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M ti ti H t i i iMotivation: How to maximize privacy 
relative to a utility requirement?



Shannon’s Rate Distortion ProblemShannon s Rate Distortion Problem

 For a source X with a distribution p alphabet  and For a source X with a distribution pX, alphabet , and 
reconstructed alphabet ’, determine the minimum 
information rate R that guarantees a given average 
distortion (fidelity) between X and X.

 For n samples of the source, average (per observation) 
distortion defined asdistortion defined as
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 g : distance-based function (e.g.: Hamming, Euclidean, K-L 
divergence)

 Rate R is the number of information bits per observation Rate R is the number of information bits per observation 
revealed about X. (X can be a vector).



Adding a Privacy ConstraintAdding a Privacy Constraint

 Privacy as equivocation per observation Privacy as equivocation per observation
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 D : distortion upper bound; E : equivocation lower bound
   0 as n  
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 Generalizes to equivocation of sets of private variables conditioned 
on sets of public variables 

 Can also introduce auxiliary (side) information to model external 
k l dknowledge

 The RDE problem [Yamamoto 1982]:
 Find an IT-code for a source (X,Y) with minimum rate that satisfies ( , )

given distortion (on X) and equivocation (on Y) constraints



Model Database as a SourceModel Database as a Source

 Database d with rows each row with k numeric Database d with n rows, each row with k numeric 
attributes, is a sequence of n i.i.d. samples of X=[X1 X2 … 
Xk] with the distribution  (Xk: kth attribute)

 bli ( l d) d  i t (hidd ) b t f

1 2 1 2( ) ( , , , )
KX X X kp p x x xX x  

 r : public (revealed) and h : private (hidden) subsets of 
attributes and X has a revealed precision c (per sample)

 The Utility-Privacy (U-P) Problem: 
 Construct d’ from d so that a user can reconstruct r but not h 

to the desired level of accuracy



Mapping U-P to R-D-EMapping U-P to R-D-E 

Application Requirements Principle/AbstractionApplication Requirements Principle/Abstraction

Utility Distortion/Fidelity Functions

Privacy EquivocationPrivacy Equivocation

Precision Rate

Perturbation Technique Information theoretic Source Code

 Fidelity and Utility are measures of ‘closeness’ of original 
and published/revealed sources

Perturbation Technique Information-theoretic Source Code

and published/revealed sources
 Equivocation and Privacy are measures of ‘uncertainty’ 

about private data given revealed datap g



Database Sanitization via Source CodingDatabase Sanitization via Source Coding

 Map d (Xn) to a sanitized database (SDB) d by encoding Map d (X ) to a sanitized database (SDB) d by encoding 
public variables

 RDE achievable region D-E consists of feasible triples 
(R,D,E), equivocation(D) as a function of E, and rate R as 
function of D and E.

 Theorem: For a database with a given distribution, the set 
of feasible utility, privacy, precision triples is given by the 
corresponding D-E.



RDE and Utility-Privacy Regionsy y g
(a): Rate-Distortion-Equivocation Region (b): Utility-Privacy Tradeoff Region
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Rate Bound: ( , )R D E
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 Corollary: A given utility constraint tightly constraints the maximum 
achievable privacy.



Strengths and WeaknessesStrengths and Weaknesses 

 Strengthsg
 Analytic abstract measures of utility and privacy 
 Tradeoff region between utility and privacy for some standard 

source distributionssource distributions
 Model extensible to handle third party data and some multiple 

queries

 Ch ll Challenges
 Source distribution needs to be known, rows are iid
 Utility and Privacy metrics are “on average” metrics – weaker  

results may be possible for stronger metrics
 Concrete map from application-specific utility requirement needs 

to be built
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Optimizing Linear Queries Under Differential Privacy
Database is represented by counts: x1, x2, ... xn

Given: a workload W of linear queries: each w = c1x1 + c2x2 + ... + cnxn

Goal: a set of linear queries A to answer W with least error.
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output

m ≥ n 
queries

n columns

If m=n: estimate x =  A-1y 
If m>n: estimate x = (AtA)-1At y
Derived answer for w is wx  

Error(wx) = 
(2/ε2) ΔA2 w(AtA)-1wt 

Deriving answers Computing error
-
-

-

-
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Workload Alternative strategies

Max error 
on workload: O(n) O(log3n) O(log3n)

Error(wx) = 
(2/ε2) ΔA2 w(AtA)-1wt A = QDP

Singular value decomposition of A-



Boosting the accuracy of differentially-private queries through consistency.
Michael Hay, Vibhor Rastogi, Gerome Miklau, and Dan Suciu
To appear, Proceedings of the VLDB Endowment (PVLDB), 2010.

Optimizing Histogram Queries Under Differential Privacy
Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, and Andrew McGregor
ArXiv Preprint, abs/0912.4742 2009

Details here:

Michael Hay
Chao Li
Andrew McGregor
Gerome Miklau

Vibhor Rastogi
Dan Suciu

University of Massachusetts Amherst University of Washington

Joint work with:
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Elaine Shi (PARC)

Dawn Song (Berkeley)



What’s popular?What’s popular?

…
…

Amazon



Number of 1’s seen thus far

… …10011 32221

Amazon



� Privacy:    -differentially privateε� Privacy:    -differentially private

� Utility:
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� http://eprint.iacr.org/2010/076

� Pan privacy

� Applications� Applications
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1 1 2 3 1 2 3 4 51 1 2 3 1 2 3 4 5

5 6 1 2 3 4 5 6 7 8

� Utility: Each count is the sum of O(log t) blocks

7 …

� Utility: Each count is the sum of O(log t) blocks

� Privacy: Each bit appears in O(log t) blocks
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Confidentialising the output of a remote analysis server: 
Privacy-Preserving Analytics
Christine M O’Keefe, CSIRO Mathematics, Informatics and Statistics

contact: Professor Christine M O’Keefe
phone: +61 2 6216 7021
email: Christine.O’Keefe@csiro.au 
web: www.csiro.au/org/CMIS.html

Introduction
CSIRO’s Privacy-Preserving Analytics is methods and software for analysing 
confidential data without compromising confidentiality.

Conclusion
• Privacy-Preserving Analytics is an example of a remote analysis server where the  
output has been confidentialised, not the input
• Remote servers are likely to  play an important role in the future of data dissemination
• There are still important technical challenges to be addressed

References

1. R. Sparks, C. Carter, J. Donnelly, C.M. O’Keefe, J. Duncan, T. Keighley and D. McAullay, Remote Access Methods for Exploratory Data Analysis 
and Statistical Modelling: Privacy-Preserving AnalyticsTM, Comput Methods Programs Biomed., 91 (2008) 208-222.

2. C.M. O'Keefe, Privacy and the Use of Health Data - Reducing Disclosure Risk, electronic Journal of Health Informatics 2008; 3(1): e5. 

3. C.M. O'Keefe and N.M. Good, Regression Output from a Remote Analysis Server, Data and Knowledge Engineering, 68 (2009), 1175-1186.

4. C.M. O'Keefe and N. Good, Risk and Utility of Alternative Regression Diagnostics in Remote Analysis Servers, Proceedings of the 56th Session of 
the ISI International Statistical Institute, 22-29 Aug 2007, Lisbon, Portugal.

Analyses Implemented to Date
Exploratory data analysis

Statistical modelling
• Generalised additive modelling
• Generalised linear modelling
• Mixed linear effects modelling
• Robust linear modelling
• Time series modelling

Survival Analysis
• Cox proportional hazards modelling
• Kaplan-Meier fitting
• Parametric survival modelling

Clustering
• k-means

Confidentialisation Measures – Regression
• Restricted access
• Some analyses not permitted

• Restricted data
• Sometimes a 95% sample is used

• Restricted queries
• Control range of analyses permitted
• Control transformations and interactions levels

• Restricted output
• Confidentialisation of output of analyses

PPA Exploratory Data Analysis PPA Regression PPA Regression Diagnostics

Boxplot_drinks_vs_gammagt.png

Normal QQ-Plot for gammagt

Analysis of Deviance Table
Model: gaussian, link: identity, terms: sequential
Response: selector

Df Deviance Resid. Df Resid. Dev
NULL                              341     83.368
mcv 1    0.699       340     82.669
alkphos 1    0.998       339     81.671
sgpt 1    0.019       338     81.652
sgot 1    7.317       337     74.335
gammagt 1    2.003       336     72.332
factor(drinks)  15    7.811       321     64.5

Coefficients:
Estimate     Pr(>|t|)    

(Intercept)          2.912     p<0.005 ***
mcv -0.013 0.01<p<0.05 *  
alkphos -0.004     p<0.005 ** 
sgpt -0.009     p<0.005 ***
sgot 0.017     p<0.005 ***
gammagt 0.003     p<0.005 ***
factor(drinks)0.5   -0.185   0.2<p<0.5    
…
factor(drinks)16    -0.853 0.01<p<0.05 *  
factor(drinks)20    -0.752 0.01<p<0.05 * 

Residuals gammagt vs selector 

Termplot gammagt

http://www.csiro.au/org/CMIS.html
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Differentially Private SVMs: 
Algorithmic Stability & Large-Scale Learning 

Benjamin Rubinstein, CS Division, UC Berkeley 

Stability Learnability/utility 

Differential privacy 

Influence (Robust Stat.) 
?? 

?? 

?? 

Large-scale learning 
?? 



Poster Outline 

IPAM Privacy Workshop – Rump – Feb 2010 

Algorithmic stability 
Used in COLT to derive risk bounds 

Property of learning map, not hypothesis class (like VC-dim) 

Large-scale learning 
Techniques for dealing with large n 

Often improving comp. complexity achieves regularization 

COLT’2010 submission – Rubinstein, Bartlett, Huang, Taft 
Goal: release useful classifier while preserving data privacy 

Mechanisms for SVM learning 
Differential Privacy: via stability 

Utility (L -closeness of response & SVM whp): via large-scale learning 

Lower bounds on diff. privacy achievable for useful mechanisms 
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Decision Tree Induction with 
Differential Privacy 

Arik Friedman and Assaf Schuster 

Technion, Israel Institute of Technology 
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1.Use noisy counts to approximate information gain (SuLQ [BDMN’05]): 

 

 

2.Use the exponential mechanism with a query function based on a splitting 
criterion: 

Choosing an Attribute for splitting a node 

,

,( ) log

A
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j c A
j A c C j

N
V A N
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Splitting Criterion Query function Sensitivity 

Information gain [Q’86] S(qIG) = log(|T|+1)+1/ln2 

Gini Index [BFOS’84] S(qGINI) = 2 

Max  (based on resubstitution 

estimate [BFOS’84]) 
S(qMAX) = 1 

,
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Notation: T – a set of records, rA and rC refer to the values that record rT takes on the attributes A 
and C respectively, A

j=|{rT : rA=j}|, A
j ,c=|{rT : rA=j  rC=c}|. For noisy counts substitute N for . 



Example – a single split 

Figure 1. A single split: synthetic dataset with 10 binary 
attributes and a binary class, tree depth 1, ε=0.1,  noise 
rate in learning data 0.1. 
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Defining and Quantifying Privacy for Geolocated
Data

Sébastien Gambs

Université de Rennes 1 - INRIA / IRISA
sgambs@irisa.fr

February 2010

Sébastien Gambs Defining and Privacy for Geolocated Data 1



Where I am generally geolocated (when I am not away)

Sébastien Gambs Defining and Privacy for Geolocated Data 2



Geo-privacy

The main goal of geo-privacy is to prevent an unauthorized entity
from learning the past, current and future geographical location of
an individual (Beresford et Stajano 03).

Among all the Personal Identifiable Information (PII), learning the
location of an individual is one of the greatest threat against his
privacy.

For instance, the locational data of an individual can be used to
infer:

I his home and place of work,
I his identity,
I his center of interests,
I his habits or
I a deviation from his usual behaviour.

⇒ Privacy breach

Sébastien Gambs Defining and Privacy for Geolocated Data 3



From robbing your house . . .

to stealing your identity

Sébastien Gambs Defining and Privacy for Geolocated Data 4



Some protection mechanisms for geolocated data

I Sanitization algorithms : pseudonymization, downsampling,
geographical masks, removing records or adding fake ones,
swapping, spatial cloacking (Gruteser and Grunwald 03),
mix-zone (Beresford and Stajano 03), . . .

I Remark: leads to a trade-off between the resulting level of
privacy and the remaining utility of the sanitized data.

I Access-control methods,

I Secure multiparty computation,

I . . .

Sébastien Gambs Defining and Privacy for Geolocated Data 5



How to define privacy for geolocated data?

I Fundamental interrogation : what does it mean to have a
“good” preservation of privacy in a geolocated context?

I To be hidden inside a crowd gathered in a small area?

I To be alone in a desert?

I To have a behaviour indistinguishable from those of a
non-negligible number of other individuals?

Sébastien Gambs Defining and Privacy for Geolocated Data 6



How to quantify privacy for geolocated data?

I Possible metric: measure how well an adversary can perform a
particular on the sanitized vs unprotected version of the data?

I Example: identify with good confidence the home of
individuals within the dataset.

I Does not take into account the auxiliary knowledge that the
adversary might have.

I Avenue of research: derive the equivalent in geo-privacy of
metrics coming from other domains (for instance
privacy-preserving data mining).

I Crude global measure: mutual information between sanitized
and original data.

I Question for the audience: natural extension of differential
privacy to geolocated data?

I Other metrics?
I Interrogation: how to include the level of (un)linkability in the

privacy measure?

Sébastien Gambs Defining and Privacy for Geolocated Data 7



Brief announcements

I I have a Postdoc position on this subject (under the INRIA
recruitment campaign) and I am looking for talented
candidates.

I I am also looking for a PhD candidate in the area of
privacy-preserving data mining.

I There is a link to the descriptions of the two subjects on my
website ( http://www.irisa.fr/prive/sgambs/).

I Please contact me if you want more details or if you are
interested.

Sébastien Gambs Defining and Privacy for Geolocated Data 8
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Differentially Private Ranking

Abhradeep Guha Thakurta
azg161@cse.psu.edu

Department of Computer Science
Pennsylvania State University

Joint work with Raghav Bhaskar and Srivatsan Laxman, Microsoft
Research India and Adam Smith, Pennsylvannia State University
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Problem Formulation

Ranking (generalizing [MT07])
Consider a collection of elements U = {1, · · · ,u}.
Each element i has a real valued score qT (i) based on a
data set T .
Goal: Output k elements with highest scores.

Privacy
Data set T consists of n entries in domain D.
Differential privacy: Protects privacy of entries in T .

Condition: Insensitive Scores
for any element i , for any data sets T ,T ′ that differ in one
entry:

|qT (i)− qT ′(i)| ≤ 1 .

2 / 18
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Definition (Differential Privacy)

A randomized algorithm A is ε-differentially private if for all data
sets T ,T ′ ∈ Dn differing in at most one entry and all events
O ⊆ Range(A):

Pr[A(T ) ∈ O] ≤ eε Pr[A(T ′) ∈ O] .

5 / 18



Approximate Ranking

Let qT
k be the k th highest score based on data set T .

An output list is γ-useful if:
(Soundness) No
element in the output
has score less than
(qT

k − γ).
(Completeness) Every
element with score
greater than (qT

k + γ) is
in the output.

>qk
T+γ

top k

≥ qk 
T-γ

Collection U Boundary of 
the output set

6 / 18



Our Contributions: Two Algorithms

Score perturbation
Perturb the scores of the elements with noise and then pick
the top k elements in terms of noisy scores.
Faster and simpler implementation but slightly worse utility
guarantee.

Exponential sampling
Run the exponential mechanism [MT07] k times.
Slightly better utility guarantee but more complicated and
slower implementation.

In this talk we present the Score perturbation-based
algorithm.

7 / 18
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Score perturbation-based algorithm

Data set 
T

Add noise to all 
the scores

Pick top k elements (in terms 
of noisy scores)

Output the 
elements picked

Collection U,  score function q(.)

Scores of all the 
elements in U Lap(2k/ ε)

NOISE

10 / 18



Analysis (Privacy)

Theorem: The algorithm is ε-differentially private.
Naive analysis: Requires Θ

(u
ε

)
noise for ε-differential

privacy.
Our analysis: Θ

(k
ε

)
noise suffices.
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Analysis (Performance)

Theorem (Utility): For all ρ > 0: with probability at least 1− ρ,

the output is γ-useful, where γ =
4k
ε

(
ln u + ln(1

ρ)
)

.

Theorem (Running Time): The algorithm runs in time O(u).

13 / 18



Related Work

[KKMN09, GMW+09]
Algorithms for differentially private ranking in search logs.
Satisfy a weaker definition: (ε, δ)-differential privacy.
Utility guarantee depends crucially on sensitivity

= the number of elements whose score can change if one
entry is altered.

Not useful for problems with high sensitivity.
Our utility guarantees are incomparable to those of
[KKMN09, GMW+09].
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How to Privately Answer More 
Count Queries Interactively

Aaron Roth

Tim Roughgarden



Count Queries:

“What Fraction of the people in the dataset 
have blue eyes and brown hair?”

…

“What Fraction of the people in the dataset 
satisfy complicated condition C?”



Setting
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Setting

Laplace Mechanism
fi DataDataDataData

fi

fi(D)~fi(D)

Want ε-differential privacy, and all queries to be 
accurate up to α.

Laplace Mechanism can answer ≈ nεα queries



Don’t always have to add independent noise
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Don’t always have to add independent noise

Median 
Mechanism

Laplace 
Mechanism

Derive from 
Previous Answers

fi

DataDataDataDatafi

Theorem: For any set of k queries, there exist ≈ log k 
queries, the approximate answers to which imply the 

approximate answers to all other queries.



Don’t always have to add independent noise

Median 
Mechanism

Laplace 
Mechanism

Derive from 
Previous Answers

fi

DataDataDataDatafi

We can privately identify hard queries adaptively as 
they arrive.

Result: We only have to spend our privacy budget on 
hard queries.



Don’t always have to add independent noise

Median 
Mechanism

Laplace 
Mechanism

Derive from 
Previous Answers

fi

DataDataDataDatafi

Want ε-differential privacy, and all queries to be 
accurate up to α.

End Result: We can answer 2(nαε)1/3α queries.
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Price of Private Data Analysis and 
Spectra of Random Matrices 

  Shiva Kasiviswanathan 
Los Alamos National Lab 

Joint work with: 
Mark Rudelson (Missouri/Michigan) 

Adam Smith (Penn State) 
Jonathan Ullman (Harvard) 
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Contingency (Marginal) Tables 
Database: Table of observations of size n × d  

Marginal table for subset S ⊆ [d] of size k: 
   - frequency of all 2k possible combinations of attributes in S 

2 

Brown Eye Black Eye Red Hair Black Hair 
Alice 0 1 1 0 
Bob 1 0 0 1 
Charlie 1 0 1 0 
Dave 1 0 1 0 

2-way marginal table 
(conjunction table) 

 Black Hair 
 and Brown Eye 

0 1 

0 1 0 
1 2 1 



Lower Bounds under (ε,δ)-Diff. Privacy 

Let D be a database with n rows and d columns 
Treat k, ε, and δ as constants 
Suppose we want to release all k-way marginal tables  

–  O(dk) real numbers 

3 

D.P. Mechanism  Upper bound – Noise Lower bound - Noise 

Instance-Independent O(dk/2) [BDMN05] Ω(dk/2)  

General O(min{n,(n2d)1/3,dk/2}) 
 [BDMN05, BLR08] 

Ω(min{n1/2,dk/2})  

Idea: Project the mean squared matrix of A(D) in 
various directions 



Lower Bounds under Minimal Privacy 

We consider two other “simpler notions” of privacy 

4 

Idea: Lower bound is based on new techniques for 
analyzing spectra of random correlated matrices  

Privacy 
Guarantee 

Upper Bound    
- Noise 

Lower Bound 
 - Noise 

Attribute 
Non-Privacy 

O(min{n1/2, dk/2}) Ω(min{n1/2, d(k-1)/2}) 

Row 
Non-Privacy 

O(min{n1/2, dk/2}) Ω(min{n1/2, dk/2}) 



Lower Bounds under Minimal Privacy 

We consider two other “simpler notions” of privacy 
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Idea: Lower bound is based on new techniques for 
analyzing spectra of random correlated matrices  

x  D =  

 Non-sensitive Sensitive 

Privacy 
Guarantee 

Upper Bound    
- Noise 

Lower Bound 
 - Noise 

Attribute 
Non-Privacy 

O(min{n1/2, dk/2}) Ω(min{n1/2, d(k-1)/2}) 

Row 
Non-Privacy 

O(min{n1/2, dk/2}) Ω(min{n1/2, dk/2}) 

Known  
(public 

knowledge)  



Least Singular Value of Random Matrix 
with Correlated Rows  
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0  1  1 
         ………. 

 1  1            0    ………. 
d × n 

 1  0    0 
    ………. 

dk × n 

        M(k) = k-way conjunction matrix 

k-way conjunction 
matrix obtained by 
taking entry-wise 

product of every set of 
k rows 

      First we need to define a “Conjunction Matrix” 

Entry-wise product of  

 0      0    …………..        1 
 1      0     …………..       0 

 0      0    .………….        0 

M 



Least Singular Value of Random Matrix 
with Correlated Rows  
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0  1  1 
         ………. 

 1  1            0    ………. 
d × n 

 1  0    0 
    ………. 

dk × n 

        M(k) = k-way conjunction matrix 

k-way conjunction 
matrix obtained by 
taking entry-wise 

product of every set of 
k rows 

 Least singular value of a random dk x n matrix = O(dk/2) 

Least singular value of M(k) = O(dk/2)  

Random Matrix M 



More Details: Ask us 
Proceedings version appearing soon 

Preliminary version: 
http://www.cse.psu.edu/~kasivisw/public.pdf 
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Differential Privacy for 
Distributed Time-Series Data

Vibhor Rastogi @ University of Washington

Suman Nath @ Microsoft Research



• Distributed location-tracking system

Each user collects location data using GPS

Motivating Example

Alice Bob Charlie Delta

Traffic Analyzer

How many people drive through 
the 520 bridge and take the 
148th avenue exit before 9AM?

Privacy
Concerns

Aggregate
Queries 



Two main challenges

Challenge #1: Accuracy Problem

Name Age Location Time

Alice 25 Building 92 5 PM

Alice 25 Building 99 5:02 PM

Alice 25 148th & 36th St 5:04 PM

Bob 32 148th & Sr 520 5:35 PM

Time-Series Data

q1 = # of people in 148th & Sr 520 at 5:00 PM
q2 = # of people in 148th & Sr 520 at 5:15 PM
…
…
qN = # of people in 148th & Sr 520 at 1:25 AM

Answer of each query can change by 1

L1 sensitivity is N

Θ(N) noise required in each answer

Noise too large for long sequences!



Two main challenges

Challenge #2: No trusted server

Alice Bob Charlie Delta

Traffic Analyzer

Were you at 520 bridge at 5 PM?

Yes No No Yes

Trusted Server

Actual answer =2

Noisy answer = 3.6



A Third Challenge

• I am graduating – find a job!

• Still an open problem

• Apparently, solved  by several researchers

– Will be happy to talk 
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Collaborative Filtering and Differential Privacy:

Building Privacy into the Netflix Contenders

Frank McSherry and Ilya Mironov

Microsoft Research, Silicon Valley Campus

Appeared in KDD’09
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Unattributed histograms under differential privacy

• (Attributed) Histogram       x = x_1, ..., x_n

• x_i = # of records of type i

• Unattributed Histogram    y = y_1, ..., y_n

• y_i = # of records of the ith most frequent type

• For each type of histogram, adding Laplace(1/ε) noise achieves ε-differential 
privacy. 

• For unattributed histogram, we introduce post-processing step that reduces 
error (at no sacrifice to privacy).

• “Killer app”: estimating degree sequence of a social network graph

1
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• The output of the sorted degree query is not (in general) sorted. 

• We derive a new sequence by computing the closest non-
decreasing sequence: i.e. minimizing L2 distance.
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• Standard Laplace noise is sufficient but not necessary for differential privacy.

• By using inference, effectively apply a different noise distribution -- more noise 
where it is needed, less otherwise.

• Improvement in accuracy depends on sequence
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•  How do we publish generally useful network 
traces without revealing private information? 
– Many existing repositories: 

•  DHS PREDICT 
•  Dartmouth CRAWDAD 
•  CAIDA DatCat 

•  Short-term solutions are necessary 
•  Long-term solutions grounded in definitions 

Problem Overview 
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•  Network Data is: 
– Non-interactive database of packets/flows 

•  Packet traces: 
– Records for every packet viewed by monitor 

Network Data 

Timestamp Source 
IP 

Source 
Port … Payload 

Feb. 2, 2010 
05:10:02.43 10.0.0.1 80 …  GET /index.html HTTP/1.1 … 



Computer Security Group 
University of North Carolina, Chapel Hill 

•  Network Data is: 
– Non-interactive database of packets/flows 

•  Flow logs: 
– Records summarize all packets in a connection 

Network Data 

Start Time End Time 
Source 

IP 
Source 

Port … Bytes Sent 

Feb. 2, 2010 
05:10:02.43 

Feb. 2, 2010 
05:45:26.17 10.0.0.1 80 … 1024 Bytes 
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•  Typical anonymization policy: 
– Truncate payloads 

•  Removes plaintext user names, passwords, etc. 

– Quantize timestamps 
•  Prevents clock skew attacks [Kohno et al., 2005] 

– Replace IP addresses with linkable pseudonyms 
•  Specifically, prefix-preserving pseudonyms 

Network Data Anonymization 
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•  Problem:  Policies are defined based on 
intuition and expert knowledge 
– Bias toward utility 
– Fields are altered in reaction to new attacks 

•  Result:  Unexpected areas of information 
leakage occur within the anonymized data 
– No privacy guarantees 
– No methods for verifying efficacy 

Network Data Anonymization 
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•  Seems like microdata privacy notions apply… 

Relation to Microdata Privacy 
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•  Seems like microdata privacy notions apply… 

Relation to Microdata Privacy 

Microdata Network Data 

Privacy Goal: Protect individual records 
Protect objects made  
up of multiple records 

(workstations, users, etc.) 

Data Types: Categorical and numeric data 
Complex, non-traditional data 

(IP addresses, etc.) 

Semantics: 
Weak semantics among 
records and attributes 

 Strong semantic relationships 
due to network protocols 

Size: Millions of records Billions or trillions of records 
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•  Repeat mistakes from microdata privacy 
– Helps to understand how to map to network data 
– Hopefully find good solutions in less than 30 years 

•  Inference attacks on “anonymized” network data 
– Re-identification of workstations, user behaviors 
– Revelation of network data 

•  Creation of risk analysis framework based partly 
on microdata privacy notions 

Roadmap 
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