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Let Z = L?(X, m; C) be the one particle space.

Introduction e.g. (X, m) C measured add. group. Z separable.
XCRI, Xczd, X=2)(KZ)?.

The bosonic N-particle space is L2(XN, m®N;C) = \/V 2.

(A, D(A)) is a s.a. operator on Z

V(x) = V(—x) is a real function on X .
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e.g. (X, m) C measured add. group. Z separable.
XCRY, Xczd, X=17)(KL)? .
The bosonic N-particle space is L2(XN, m®N.C) = \/V Z.
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N-body quantum dynamics

20V = S AV +e2 Y V(x — x)V
Y(t=0)=Woe\/*Z

with A =Idz® - ® A ® - -@Idz.

Mean field limit N — 0o £ — 0.

Divide by N and set ¢ = 1.



Fock space formulation

s e Rewriting in the bosonic Fock space M(Z) = &%, \/" Z .
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We(t=0) = Vs e [(2),
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where
He = [ Aly)a (a(y)dm(x)dm(y)
X2
3 [ V=02 (92 (0)alx)aly) dm(x)dm(y)
is the Wick quantization of the energy
8(2.2) = [ Z0AG)2(y)dm(x)dm(y)

+3 [ V=Dl Plz0)? dm(x)dm(y).
with the e-dependent CCR's:
[a(x), a(y)] = [ (), " ()] = 0, [alx), a"(1)] = 26(x — ).
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Introduction

in the limit is actually a semiclassical problem.
e—=0 , [ax),a*" (V)] =ed(x—y) , H=gWek,
Perfectly known when X = {1,... K} =Z/(KZ),

Z = (CK ~ R2K , F(Z) ~ L2(RK, dx; (C) , (semiclassical
pseudo-differential calculus, Fourier integral operators, Egorov's theorem, higher order
expansions are possible).

Take a*(k) = —h0Oy, + xk , a(k) = hOy, + xx (k € X, xx € R)
with
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Weyl observables
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For f € Z, W(f) = e'®).

field dynamics

1, )
o(f) = ﬁ(a (f) + a(f)) =Jy F(x)a"(x) dm(x)+ [y F(x)a(x) dm(x),
et W(fl) o W(f2) — e~ i5Im (fi,f2) W(f1 + f2) )

Separation of variables: I(Z) = (pZ) @ [((pZ)*+) and
bWeyl bWey/ ® Idr (p2)L) -
Can be extended to the Weyl-Hormander symbol class
Up Un S((1 + |pz[?)"/2, d|pz|?) which contains cylindrical
polynomial functions and forms an algebra for the Moyal product
with

b" o b = (by1bo) "' + eR(by, b, €) .
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based on pZ, i.e. b(z) = b(pz) with b € S(pZ),

pWey! :/ Fb(E)W(V2r€) L, z(d€),
pZ

Observables

with  Fb(€) = / e?mRe (&2) p(2) L, z(dz).
pZ

Separation of variables: I(Z) = T(pZ) @ [((pZ)*+) and
bWeyl _ bWey/ ® [dr((pZ)A) )
Can be extended to the Weyl-Hormander symbol class
Up Un S((1 + |pz[?)"/2, d|pz|?) which contains cylindrical
polynomial functions and forms an algebra for the Moyal product
with
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Wick observables

TS Monomials: b e L(\/® Z;\? 2),

approach to
bosonic mean

field dynamics ~ ~
Bul(xs - . xq) = /X B(x, y)u(yis . . yp) dm®(y).
P
bz) = (259, bz®P),

bl — | Bxy)a” () -2 (a)al0n) - alp) dm®(x)dm ().
Observables Xpta

With the product §Vick | plVick o pJVick — (b, gWick p,)Wick  p(Z)
is an algebra and

) min{p1,g2} _k
g™ by = Y 05biOfby.
k=0 ’

In particular
et [k bYVK] = 0,b1.0zb2 — 0,b2.03b1 + eR(by, by, €) .

When b has a finite rank there exists a cylindrical polynomial ¢
such that

A/ ~L \A/As ] P
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When b has a finite rank there exists a cylindrical polynomial ¢
such that
pWick = ol 1 cR(b,¢).
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There is a natural quantization of cylindrical symbols (Weyl
quantization) and of rather general polynomials (Wick
quantization). Although these classes are algebra for the
operator product (Moyal or £k product), they are not
preserved by the action of a nonlinear symplectic flow.

Observables

Already at the symbolic level:

The aim is thus to get a propagation result by the hamiltonian
mean field flow with a flexible use of those Wick and Weyl
observables. The small parameter helps.
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Definition

i Consider the quantity Tr [Ao°] which extends the ()¢, Ay*®)
Ftd dymamics when ¢° is a general normal state (parametrized by ¢).
Admissible sets £ for the parameter ¢ are bounded subsets of
(0,+00) such that 0 € £ .

Definition: Let (0°).ce be a family or normal states in ['(Z),
with Z separable and £ admissible. The set of

is the set of Borel probability measures

Wigner measures jton Z such that there exists an admissible subset £,, € £ for
which
VE e Z, lim  Tr {W(ﬁwg)ﬂ = / e?mRe (8, 2) gy (7)
e—0 JZ
€&y

Theorem (Ammari N. Ann.IHP 08): With
N = (|z|?)Vick = eN._; , the simple condition

3>0,Vee€, Tr[N%] <G,

ensures
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MAR, Uni e—0 Z
ecé&
Moreover [ |z[* du(z) < Cs.

Examples

Wigner measures



Simple properties

Phase-space e € &) = {pu} is characterized by

approach to
bosonic mean

field dynamics Vb € 8cy|(Z) ’ lim Tr [b\/\/eylge} — / b(Z) d/l,(Z) )
e—0 JZ
eef
Moreover [ [z[* du(z) < Gs.
Examples
P Coherent states: W& = E(z) = W(l—‘? 0)|Q2),

0° = |E(z0))(E(20)] -
M(|E(20))(E(20)|,€ € &) = {0} -

Hermite states: W = z5'"with |z| =1 and N = [1].

M| e € &) = {63}
a1 [T
with 0 = — Seioz, dO.

271—'0



Simple properties

Phase-space e € &) = {pu} is characterized by

approach to
bosonic mean

e e Vb e Sci(Z2), lim Tr [bWey’Qﬂ = / b(z) du(z).
e—0 JZ
eef
Moreover [ [z[* du(z) < Gs.
Examples
Wigner measures COherent states: WE - E(ZO) - W(gZO)‘Q> ’
= |E(20))(E(20)| -

M(|E(20))(E(20)],€ € &) = {0z} -

Hermite states: W& = z"Mwith |z| =1 and N = [1].

M|z, = e £) = {55}
1 1 27\’
with 62 = — Seiog, db.

2 27



An example with mean field correlations

Phase-space
approach to 1

i Take Ve = —— |
' \/eMN+N2 N TN !
with I|m eNy = I|m eNy =

and ¢1J-¢2 , |¢1|—|¢72|—1~

a*(¢0)]™[a" (¢2)]"1) ,

l\.)ll—l

r({o1, (,)2}L)

NzZ)= rCe¢;) @ TI(Cop) ®
Wigner measures \UC — \Ui >§ \U2 ‘>§ |Q> H
= a ® 05 © 1Q)(Q
K= —OVQ b1 3 Lv 2()7 & (50 .

1 carried by a torus. Other writing:
1
o = %((5)1 +¢2) Yr = ’\[((‘)1 — ),
1, = cos(p)io +sin(p)Ys
1 (7 .
| = — oy, do.
M 27T Jo (o g



An example with mean field correlations

Phase-space
approach to 1

e Take Ve = \/EN—QW[E] (p0)]M[a*(62)]™ 1) .

. . : 1
with :JinOch = EITOCNQ = 5 s
and 01 Lo, o1l =ld2| =1.
_ [(2)= T(Ch) @ T(C2) ® T({d1,2}")
Wigner measures \UE — \U;i‘ ® \Uz ® |Q> ,
o= of ® 0 ® 1)@,
— S S
on = (5§¢1 & 5§¢2 & (50.

1 carried by a torus. Other writing:

(()1 - (‘)2) s

51~

1 A A p
o = %(01 +¢2) hr =

1, = cos(p)io +sin(p)Ys
]. 2 ~Ql

== [ & de.
M 27T Jo Vo +



An example with mean field correlations

Phase-space
approach to 1

bosonic mean =
Take W= e
\ € 1-1V2:

[a*(60)]" [a" (62)]™]92) .

with l@osl\ll = 5IiLnOsNz = % ,
and 01 Lo, o1l =ld2| =1.
M(Z)= T(Cp1) ® T(Ch) ® T({b1,h2}")
Wigner measures veE — \Ui ? w2 ® |Q>
F= 6 ® 6 © 99
p= ;Ol ® ; ® dp.

1 carried by a torus. Other writing:

1 i
Yo = %(% +¢2) , Yz = NG
Yy = cos(p)ho + sin(p)Pz ,



Wigner measures and Wick observables

Phase-space Assume

approach to
bosonic mean

e e VkeN,3C>0,Ve €& Tr [o°N'] < Gy
and M(p°,e € &) ={u}.
Then
Vb e P>(2), lim  Tr [p"i%o%] = / b(z) du(z).
e—0 JZ

Wigner measures
- c
eecl



Wigner measures and Wick observables

Phase-space Assume

approach to
bosonic mean

o VkeN,3C >0,V €€ Tr [¢°N'] < G
and M(p°,e € &) ={u}.
Then
Vb € P>(2), lim  Tr [p" o] = / b(z) du(z).
e—0 zZ

Wigner measures

ceé



Wigner measures and Wick observables

Phase-space ASSU me

approach to
bosonic mean

e dreme VkeN,3C >0,¥e €& Tr [o°NK] < G
and M(p°.,e€&)={u}.
Then
Vb e P>(Z2), lim  Tr [b"i%o%] = / b(z) du(z).
Wigner measures e—=0 JZz
eeél

But it is not true for general b € P(Z) without additional
assumptions.



Phase-space
approach to

bosonic mean
field dynamics

Wigner measures

Wigner measures and Wick observables

Assume
VkeN,3C>0,YVe €& Tr [o°N¥] < Gk

and M(p°.,e€&)={u}.

Then
Vb e P>(Z2), lim  Tr [b™% 7] :/ b(z) du(z).
e—0 JZ
eeé&

But it is not true for general b € P(Z) without additional
assumptions.

Example: (e,)nen+ Hilbert basis of Z.

Take 0° = |E(ej-11))(E(ec-1))| . Then M(o%,e € £) = {do} and

0 :/ |Z|250(Z) #1= lim Tr [¢°N]= lim Tr [Qs(|2|2)Wick] .
z e—0 e—0
eef ee€é



Condition (PI) and consequences

Phase-space

approach to

bosonic mean
field dynamics

Francis Nier

Assuming M(o°,e € £) = {u}, the condition (P/) says

Wigner measures Vk (S N’ ||m ’I‘r [QENk] = / |Z|2k d/,[/(z) .
e—0 Zz
e€é&



Condition (PI) and consequences
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bosonic mean
field dynamics

Francis Nier

Assuming M(¢° ,e € £) = {u}, the condition (P/) says

VkeN, lim Tr [o°N¥] :/ |z** du(z).
e—0 Z
eeé

Wigner measures

It is equivalent (Ammari-N. J.M.P.A 11) to

VbeP(Z), lim Tr [o°bV¥] = / b(z) du(z).
e—0 Z
eeé




Condition (PI) and consequences

Phase-space
approach to

e e Assuming M(o°,e € £) = {u}, the condition (P/) says
field dynamics
Fran Nier
VkeN, lim Tr [¢°N¥] = / |z** du(z).
e—=0 Zz
e€é

Define the reduced density matrices (see BBGKY hierarchy) by

Wigner measures
) p - Tr [QE bWick]
Vb e C(\/ Z) 3 Tr |:’Ypb:| = Tr [Qg(|z|2p)WiCk]

The condition (PI) implies (Ammari-N. J.M.P.A 11)

L1252 du(2)

/< : =0.
’ 51277 dp(z)

£ (VP 2)

lim
e—0
eeé




Condition (PI) and consequences
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bosonic mean Assuming M(o° ,e € £) = {u}, the condition (Pl) says

field dynamics

Vk e N, lim  Tr [o°N¥] :/ |z** du(z).
e—=0 Zz
e€é

Define the reduced density matrices (see BBGKY hierarchy) by

Wigner measures

) p | - Ty {stWick}
Vb € E(\/Z), Tr {“/pb} =T [0° (|2]2P) Wick]

The condition (PI) implies (Ammari-N. J.M.P.A 11)

o 2 12%P)(2%P| dpu(2)
P [z 1217 du(z)

=0.
LYV 2)

lim
e—0
eeéf




Review of the framework

Phase-space
approach to

bosonic mean Z = L%(X, dm;C) separable. (e.g. (X,+,m) C meas. add. group)
B (A, D(A)) self-adjointon 2,V = V(x) = V(—x).
[a(x),a"(y)] = ed(x — y).

H = df(A)+ 5 [ Vix= )2 (93" ()a(x)aly) dm(x)dm(y)
HE = S(Z)WiCk

&) = (e A+ 5 [ V=) dm(xydm(y).

Dynamical results

He,D(H®) s.a. in T(Z).
Qe(t) — efigHEQEeigHE )

d(t) flow of i0,z = 05E(z) .



Result for V € L*°.

Phase-space

approach to

bosonic mean
field dynamics

See (Ammari-N. J.Math.Phys. 09, JMPA 11)
Assume V € L*°(X,dm), M(o°,¢ € (0,¢0)) = {0} and

Francis Nier

VneN, lim Tr [¢°N"] :/ 12" dpuo(z).
e—0 =z
Then for all t € R, the following result hold
M(0°(t) € € (0,20)) = {u(t) = ®(t)spi0} »
YbeP(Z), lim Tr [o(£)b%iek] = / b(z) dpe(2),
e—0 z

J2125P)(2%P| dpe(2) _ [5127°)(27"| do(2)
Jz 12177 dpo(2) [z 1277 dpo(2)

Dynamical results

lim v, (t) =

e—0



Singular case (& Coulombic case d = 3)

Phase space See (Ammari-N. online Ann. Sc. Norm. di Pisa).

approach to

il Take X = RY and A= —A and assume V(1 — A)~2 bounded and

field dynamics

Francis Nier (1—A)"2V(1— A)"? compact. Under the sole condition
30 >0, Ve € (0,e0), Tr [(dI(1— A))°0°] < G

and M(o°, € € (0,e9)) = {io}, the following results hold for all
teR:

M(e°(t),e € (0,20)) = {u(t)} where p(t) is a Borel probability
R measure on Z; = HY(R?; C) and u(t) = &(t)wpo (P
well-defined on Z;).

When (0°).¢(0,c,) satisfies the condition (PI) then (0°(t))-(0,c0)
and

vbEP(2),  lim Tr [o*(0)p™] = /Z b(z) due(2),

fimne () = 1212701 @) 2P )(2°°| dpao(2)
- 212177 dpuo(2) Iz 121?P duo(2)




Singular case (& Coulombic case d = 3)

et See (Ammari-N. online Ann. Sc. Norm. di Pisa).

poecnie mean Take X =R? and A = —A and assume V(1 — A)~2 bounded and
Francis Nier (1—-A)"2V(1— A)~2 compact. Under the sole condition

30 >0, Ve € (0,e0), Tr [(dI(1— A))°0°] < G
and M(o°, € € (0,g0)) = {10}, the following results hold for all
teR:

M(0°(t),e € (0,e0)) = {u(t)} where u(t) is a Borel probability

POERIEGES measure on Z; = H1(RY; C) and u(t) = ®(t)wpo (¢
well-defined on Z;).

When (0°).¢(0,c,) satisfies the condition (PI) then (0°(t))-(0,c0)
and

Vb e P(2), lim T [0° ()b ] :/Zb(z) dui(z),

imne(e) = J2 22N EP @) _ [ |27 (@] du(2)
e P 51227 dpo(2) 5 12127 duo(2)




Evolution of mean field correlations

Phase-space

approach to

bosonic mean
field dynamics

Nier

uult)y

Ry
(-

-

Dynamical results

Fig.1: Evolution of the measure initially carried by a torus in
Cipo ® (C.wg .
The complex gauge parameter e’ is represented by the small
circle.
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