \right.$$

where

$$H^{\varepsilon} = \int_{X^2} A(x, y) a^*(x) a(y) dm(x) dm(y)$$

$$+\frac{1}{2}\int_{X^2}V(x-y)a^*(x)a^*(y)a(x)a(y)\ dm(x)dm(y)$$

is the Wick quantization of the energy

$$\mathcal{E}(z,\overline{z}) = \int_{X^2} \overline{z}(x) A(x,y) z(y) dm(x) dm(y)$$

$$+ \frac{1}{2} \int_{X^2} V(x-y) |z(x)|^2 |z(y)|^2 dm(x) dm(y),$$

with the ε -dependent CCR's:

$$[a(x), a(y)] = [a^*(x), a^*(y)] = 0$$
 , $[a(x), a^*(y)] = \varepsilon \delta(x - y)$.

Mean field=semiclassical

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ Rennes 1 After joint worl with Z. Amma

Introduction

Wigner mean

vvigiter incus

Dynamical result

The relation between

$$i\varepsilon\partial_t\Psi^\varepsilon=H^\varepsilon\Psi^\varepsilon$$

and the hamiltonian dynamics in the phase-space ($\mathcal{Z},\,\mathrm{Im}\,\,\langle\,\,,\,\,\rangle_{\mathcal{Z}})$

$$i\partial_t z = \partial_{\overline{z}} \mathcal{E}$$

in the limit is actually a semiclassical problem.

$$\varepsilon \to 0$$
 , $[a(x), a^*(y)] = \varepsilon \delta(x - y)$, $H^{\varepsilon} = \mathcal{E}^{Wick}$.

Perfectly known when $X = \{1, ..., K\} = \mathbb{Z}/(K\mathbb{Z})$, $\mathcal{Z} = \mathbb{C}^K \sim \mathbb{R}^{2K}$, $\Gamma(\mathcal{Z}) \sim L^2(\mathbb{R}^K, dx; \mathbb{C})$, (semiclassical

pseudo-differential calculus, Fourier integral operators, Egorov's theorem, higher order expansions are possible).

Take $a^*(k) = -h\partial_{x_k} + x_k$, $a(k) = h\partial_{x_k} + x_k$ $(k \in X, x_k \in \mathbb{R})$ with

$$\left(\frac{1}{N}\right)\sim\varepsilon=2h.$$

Mean field=semiclassical

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint worl with Z. Amma

Introduction

Wigner meas

vvigner meas

Dynamical result

The relation between

$$i\varepsilon\partial_t\Psi^\varepsilon=H^\varepsilon\Psi^\varepsilon$$

and the hamiltonian dynamics in the phase-space ($\mathcal{Z},\,{\rm Im}\,\,\langle\,\,,\,\,\rangle_{\mathcal{Z}})$

$$i\partial_t z = \partial_{\overline{z}} \mathcal{E}$$

in the limit is actually a semiclassical problem.

$$\varepsilon \to 0$$
 , $[a(x), a^*(y)] = \varepsilon \delta(x - y)$, $H^{\varepsilon} = \mathcal{E}^{Wick}$.

Perfectly known when $X = \{1, ..., K\} = \mathbb{Z}/(K\mathbb{Z})$, $\mathcal{Z} = \mathbb{C}^K \sim \mathbb{R}^{2K}$, $\Gamma(\mathcal{Z}) \sim L^2(\mathbb{R}^K, dx; \mathbb{C})$, (semiclassical

pseudo-differential calculus, Fourier integral operators, Egorov's theorem, higher order expansions are possible).

Take $a^*(k) = -h\partial_{x_k} + x_k$, $a(k) = h\partial_{x_k} + x_k$ $(k \in X, x_k \in \mathbb{R})$ with

$$\left(\frac{1}{N}\right) \sim \varepsilon = 2h.$$

Mean field=semiclassical

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

Introduction

Wigner meas

vvigner measi

Dynamical result

The relation between

$$i\varepsilon\partial_t\Psi^\varepsilon=H^\varepsilon\Psi^\varepsilon$$

and the hamiltonian dynamics in the phase-space ($\mathcal{Z},\,\mathrm{Im}\,\,\langle\,\,,\,\,\rangle_{\mathcal{Z}})$

$$i\partial_t z = \partial_{\overline{z}} \mathcal{E}$$

in the limit is actually a semiclassical problem.

$$\varepsilon \to 0$$
 , $[a(x), a^*(y)] = \varepsilon \delta(x - y)$, $H^{\varepsilon} = \mathcal{E}^{Wick}$.

Perfectly known when $X = \{1, ..., K\} = \mathbb{Z}/(K\mathbb{Z})$, $\mathcal{Z} = \mathbb{C}^K \sim \mathbb{R}^{2K}$, $\Gamma(\mathcal{Z}) \sim L^2(\mathbb{R}^K, dx; \mathbb{C})$, (semiclassical

pseudo-differential calculus, Fourier integral operators, Egorov's theorem, higher order expansions are possible).

Take $a^*(k) = -h\partial_{x_k} + x_k$, $a(k) = h\partial_{x_k} + x_k$ $(k \in X, x_k \in \mathbb{R})$ with

$$\left(\frac{1}{N}\right)\sim\varepsilon=2h.$$

Weyl observables

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ Rennes 1 After joint wor with Z. Amma

Introductio

Observables

Wigner meas

Dynamical results

For $f \in \mathcal{Z}$, $W(f) = e^{i\Phi(f)}$.

$$\phi(f) = \frac{1}{\sqrt{2}} (a^*(f) + a(f)) = \int_X f(x) a^*(x) \ dm(x) + \int_X \overline{f}(x) a(x) \ dm(x),$$

$$W(f_1) \circ W(f_2) = e^{-i\frac{\varepsilon}{2} \operatorname{Im} \ \langle f_1, f_2 \rangle} W(f_1 + f_2).$$

Separation of variables: $\Gamma(\mathcal{Z}) = \Gamma(\mathfrak{p}\mathcal{Z}) \otimes \Gamma((\mathfrak{p}\mathcal{Z})^{\perp})$ and $b^{Weyl} = b^{Weyl} \otimes \mathrm{Id}_{\Gamma((\mathfrak{p}\mathcal{Z})^{\perp})}$.

Can be extended to the Weyl-Hörmander symbol class $\cup_{\mathfrak{p}} \cup_{n} \mathcal{S}((1+|\mathfrak{p}z|^2)^{n/2},d|\mathfrak{p}z|^2)$ which contains cylindrical polynomial functions and forms an algebra for the Moyal product with

$$b_1^{Weyl} \circ b_2^{Weyl} = (b_1 b_2)^{Weyl} + \varepsilon R(b_1, b_2, \varepsilon).$$

Weyl observables

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introductio

Observables

Wigner measures

Dynamical results

For $f \in \mathcal{Z}$, $W(f) = e^{i\Phi(f)}$.

Let $\mathfrak p$ be a finite rank orthogonal projection. When $b \in \mathcal S_{\operatorname{cyl}}(\mathcal Z)$ based on $\mathfrak p \mathcal Z$, i.e. $b(z) = b(\mathfrak p z)$ with $b \in \mathcal S(\mathfrak p \mathcal Z)$,

$$egin{aligned} b^{W\!ey\!I} &= \int_{\mathfrak{p}\mathcal{Z}} \mathcal{F} b(\xi) W(\sqrt{2}\pi \xi) \ L_{\mathfrak{p}\mathcal{Z}}(d\xi) \,, \ \mathcal{F} b(\xi) &= \int_{\mathfrak{p}\mathcal{Z}} e^{2i\pi\operatorname{Re}\,\langle \xi,z
angle} b(z) \ L_{\mathfrak{p}\mathcal{Z}}(dz) \,. \end{aligned}$$

Separation of variables: $\Gamma(\mathcal{Z}) = \Gamma(\mathfrak{p}\mathcal{Z}) \otimes \Gamma((\mathfrak{p}\mathcal{Z})^{\perp})$ and $b^{Weyl} = b^{Weyl} \otimes \operatorname{Id}_{\Gamma((\mathfrak{p}\mathcal{Z})^{\perp})}$.

Can be extended to the Weyl-Hörmander symbol class $\cup_{\mathfrak{p}} \cup_{n} \mathcal{S}((1+|\mathfrak{p}z|^2)^{n/2},d|\mathfrak{p}z|^2)$ which contains cylindrical polynomial functions and forms an algebra for the Moyal product with

$$b_1^{\text{Weyl}} \circ b_2^{\text{Weyl}} = (b_1 b_2)^{\text{Weyl}} + \varepsilon R(b_1, b_2, \varepsilon)$$
.

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introductio

Observables

Wigner measures

Dynamical results

For $f \in \mathcal{Z}$, $W(f) = e^{i\Phi(f)}$.

Let $\mathfrak p$ be a finite rank orthogonal projection. When $b\in\mathcal S_{\operatorname{cyl}}(\mathcal Z)$ based on $\mathfrak p\mathcal Z$, i.e. $b(z)=b(\mathfrak pz)$ with $b\in\mathcal S(\mathfrak p\mathcal Z)$,

$$egin{aligned} b^{W\!eyl} &= \int_{\mathfrak{p}\mathcal{Z}} \mathcal{F} b(\xi) W(\sqrt{2}\pi \xi) \ L_{\mathfrak{p}\mathcal{Z}}(d\xi) \,, \ \\ \mathcal{F} b(\xi) &= \int_{\mathfrak{p}\mathcal{Z}} \mathrm{e}^{2i\pi \operatorname{Re} \ \langle \xi, z
angle} b(z) \ L_{\mathfrak{p}\mathcal{Z}}(dz) \,. \end{aligned}$$

Separation of variables: $\Gamma(\mathcal{Z}) = \Gamma(\mathfrak{p}\mathcal{Z}) \otimes \Gamma((\mathfrak{p}\mathcal{Z})^{\perp})$ and $b^{Weyl} = b^{Weyl} \otimes \operatorname{Id}_{\Gamma((\mathfrak{p}\mathcal{Z})^{\perp})}$.

Can be extended to the Weyl-Hörmander symbol class $\cup_{\mathfrak{p}} \cup_n \mathcal{S}((1+|\mathfrak{p}z|^2)^{n/2},d|\mathfrak{p}z|^2)$ which contains cylindrical polynomial functions and forms an algebra for the Moyal product with

$$b_1^{\text{Weyl}} \circ b_2^{\text{Weyl}} = (b_1 b_2)^{\text{Weyl}} + \varepsilon R(b_1, b_2, \varepsilon)$$
.

Observables

For $f \in \mathcal{Z}$, $W(f) = e^{i\Phi(f)}$.

Let $\mathfrak p$ be a finite rank orthogonal projection. When $b \in \mathcal S_{\mathsf{cvl}}(\mathcal Z)$ based on $\mathfrak{p}\mathcal{Z}$, i.e. $b(z) = b(\mathfrak{p}z)$ with $b \in \mathcal{S}(\mathfrak{p}\mathcal{Z})$,

$$b^{W\!eyl} = \int_{\mathfrak{p}\mathcal{Z}} \mathcal{F}b(\xi)W(\sqrt{2}\pi\xi) \; L_{\mathfrak{p}\mathcal{Z}}(d\xi) \,,$$
 ith $\mathcal{F}b(\xi) = \int_{\mathfrak{p}\mathcal{Z}} e^{2i\pi\operatorname{Re}\,\langle \xi,z
angle} b(z) \; L_{\mathfrak{p}\mathcal{Z}}(dz) \,.$

Separation of variables: $\Gamma(\mathcal{Z}) = \Gamma(\mathfrak{p}\mathcal{Z}) \otimes \Gamma((\mathfrak{p}\mathcal{Z})^{\perp})$ and $b^{Weyl} = b^{Weyl} \otimes \operatorname{Id}_{\Gamma((\mathfrak{p}\mathcal{Z})^{\perp})}$.

Can be extended to the Weyl-Hörmander symbol class $\bigcup_{\mathfrak{p}} \bigcup_{n} \mathcal{S}((1+|\mathfrak{p}z|^2)^{n/2},d|\mathfrak{p}z|^2)$ which contains cylindrical polynomial functions and forms an algebra for the Moyal product with

$$b_1^{\textit{Weyl}} \circ b_2^{\textit{Weyl}} = (b_1 b_2)^{\textit{Weyl}} + \varepsilon R(b_1, b_2, \varepsilon)$$
 .

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ Rennes 1 After joint worl with Z. Amma

Introduction

Observables

Dynamical result

Monomials: $\tilde{b} \in \mathcal{L}(\bigvee^p \mathcal{Z}; \bigvee^q \mathcal{Z})$,

$$[\tilde{b}u](x_1,\ldots,x_q) = \int_{X^p} \tilde{b}(x,y)u(y_1,\ldots,y_p) dm^{\otimes p}(y),$$

 $b(z) = \langle z^{\otimes q}, \tilde{b}z^{\otimes p} \rangle,$

$$b^{Wick} = \int_{X^{p+q}} \tilde{b}(x,y) a^*(x_1) \dots a^*(x_q) a(y_1) \dots a(y_p) \ dm^{\otimes q}(x) dm^{\otimes p}(y) \,.$$

With the product \sharp^{Wick} , $b_1^{Wick} \circ b_2^{Wick} = (b_1 \sharp^{Wick} b_2)^{Wick}$, $\mathcal{P}(\mathcal{Z})$ is an algebra and

$$b_1 \sharp^{Wick} b_2 = \sum_{\substack{\min\{p_1,q_2\}\\k!}} \frac{\varepsilon^k}{k!} \partial_z^k b_1 . \partial_{\overline{z}}^k b_2 .$$

In particular

$$\varepsilon^{-1} \left[b_1^{Wick}, b_2^{Wick} \right] = \partial_z b_1 \cdot \partial_{\overline{z}} b_2 - \partial_z b_2 \cdot \partial_{\overline{z}} b_1 + \varepsilon R(b_1, b_2, \varepsilon).$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introductio

Observables

Dynamical results

Monomials: $\tilde{b} \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z})$, Polynomials: $b \in \bigoplus_{p,q}^{alg} P_{p,q}(\mathcal{Z})$. $b \in \mathcal{P}_{p,q}^{r}(\mathcal{Z})$, $1 \leq r \leq \infty$, means $\tilde{b} \in \mathcal{L}^{r}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z})$.

$$b(z) = \langle z^{\otimes q} \,,\, \tilde{b}z^{\otimes p} \rangle \text{ for } b \in \mathcal{P}^r_{p,q}(\mathcal{Z}) \quad, \quad \mathcal{P}^r(\mathcal{Z}) = \oplus_{p,q}^{\text{alg}} \mathcal{P}^r_{p,q}(\mathcal{Z}) \,.$$

With the product \sharp^{Wick} , $b_1^{Wick} \circ b_2^{Wick} = (b_1 \sharp^{Wick} b_2)^{Wick}$, $\mathcal{P}(\mathcal{Z})$ is an algebra and

$$b_1 \sharp^{Wick} b_2 = \sum_{k=0}^{\min\{p_1, q_2\}} \frac{\varepsilon^k}{k!} \partial_z^k b_1 . \partial_{\overline{z}}^k b_2.$$

In particular

$$\varepsilon^{-1}\left[b_1^{\textit{Wick}}\,,\,b_2^{\textit{Wick}}\right] = \partial_z b_1.\partial_{\overline{z}} b_2 - \partial_z b_2.\partial_{\overline{z}} b_1 + \varepsilon R(b_1,b_2,\varepsilon)\,.$$

$$b^{Wick} = c^{Weyl} + \varepsilon R(b, \varepsilon)$$
.

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introductio

Observables

AAC.

Dynamical results

Monomials: $\tilde{b} \in \mathcal{L}(\bigvee^p \mathcal{Z}; \bigvee^q \mathcal{Z})$, Polynomials: $b \in \bigoplus_{p,q}^{alg} P_{p,q}(\mathcal{Z})$. $b \in \mathcal{P}_{p,q}^r(\mathcal{Z})$, $1 \le r \le \infty$, means $\tilde{b} \in \mathcal{L}^r(\bigvee^p \mathcal{Z}; \bigvee^q \mathcal{Z})$.

$$b(z) = \langle z^{\otimes q} \,,\, \tilde{b}z^{\otimes p} \rangle \text{ for } b \in \mathcal{P}^r_{p,q}(\mathcal{Z}) \quad, \quad \mathcal{P}^r(\mathcal{Z}) = \oplus_{p,q}^{\text{alg}} \mathcal{P}^r_{p,q}(\mathcal{Z}) \,.$$

With the product \sharp^{Wick} , $b_1^{Wick} \circ b_2^{Wick} = (b_1 \sharp^{Wick} b_2)^{Wick}$, $\mathcal{P}(\mathcal{Z})$ is an algebra and

$$b_1 \sharp^{Wick} b_2 = \sum_{k=0}^{\min\{p_1,q_2\}} \frac{\varepsilon^k}{k!} \partial_z^k b_1 . \partial_{\overline{z}}^k b_2 .$$

In particular

$$\varepsilon^{-1}\left[b_1^{\textit{Wick}}\,,\,b_2^{\textit{Wick}}\right] = \partial_z b_1.\partial_{\overline{z}} b_2 - \partial_z b_2.\partial_{\overline{z}} b_1 + \varepsilon R(b_1,b_2,\varepsilon)\,.$$

$$b^{Wick} = c^{Weyl} + \varepsilon R(b, \varepsilon)$$
.

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work: with Z. Ammari

Introductio

Observables

\\/:----

Dynamical results

Monomials: $\tilde{b} \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z})$, Polynomials: $b \in \bigoplus_{p,q}^{alg} P_{p,q}(\mathcal{Z})$. $b \in \mathcal{P}_{p,q}^{r}(\mathcal{Z})$, $1 \le r \le \infty$, means $\tilde{b} \in \mathcal{L}^{r}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z})$.

$$b(z) = \langle z^{\otimes q} \,,\, \tilde{b}z^{\otimes p} \rangle \text{ for } b \in \mathcal{P}^r_{p,q}(\mathcal{Z}) \quad, \quad \mathcal{P}^r(\mathcal{Z}) = \oplus_{p,q}^{\textit{alg}} \mathcal{P}^r_{p,q}(\mathcal{Z}) \,.$$

With the product \sharp^{Wick} , $b_1^{Wick}\circ b_2^{Wick}=(b_1\sharp^{Wick}b_2)^{Wick}$, $\mathcal{P}(\mathcal{Z})$ is an algebra and

$$b_1 \sharp^{Wick} b_2 = \sum_{k=0}^{\min\{p_1,q_2\}} \frac{\varepsilon^k}{k!} \partial_z^k b_1 . \partial_{\overline{z}}^k b_2 .$$

In particular

$$\varepsilon^{-1}\left[b_1^{\textit{Wick}}\,,\,b_2^{\textit{Wick}}\right] = \partial_z b_1.\partial_{\overline{z}} b_2 - \partial_z b_2.\partial_{\overline{z}} b_1 + \varepsilon R(b_1,b_2,\varepsilon)\,.$$

$$b^{Wick} = c^{Weyl} + \varepsilon R(b, \varepsilon).$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introductio

Observables

147

Dynamical results

Monomials: $\tilde{b} \in \mathcal{L}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z})$, Polynomials: $b \in \bigoplus_{p,q}^{alg} P_{p,q}(\mathcal{Z})$. $b \in \mathcal{P}_{p,q}^{r}(\mathcal{Z})$, $1 \le r \le \infty$, means $\tilde{b} \in \mathcal{L}^{r}(\bigvee^{p} \mathcal{Z}; \bigvee^{q} \mathcal{Z})$.

$$b(z) = \langle z^{\otimes q} \,,\, \tilde{b}z^{\otimes p} \rangle \text{ for } b \in \mathcal{P}^r_{p,q}(\mathcal{Z}) \quad, \quad \mathcal{P}^r(\mathcal{Z}) = \oplus_{p,q}^{\text{alg}} \mathcal{P}^r_{p,q}(\mathcal{Z}) \,.$$

With the product \sharp^{Wick} , $b_1^{Wick} \circ b_2^{Wick} = (b_1 \sharp^{Wick} b_2)^{Wick}$, $\mathcal{P}(\mathcal{Z})$ is an algebra and

$$b_1 \sharp^{Wick} b_2 = \sum_{k=0}^{\min\{p_1,q_2\}} \frac{\varepsilon^k}{k!} \partial_z^k b_1 . \partial_{\overline{z}}^k b_2 .$$

In particular

$$\varepsilon^{-1}\left[b_1^{\textit{Wick}}\,,\,b_2^{\textit{Wick}}\right] = \partial_z b_1.\partial_{\overline{z}} b_2 - \partial_z b_2.\partial_{\overline{z}} b_1 + \varepsilon R(b_1,b_2,\varepsilon)\,.$$

$$b^{Wick} = c^{Weyl} + \varepsilon R(b, \varepsilon)$$
.

Main difficulty

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ Rennes 1 After joint work with Z. Amma

Introductio

Observables

Wigner measures

Dynamical results

There is a natural quantization of cylindrical symbols (Weyl quantization) and of rather general polynomials (Wick quantization). Although these classes are algebra for the operator product (Moyal or \sharp^{Wick} product), they are not preserved by the action of a <u>nonlinear</u> symplectic flow.

Already at the symbolic level: No general Egorov theorem.

The aim is thus to get a propagation result by the hamiltonian mean field flow with a flexible use of those Wick and Weyl observables. The small parameter helps.

Main difficulty

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ Rennes 1 After joint wor

Introduction

Observables

Wigner measures

Dynamical results

There is a natural quantization of cylindrical symbols (Weyl quantization) and of rather general polynomials (Wick quantization). Although these classes are algebra for the operator product (Moyal or \sharp^{Wick} product), they are not preserved by the action of a <u>nonlinear</u> symplectic flow.

Already at the symbolic level: No general Egorov theorem.

The aim is thus to get a propagation result by the hamiltonian mean field flow with a flexible use of those Wick and Weyl observables. The small parameter helps.

Main difficulty

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ Rennes 1 After joint work with Z. Amma

Introductio

Observables

Wigner measures

There is a natural quantization of cylindrical symbols (Weyl quantization) and of rather general polynomials (Wick quantization). Although these classes are algebra for the operator product (Moyal or \sharp^{Wick} product), they are not preserved by the action of a <u>nonlinear</u> symplectic flow.

Already at the symbolic level: No general Egorov theorem.

The aim is thus to get a propagation result by the hamiltonian mean field flow with a flexible use of those Wick and Weyl observables. The small parameter helps.

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Wigner measures

vvigner meas

Consider the quantity $\operatorname{Tr} \left[A \varrho^{\varepsilon} \right]$ which extends the $\langle \psi^{\varepsilon}, A \psi^{\varepsilon} \rangle$ when ϱ^{ε} is a general normal state (parametrized by ε).

Admissible sets $\mathcal E$ for the parameter ε are bounded subsets of $(0,+\infty)$ such that $0\in\overline{\mathcal E}$.

Definition: Let $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}}$ be a family or normal states in $\Gamma(\mathcal{Z})$, with \mathcal{Z} separable and \mathcal{E} admissible. The set of Wigner measures of $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}} \mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E})$ is the set of Borel probability measures μ on \mathcal{Z} such that there exists an admissible subset $\mathcal{E}_{\mu} \in \mathcal{E}$ for which

$$\forall \xi \in \mathcal{Z}, \quad \lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E}_{\mu} \end{subarray}} \operatorname{Tr} \left[W(\sqrt{2}\pi\xi)\varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} e^{2i\pi\operatorname{Re}\langle \xi, z \rangle} d\mu(z).$$

Theorem (Ammari N. Ann.IHP 08): With $\mathbf{N}=(|z|^2)^{Wick}=\varepsilon\mathbf{N}_{\varepsilon=1}$, the simple condition

$$\exists \delta > 0 \,, \forall \varepsilon \in \mathcal{E} \,, \quad \operatorname{Tr} \left[\mathbf{N}^{\delta} \varrho^{\varepsilon} \right] \leq C_{\delta} \,,$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Wigner measures

vvigiter fileas

Consider the quantity $\operatorname{Tr}\left[A\varrho^{\varepsilon}\right]$ which extends the $\langle\psi^{\varepsilon}\,,\,A\psi^{\varepsilon}\rangle$ when ϱ^{ε} is a general normal state (parametrized by ε).

Admissible sets $\mathcal E$ for the parameter ε are bounded subsets of $(0,+\infty)$ such that $0\in\overline{\mathcal E}$.

Definition: Let $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}}$ be a family or normal states in $\Gamma(\mathcal{Z})$, with \mathcal{Z} separable and \mathcal{E} admissible. The set of Wigner measures of $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}} \mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E})$ is the set of Borel probability measures μ on \mathcal{Z} such that there exists an admissible subset $\mathcal{E}_{\mu} \in \mathcal{E}$ for which

$$\forall \xi \in \mathcal{Z}, \quad \lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E}_{\mu} \end{subarray}} \operatorname{Tr} \left[W(\sqrt{2}\pi\xi)\varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} e^{2i\pi\operatorname{Re}\langle \xi, z \rangle} d\mu(z).$$

Theorem (Ammari N. Ann.IHP 08): With $N=(|z|^2)^{Wick}=\varepsilon N_{\varepsilon=1}$, the simple condition

$$\exists \delta > 0 \,, \forall \varepsilon \in \mathcal{E} \,, \quad \operatorname{Tr} \left[\mathbf{N}^{\delta} \varrho^{\varepsilon} \right] \leq C_{\delta} \,,$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

Introduction

Wigner measures

. . .

Consider the quantity $\operatorname{Tr} \left[A \varrho^{\varepsilon} \right]$ which extends the $\langle \psi^{\varepsilon} \,,\, A \psi^{\varepsilon} \rangle$ when ϱ^{ε} is a general normal state (parametrized by ε).

Admissible sets $\mathcal E$ for the parameter ε are bounded subsets of $(0,+\infty)$ such that $0\in\overline{\mathcal E}$.

Definition: Let $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}}$ be a family or normal states in $\Gamma(\mathcal{Z})$, with \mathcal{Z} separable and \mathcal{E} admissible. The set of Wigner measures of $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}}$ $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E})$ is the set of Borel probability measures μ on \mathcal{Z} such that there exists an admissible subset $\mathcal{E}_{\mu} \in \mathcal{E}$ for which

$$orall \xi \in \mathcal{Z} \,, \quad \lim_{\begin{subarray}{c} arepsilon o 0 \ arepsilon \in \mathcal{E}_{\mu} \end{subarray}} \operatorname{Tr} \left[W(\sqrt{2}\pi \xi) arrho^{arepsilon}
ight] = \int_{\mathcal{Z}} \mathrm{e}^{2i\pi \operatorname{Re} \, \langle \xi \,, \, z
angle} d\mu(z) \,.$$

Theorem (Ammari N. Ann.IHP 08): With $N = (|z|^2)^{Wick} = \varepsilon N_{\varepsilon=1}$, the simple condition

$$\exists \delta > 0 \,, \forall \varepsilon \in \mathcal{E} \,, \quad \operatorname{Tr} \left[\mathbf{N}^{\delta} \varrho^{\varepsilon} \right] \leq C_{\delta} \,,$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Wigner measures

vvigiter fileas

Consider the quantity $\operatorname{Tr} \left[A \varrho^{\varepsilon} \right]$ which extends the $\langle \psi^{\varepsilon}, A \psi^{\varepsilon} \rangle$ when ϱ^{ε} is a general normal state (parametrized by ε).

Admissible sets $\mathcal E$ for the parameter ε are bounded subsets of $(0,+\infty)$ such that $0\in\overline{\mathcal E}$.

Definition: Let $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}}$ be a family or normal states in $\Gamma(\mathcal{Z})$, with \mathcal{Z} separable and \mathcal{E} admissible. The set of Wigner measures of $(\varrho^{\varepsilon})_{\varepsilon \in \mathcal{E}} \mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E})$ is the set of Borel probability measures μ on \mathcal{Z} such that there exists an admissible subset $\mathcal{E}_{\mu} \in \mathcal{E}$ for which

$$\forall \xi \in \mathcal{Z}, \quad \lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E}_{\mu} \end{subarray}} \operatorname{Tr} \left[W(\sqrt{2}\pi\xi)\varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} e^{2i\pi\operatorname{Re}\langle \xi, z \rangle} d\mu(z).$$

Theorem (Ammari N. Ann.IHP 08): With $N = (|z|^2)^{Wick} = \varepsilon N_{\varepsilon=1}$, the simple condition

$$\exists \delta > 0, \forall \varepsilon \in \mathcal{E}, \quad \operatorname{Tr} \left[\mathbf{N}^{\delta} \varrho^{\varepsilon} \right] \leq C_{\delta},$$

Simple properties

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Amma

Introductio

Observab

Wigner measures

Dynamical result

 $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$ is characterized by

$$orall b \in \mathcal{S}_{ ext{cyl}}(\mathcal{Z})\,, \quad \lim_{ egin{array}{c} arepsilon o 0 \ arepsilon \in \mathcal{E} \end{array}} \operatorname{Tr} \ \left[b^{ ext{Weyl}} arrho^{arepsilon}
ight] = \int_{\mathcal{Z}} b(z) \ d\mu(z)\,.$$

Moreover $\int_{\mathcal{Z}} |z|^{2\delta} d\mu(z) \leq C_{\delta}$.

Examples

Coherent states:
$$\Psi^{\varepsilon} = E(z_0) = W(\frac{\sqrt{2}}{i\varepsilon}z_0)|\Omega\rangle$$
, $\varrho^{\varepsilon} = |E(z_0)\rangle\langle E(z_0)|$.

$$\mathcal{M}(|E(z_0)\rangle\langle E(z_0)|, \varepsilon \in \mathcal{E}) = \{\delta_{z_0}\}$$
 .

Hermite states: $\Psi^{\varepsilon}=z_0^{\otimes N}$ with $|z_0|=1$ and $N=\left[\frac{1}{\varepsilon}\right]$.

$$\mathcal{M}(|z_0^N\rangle\langle z_0^{\otimes N}|, \varepsilon \in \mathcal{E}) = \left\{\delta_{z_0}^{S^1}\right\}$$

with
$$\delta_{z_0}^{S^1} = \frac{1}{2\pi} \int_{0}^{2\pi} \delta_{e^{i\theta}z_0} d\theta$$
.

Simple properties

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

Introductio

Observable:

Wigner measures

Dynamical result

 $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$ is characterized by

$$\forall b \in \mathcal{S}_{\text{cyl}}(\mathcal{Z}) \,, \qquad \lim_{ \substack{\varepsilon \to 0 \\ \varepsilon \in \mathcal{E} }} \text{Tr } \left[b^{\textit{Weyl}} \varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} b(z) \; d\mu(z) \,.$$

Moreover $\int_{\mathcal{Z}} |z|^{2\delta} d\mu(z) \leq C_{\delta}$.

Examples

Coherent states: $\Psi^{\varepsilon} = E(z_0) = W(\frac{\sqrt{2}}{i\varepsilon}z_0)|\Omega\rangle$, $\varrho^{\varepsilon} = |E(z_0)\rangle\langle E(z_0)|$.

$$\mathcal{M}(|E(z_0)\rangle\langle E(z_0)|, \varepsilon\in\mathcal{E})=\{\delta_{z_0}\}\ .$$

Hermite states: $\Psi^{\varepsilon}=z_0^{\otimes N}$ with $|z_0|=1$ and $N=\left[\frac{1}{\varepsilon}\right]$.

$$\mathcal{M}(|z_0^N\rangle\langle z_0^{\otimes N}|, \varepsilon \in \mathcal{E}) = \left\{\delta_{z_0}^{S^1}\right\}$$

with
$$\delta_{z_0}^{S^1} = \frac{1}{2\pi} \int_0^{2\pi} \delta_{e^{i\theta}z_0} d\theta$$
.

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Amma

Introductio

. . . .

Wigner measures

Dynamical result

 $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$ is characterized by

$$\forall b \in \mathcal{S}_{\text{cyl}}(\mathcal{Z}) \,, \qquad \lim_{ \substack{\varepsilon \to 0 \\ \varepsilon \in \mathcal{E} }} \text{Tr } \left[b^{\textit{Weyl}} \varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} b(z) \; d\mu(z) \,.$$

Moreover $\int_{\mathcal{Z}} |z|^{2\delta} d\mu(z) \leq C_{\delta}$.

Examples

Coherent states: $\Psi^{\varepsilon} = E(z_0) = W(\frac{\sqrt{2}}{i\varepsilon}z_0)|\Omega\rangle$,

$$\varrho^{\varepsilon} = |E(z_0)\rangle\langle E(z_0)|$$
.

$$\mathcal{M}(|E(z_0)\rangle\langle E(z_0)|, \varepsilon \in \mathcal{E}) = \{\delta_{z_0}\}$$
.

Hermite states: $\Psi^{\varepsilon}=z_0^{\otimes N}$ with $|z_0|=1$ and $N=\left[\frac{1}{\varepsilon}\right]$.

$$\mathcal{M}(|z_0^N\rangle\langle z_0^{\otimes N}|, \varepsilon\in\mathcal{E}) = \left\{\delta_{z_0}^{S^1}\right\}$$

with
$$\delta_{z_0}^{S^1} = \frac{1}{2\pi} \int_0^{2\pi} \delta_{e^{i\theta}z_0} d\theta$$
.

An example with mean field correlations

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introductio

Observable

Wigner measures

Dynamical results

$$\begin{split} & \text{Take} & \quad \Psi^{\varepsilon} = \frac{1}{\sqrt{\varepsilon^{N_1 + N_2} N_1! N_2!}} [a^*(\phi_1)]^{N_1} [a^*(\phi_2)]^{N_2} |\Omega\rangle \,, \\ & \text{with} & \quad \lim_{\varepsilon \to 0} \varepsilon N_1 = \lim_{\varepsilon \to 0} \varepsilon N_2 = \frac{1}{2} \,, \\ & \text{and} & \quad \phi_1 \perp \phi_2 \quad , \quad |\phi_1| = |\phi_2| = 1 \,. \\ & \quad \Gamma(\mathcal{Z}) = \quad \Gamma(\mathbb{C}\phi_1) \quad \otimes \quad \Gamma(\mathbb{C}\phi_2) \quad \otimes \quad \Gamma(\{\phi_1, \phi_2\}^{\perp}) \\ & \quad \Psi^{\varepsilon} = \quad \Psi^{\varepsilon}_1 \quad \otimes \quad \Psi_2 \quad \otimes \quad |\Omega\rangle \,, \\ & \quad \varrho^{\varepsilon} = \quad \varrho^{\varepsilon}_1 \quad \otimes \quad \varrho^{\varepsilon}_2 \quad \otimes \quad |\Omega\rangle \langle \Omega| \,, \\ & \quad \mu = \quad \delta^{\mathbb{S}^1}_{\frac{\sqrt{2}}{2}\phi_1} \quad \otimes \quad \delta^{\mathbb{S}^1}_{\frac{\sqrt{2}}{2}\phi_2} \quad \otimes \quad \delta_0 \,. \end{split}$$

 μ carried by a torus. Other writing:

$$\psi_0 = rac{1}{\sqrt{2}}(\phi_1 + \phi_2) \quad , \quad \psi_{rac{\pi}{2}} = rac{i}{\sqrt{2}}(\phi_1 - \phi_2) \, ,$$
 $\psi_{arphi} = \cos(arphi)\psi_0 + \sin(arphi)\psi_{rac{\pi}{2}} \, ,$
 $\mu = rac{1}{2\pi} \int_0^{2\pi} \delta_{\psi_{arphi}}^{\mathbb{S}^1} \, darphi \, .$

An example with mean field correlations

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Observable

Wigner measures

Dynamical results

$$\begin{split} &\text{Take} &\quad \Psi^{\varepsilon} = \frac{1}{\sqrt{\varepsilon^{N_1 + N_2} N_1! N_2!}} [a^*(\phi_1)]^{N_1} [a^*(\phi_2)]^{N_2} |\Omega\rangle\,, \\ &\text{with} &\quad \lim_{\varepsilon \to 0} \varepsilon N_1 = \lim_{\varepsilon \to 0} \varepsilon N_2 = \frac{1}{2}\,, \\ &\text{and} &\quad \phi_1 \perp \phi_2 \quad, \quad |\phi_1| = |\phi_2| = 1\,. \\ &\quad \Gamma(\mathcal{Z}) = \quad \Gamma(\mathbb{C}\phi_1) \quad \otimes \quad \Gamma(\mathbb{C}\phi_2) \quad \otimes \quad \Gamma(\{\phi_1, \phi_2\}^{\perp}) \\ &\quad \Psi^{\varepsilon} = \quad \Psi^{\varepsilon}_1 \quad \otimes \quad \Psi_2 \quad \otimes \quad |\Omega\rangle\,, \\ &\quad \varrho^{\varepsilon} = \quad \varrho^{\varepsilon}_1 \quad \otimes \quad \varrho^{\varepsilon}_2 \quad \otimes \quad |\Omega\rangle\langle\Omega|\,, \\ &\quad \mu = \quad \delta^{\mathbb{S}^1}_{\frac{\sqrt{2}}{2}\phi_1} \quad \otimes \quad \delta^{\mathbb{S}^1}_{\frac{\sqrt{2}}{2}\phi_2} \quad \otimes \quad \delta_0\,. \end{split}$$

 μ carried by a torus. Other writing:

$$\psi_0 = rac{1}{\sqrt{2}}(\phi_1 + \phi_2) \quad , \quad \psi_{rac{\pi}{2}} = rac{i}{\sqrt{2}}(\phi_1 - \phi_2) \, , \ \psi_{arphi} = \cos(arphi)\psi_0 + \sin(arphi)\psi_{rac{\pi}{2}} \, , \ \mu = rac{1}{2\pi} \int_0^{2\pi} \delta_{\psi_{arphi}}^{\mathbb{S}^1} \, darphi \, .$$

An example with mean field correlations

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work: with Z. Ammari

Introductio

Observable

Wigner measures

Dynamical results

$$\begin{split} & \text{Take} & \quad \Psi^{\varepsilon} = \frac{1}{\sqrt{\varepsilon^{N_1 + N_2} N_1! N_2!}} [a^*(\phi_1)]^{N_1} [a^*(\phi_2)]^{N_2} |\Omega\rangle \,, \\ & \text{with} & \quad \lim_{\varepsilon \to 0} \varepsilon N_1 = \lim_{\varepsilon \to 0} \varepsilon N_2 = \frac{1}{2} \,, \\ & \text{and} & \quad \phi_1 \perp \phi_2 \quad , \quad |\phi_1| = |\phi_2| = 1 \,. \\ & \quad \Gamma(\mathcal{Z}) = \quad \Gamma(\mathbb{C}\phi_1) \quad \otimes \quad \Gamma(\mathbb{C}\phi_2) \quad \otimes \quad \Gamma(\{\phi_1, \phi_2\}^{\perp}) \\ & \quad \Psi^{\varepsilon} = \quad \Psi^{\varepsilon}_1 \quad \otimes \quad \Psi_2 \quad \otimes \quad |\Omega\rangle \,, \\ & \quad \varrho^{\varepsilon} = \quad \varrho^{\varepsilon}_1 \quad \otimes \quad \varrho^{\varepsilon}_2 \quad \otimes \quad |\Omega\rangle \langle \Omega| \,, \\ & \quad \mu = \quad \delta^{\mathbb{S}^1}_{\frac{\sqrt{2}}{2}\phi_1} \quad \otimes \quad \delta^{\mathbb{S}^1}_{\frac{\sqrt{2}}{2}\phi_2} \quad \otimes \quad \delta_0 \,. \end{split}$$

 μ carried by a torus. Other writing:

$$egin{align} \psi_0 &= rac{1}{\sqrt{2}}(\phi_1 + \phi_2) \quad, \quad \psi_{rac{\pi}{2}} &= rac{i}{\sqrt{2}}(\phi_1 - \phi_2)\,, \ \psi_{arphi} &= \cos(arphi)\psi_0 + \sin(arphi)\psi_{rac{\pi}{2}}\,, \ \mu &= rac{1}{2\pi}\int_0^{2\pi} \delta_{\psi_{arphi}}^{\mathbb{S}^1} \,darphi\,. \end{split}$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Amma

Introductio

Observable:

Wigner measures

Dynamical result

Assume

$$\forall k \in \mathbb{N}, \exists C_k > 0, \forall \varepsilon \in \mathcal{E} \quad \text{Tr} \left[\varrho^{\varepsilon} \mathbf{N}^k\right] \leq C_k$$

and
$$\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$$
.

Then

$$\forall b \in \mathcal{P}^{\infty}(\mathcal{Z}), \quad \lim_{\substack{\varepsilon \to 0 \ \varepsilon \in \mathcal{E}}} \operatorname{Tr} \left[b^{Wick} \varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} b(z) \ d\mu(z).$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

Introductio

Wigner measures

Dynamical result

Assume

$$\forall k \in \mathbb{N}, \exists C_k > 0, \forall \varepsilon \in \mathcal{E} \quad \text{Tr } \left[\varrho^{\varepsilon} \mathbf{N}^k\right] \leq C_k$$

and
$$\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$$
. Then

$$\forall b \in \mathcal{P}^{\infty}(\mathcal{Z}), \quad \lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E} \end{subarray}} \mathrm{Tr} \ \left[b^{\mathit{Wick}} \varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} b(z) \ d\mu(z) \, .$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

Introductio

Wigner measures

Dynamical result

Assume

$$\forall k \in \mathbb{N}, \exists C_k > 0, \forall \varepsilon \in \mathcal{E} \quad \text{Tr} \left[\varrho^{\varepsilon} \mathbf{N}^k\right] \leq C_k$$

and
$$\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$$
. Then

$$\forall b \in \mathcal{P}^{\infty}(\mathcal{Z}), \quad \lim_{\substack{\varepsilon \to 0 \\ \varepsilon \in \mathcal{E}}} \operatorname{Tr} \left[b^{Wick} \varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} b(z) \ d\mu(z).$$

But it is not true for general $b \in \mathcal{P}(\mathcal{Z})$ without additional assumptions.

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint worl with Z. Amma

Introduction

Wigner measures

Assume

$$\forall k \in \mathbb{N}, \exists C_k > 0, \forall \varepsilon \in \mathcal{E} \quad \text{Tr} \left[\varrho^{\varepsilon} \mathbf{N}^k\right] \leq C_k$$

and
$$\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$$
.

Then

$$\forall b \in \mathcal{P}^{\infty}(\mathcal{Z}), \quad \lim_{\substack{\varepsilon \to 0 \ \varepsilon \in \mathcal{E}}} \operatorname{Tr} \left[b^{Wick} \varrho^{\varepsilon} \right] = \int_{\mathcal{Z}} b(z) \ d\mu(z).$$

But it is not true for general $b \in \mathcal{P}(\mathcal{Z})$ without additional assumptions.

Example: $(e_n)_{n\in\mathbb{N}^*}$ Hilbert basis of $\mathcal Z$.

Take $\varrho^arepsilon=|E(e_{[arepsilon^{-1}]})
angle\langle E(e_{[arepsilon^{-1}]})|$. Then $\mathcal{M}(arrho^arepsilon,arepsilon\in\mathcal{E})=\{\delta_0\}$ and

$$0 = \int_{\mathcal{Z}} |z|^2 \delta_0(z) \neq 1 = \lim_{\substack{\varepsilon \to 0 \\ \varsigma \in \mathcal{E}}} \operatorname{Tr} \left[\varrho^{\varepsilon} \mathbf{N} \right] = \lim_{\substack{\varepsilon \to 0 \\ \varsigma \in \mathcal{E}}} \operatorname{Tr} \left[\varrho^{\varepsilon} (|z|^2)^{Wick} \right].$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint worl with Z. Amma

Introduction

Observable

Wigner measures

Dynamical results

Assuming $\mathcal{M}(\varrho^{\varepsilon}\,,\varepsilon\in\mathcal{E})=\{\mu\}$, the condition (PI) says

$$orall k \in \mathbb{N} \,, \quad \lim_{ egin{array}{c} arepsilon o 0 \ arepsilon \in \mathcal{E} \end{array} } \mathrm{Tr} \, \left[arrho^{arepsilon} \mathbf{N}^k
ight] = \int_{\mathcal{Z}} |z|^{2k} \, \, d\mu(z) \,.$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introductio

Observables

Wigner measures

Dynamical result

Assuming $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$, the condition (PI) says

$$\forall k \in \mathbb{N}, \quad \lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E} \end{subarray}} \operatorname{Tr} \left[\varrho^{\varepsilon} \mathbf{N}^{k} \right] = \int_{\mathcal{Z}} |z|^{2k} \ d\mu(z).$$

It is equivalent (Ammari-N. J.M.P.A 11) to

$$orall b \in \mathcal{P}(\mathcal{Z})\,, \quad \lim_{\substack{arepsilon o 0 \ arepsilon \in \mathcal{E}}} \operatorname{Tr} \, \left[arrho^{arepsilon} b^{Wick}
ight] = \int_{\mathcal{Z}} b(z) \, \, d\mu(z)\,.$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

mtroductio

Wigner measures

Assuming $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$, the condition (PI) says

$$\forall k \in \mathbb{N}, \quad \lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E} \end{subarray}} \operatorname{Tr} \left[\varrho^{\varepsilon} \mathbf{N}^{k} \right] = \int_{\mathcal{Z}} |z|^{2k} \ d\mu(z).$$

Define the reduced density matrices (see BBGKY hierarchy) by

$$\forall \tilde{b} \in \mathcal{L}(\bigvee^p \mathcal{Z}) \,, \quad \text{Tr } \left[\gamma_p^\varepsilon \tilde{b} \right] = \frac{\text{Tr } \left[\varrho^\varepsilon b^{Wick} \right]}{\text{Tr } \left[\varrho^\varepsilon (|z|^{2p})^{Wick} \right]}$$

The condition (PI) implies (Ammari-N. J.M.P.A 11)

$$\lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E} \end{subarray}} \left\| \gamma_p^\varepsilon - \frac{\int_{\mathcal{Z}} |z^{\otimes p}\rangle \langle z^{\otimes p}| \ d\mu(z)}{\int_{\mathcal{Z}} |z|^{2p} \ d\mu(z)} \right\|_{\mathcal{L}^1(\bigvee^p \mathcal{Z})} = 0 \,.$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Amma

Introduction

Observabl

Wigner measures

Dynamical result

Assuming $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in \mathcal{E}) = \{\mu\}$, the condition (PI) says

$$\forall k \in \mathbb{N}, \quad \lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E} \end{subarray}} \operatorname{Tr} \left[\varrho^{\varepsilon} \mathbf{N}^{k} \right] = \int_{\mathcal{Z}} |z|^{2k} \ d\mu(z).$$

Define the reduced density matrices (see BBGKY hierarchy) by

$$\forall \tilde{b} \in \mathcal{L}(\bigvee^{p} \mathcal{Z}) \,, \quad \text{Tr } \left[\gamma_{p}^{\varepsilon} \tilde{b} \right] = \frac{\text{Tr } \left[\varrho^{\varepsilon} b^{Wick} \right]}{\text{Tr } \left[\varrho^{\varepsilon} (|z|^{2p})^{Wick} \right]}$$

The condition (PI) implies (Ammari-N. J.M.P.A 11)

$$\lim_{\begin{subarray}{c} \varepsilon \to 0 \\ \varepsilon \in \mathcal{E} \end{subarray}} \left\| \gamma_p^\varepsilon - \frac{\int_{\mathcal{Z}} |z^{\otimes p}\rangle \langle z^{\otimes p}| \ d\mu(z)}{\int_{\mathcal{Z}} |z|^{2p} \ d\mu(z)} \right\|_{\mathcal{L}^1(\mathsf{V}^p \, \mathcal{Z})} = 0 \, .$$

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Observah

Wigner meas

Dynamical results

 $\mathcal{Z}=L^2(X,dm;\mathbb{C})$ separable. (e.g. $(X,+,m)\subset$ meas. add. group) (A,D(A)) self-adjoint on \mathcal{Z} , V=V(x)=V(-x). $[a(x),a^*(y)]=\varepsilon\delta(x-y)$.

$$H^{\varepsilon} = d\Gamma(A) + \frac{1}{2} \int_{X \times X} V(x - y) a^*(x) a^*(y) a(x) a(y) \ dm(x) dm(y)$$

 $H^{\varepsilon} = \mathcal{E}(z)^{Wick}$

$$\mathcal{E}(z) = \langle z, Az \rangle + \frac{1}{2} \int_{X \times X} V(x-y) |z(x)|^2 |z(y)|^2 \ dm(x) dm(y) \,.$$

$$H^{\varepsilon}$$
, $D(H^{\varepsilon})$ s.a. in $\Gamma(\mathcal{Z})$.

$$\varrho^{\varepsilon}(t) = e^{-i\frac{t}{\varepsilon}H^{\varepsilon}}\varrho^{\varepsilon}e^{i\frac{t}{\varepsilon}H^{\varepsilon}}.$$

$$\Phi(t)$$
 flow of $i\partial_t z = \partial_{\overline{z}} \mathcal{E}(z)$.

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammar

Introduction

Observables

Dynamical results

See (Ammari-N. J.Math.Phys. 09, JMPA 11) Assume $V \in L^{\infty}(X, dm)$, $\mathcal{M}(\rho^{\varepsilon}, \varepsilon \in (0, \varepsilon_0)) = \{\mu_0\}$ and

$$\forall n \in \mathbb{N} \,, \quad \lim_{\varepsilon \to 0} \, \mathrm{Tr} \, \left[\varrho^{\varepsilon} \mathbf{N}^{n} \right] = \int_{\mathcal{Z}} |z|^{2n} \, \, d\mu_{0}(z) \,.$$

Then for all $t \in \mathbb{R}$, the following result hold

$$\begin{split} \mathcal{M}(\varrho^{\varepsilon}(t)\,,\varepsilon\in(0,\varepsilon_{0})) &= \{\mu(t) = \Phi(t)_{*}\mu_{0}\}\;,\\ \forall b\in\mathcal{P}(\mathcal{Z})\,,\quad \lim_{\varepsilon\to 0} \mathrm{Tr}\;\left[\varrho^{\varepsilon}(t)b^{Wick}\right] &= \int_{\mathcal{Z}}b(z)\;d\mu_{t}(z)\,,\\ \lim_{\varepsilon\to 0}\gamma_{p}^{\varepsilon}(t) &= \frac{\int_{\mathcal{Z}}|z^{\otimes p}\rangle\langle z^{\otimes p}|\;d\mu_{t}(z)}{\int_{\mathcal{Z}}|z|^{2p}\;d\mu_{0}(z)} &= \frac{\int_{\mathcal{Z}}|z_{t}^{\otimes p}\rangle\langle z_{t}^{\otimes p}|\;d\mu_{0}(z)}{\int_{\mathcal{Z}}|z|^{2p}\;d\mu_{0}(z)}\,. \end{split}$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Ammai

Introduction

. . . .

vvigner meast

Dynamical results

See (Ammari-N. online Ann. Sc. Norm. di Pisa).

Take $X=\mathbb{R}^d$ and $A=-\Delta$ and assume $V(1-\Delta)^{-\frac{1}{2}}$ bounded and $(1-\Delta)^{-\frac{1}{2}}V(1-\Delta)^{-\frac{1}{2}}$ compact. Under the sole condition

$$\exists \delta>0\,,\,\forall \varepsilon\in (0,\varepsilon_0)\,,\,\mathrm{Tr}\,\left[(\textit{d}\Gamma(1-\Delta))^\delta\varrho^\varepsilon\right]\leq \textit{C}_\delta$$

and $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in (0, \varepsilon_0)) = \{\mu_0\}$, the following results hold for all $t \in \mathbb{R}$:

 $\mathcal{M}(\varrho^{\varepsilon}(t), \varepsilon \in (0, \varepsilon_0)) = \{\mu(t)\}$ where $\mu(t)$ is a Borel probability measure on $\mathcal{Z}_1 = \mathcal{H}^1(\mathbb{R}^d; \mathbb{C})$ and $\mu(t) = \Phi(t)_* \mu_0$ (Φ well-defined on \mathcal{Z}_1).

When $(\varrho^{\varepsilon})_{\varepsilon\in(0,\varepsilon_0)}$ satisfies the condition (PI) then $(\varrho^{\varepsilon}(t))_{\varepsilon\in(0,\varepsilon_0)}$ and

$$\begin{split} \forall b \in \mathcal{P}(\mathcal{Z}) \,, \quad & \lim_{\varepsilon \to 0} \, \mathrm{Tr} \, \left[\varrho^{\varepsilon}(t) b^{Wick} \right] = \int_{\mathcal{Z}} b(z) \, \, d\mu_t(z) \,, \\ \lim_{\varepsilon} \gamma_p^{\varepsilon}(t) &= \frac{\int_{\mathcal{Z}} |z^{\otimes p}\rangle \langle z^{\otimes p}| \, \, d\mu_t(z)}{\int_{\mathcal{Z}} |z|^{2p} \, \, d\mu_0(z)} = \frac{\int_{\mathcal{Z}} |z^{\otimes p}\rangle \langle z_t^{\otimes p}| \, \, d\mu_0(z)}{\int_{\mathcal{Z}} |z|^{2p} \, \, d\mu_0(z)} \,. \end{split}$$

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint worl with Z. Amma

Introductio

Observab

Wigner meas

Dynamical results

See (Ammari-N. online Ann. Sc. Norm. di Pisa).

Take $X=\mathbb{R}^d$ and $A=-\Delta$ and assume $V(1-\Delta)^{-\frac{1}{2}}$ bounded and $(1-\Delta)^{-\frac{1}{2}}\,V(1-\Delta)^{-\frac{1}{2}}$ compact. Under the sole condition

$$\exists \delta > 0 \,,\, \forall \varepsilon \in (0,\varepsilon_0) \,,\, \mathrm{Tr} \, \left[(\textit{d} \Gamma(1-\Delta))^\delta \varrho^\varepsilon \right] \leq \textit{C}_\delta$$

and $\mathcal{M}(\varrho^{\varepsilon}, \varepsilon \in (0, \varepsilon_0)) = \{\mu_0\}$, the following results hold for all $t \in \mathbb{R}$:

 $\mathcal{M}(\varrho^{\varepsilon}(t), \varepsilon \in (0, \varepsilon_0)) = \{\mu(t)\}$ where $\mu(t)$ is a Borel probability measure on $\mathcal{Z}_1 = \mathcal{H}^1(\mathbb{R}^d; \mathbb{C})$ and $\mu(t) = \Phi(t)_* \mu_0$ (Φ well-defined on \mathcal{Z}_1).

When $(\varrho^{\varepsilon})_{\varepsilon \in (0,\varepsilon_0)}$ satisfies the condition (PI) then $(\varrho^{\varepsilon}(t))_{\varepsilon \in (0,\varepsilon_0)}$ and

$$\forall b \in \mathcal{P}(\mathcal{Z})\,, \quad \lim_{\varepsilon \to 0} \, \mathrm{Tr} \, \left[arrho^{arepsilon}(t) b^{\mathit{Wick}}
ight] = \int_{\mathcal{Z}} b(z) \, \, d\mu_t(z)\,,$$

$$\lim_{\varepsilon} \gamma_p^{\varepsilon}(t) = \frac{\int_{\mathcal{Z}} |z^{\otimes p}\rangle \langle z^{\otimes p}| \ d\mu_t(z)}{\int_{\mathcal{Z}} |z|^{2p} \ d\mu_0(z)} = \frac{\int_{\mathcal{Z}} |z_t^{\otimes p}\rangle \langle z_t^{\otimes p}| \ d\mu_0(z)}{\int_{\mathcal{Z}} |z|^{2p} \ d\mu_0(z)} \,.$$

Evolution of mean field correlations

Phase-space approach to bosonic mean field dynamics

Francis Nier, IRMAR, Univ. Rennes 1 After joint work with Z. Amma

Introductio

Observat

Wigner mea

Dynamical results

Fig.1: Evolution of the measure initially carried by a torus in $\mathbb{C}\psi_0\oplus\mathbb{C}\psi_{\frac{\pi}{a}}$.

The complex gauge parameter $e^{i\theta}$ is represented by the small circle.