

Learning Your Identity and Disease from Research Papers: Information Leaks in Genome-Wide Association Study

Rui Wang, Yong Li, XiaoFeng Wang, Haixu Tang and Xiaoyong Zhou Indiana University at Bloomington

Genomic Revolutions

Low-cost genotyping

Revolutionary applications

Genome-Wide Association Study

Identification Risk

Consequence of identifications

- Participant protection
 - ➤ De-identification
 - ➤ Aggregation
- Is this sufficient?

Attack on Aggregated Data

- Single-allele frequencies
 - ➤ Major: 0; Minor: 1

Homer's attack

NIH's Reactions

The Rest of The Iceberg

- Other genome data
 - > Test statistics
 - Linkage Disequilibrium (LD)
 - ➤ Haplotype sequences

- Other sources
 - Publications

Our Scary Findings

- ID from GWAS publications

 - ➤ Pair-wise allele frequencies → SNP Sequences
- Work on real genome data
- Conclusion:

Urgent needs to thoroughly study the problem

Why Doing This?

Facilitate Dissemination of Genome Data SAFELY

A Lesson From the Internet:

Build Protection Into the Core!

Indiana University School of Informatics

Terms

- Alleles
 - ➤ Single (0 1)
 - > Pair-wise (00, 01, 10, 11)
- Genotype
 - > Combinations of two sets of alleles
- Haplotype
 - > SNP Sequence (phased genotype)
- Locus
 - ➤ Surrounding region of a SNP site

GWAS: Backgrounds

Homer's Attack

What we can do

- Reverse engineer test statistics
 - To find allele frequencies

LD-based statistical identification

Recover SNP sequences

Allele Frequency (Single)

Allele Frequencies (Pair-wise)

$$L^{r^{2}} = \frac{\left(C_{00}^{(C_{M}N_{C_{*0}C_{0*}C_{0*}}^{(C_{0}C_{0*}C_{0*})^{2}})^{2}} C_{0*}C_{$$

$$C_{0*} = C_{00} + C_{01} \tag{2}$$

$$C_{1*} = C_{10} + C_{11} \tag{3}$$

$$C_{*0} = C_{00} + C_{10} \tag{4}$$

$$C_{*1} = C_{01} + C_{11} \tag{5}$$

- Catch: C_{00} not unique
 - ➤ Integer constraint
- Inaccurate r-squares

Signs

Homer-Style Attack Based On LD?

■ Why? Single AF: *n* LD: *n*(*n*-1)/2

But how?

Validity of the test statistic

$$D(Y_i) = |Y_i - Pop_i| - |Y_i - M_i$$

$$r^{2} = \frac{\left(C_{00}C_{11} - C_{10}C_{01}\right)^{2}}{C_{0*}C_{1*}C_{*0}C_{*1}}$$

Our Statistical Attack

Victim

We have to use signed r

- Distribution of T_r ?
 - ➤ Markov model

Reference?

$$T_{ij} = |(Y_{ij}^{00} + Y_{ij}^{11}) - (r_{ij}^{R} + 1)/2| - |(Y_{ij}^{00} + Y_{ij}^{11}) - (r_{ij}^{C} + 1)/2| = (r_{ij}^{C} - r_{ij}^{R})(Y_{ij}^{00} + Y_{ij}^{11} - Y_{ij}^{01} - Y_{ij}^{10})$$

$$T_{r} = \sum_{1 \le i \le N} T_{ij}$$

Recover SNP Sequences

ID	Sequence
1	0110111001010011101 1001110111
2	1110101010001100110 000000011010010000001
3	0111000101001110101 001110001010110001111
n-1	0010111100000110011 01101010110010101101
n	1001010010101101010 101100001111001001111

- Contingency table problem
 - > Studied for decades
 - Very difficult

- Divide-and-Conquer
 - 1. Construct each haplotype block
 - 2. Connect different blocks

Simple Defense

- Low-precision statistics
 - ➤ Correlation among SNPs
- Thresholds
 - > How to determine them?
- Noises
 - Consistency check
 - ➤ Maximum-likelihood approximation

Evaluations

- Data: the HapMap project
- Locus: FGFR2
 - ➤ 174 SNPs
 - ➤ Used in a real GWAS study
- Population
 - ➤ Africa backgrounds
 - ≥ 200: half cases and half controls

Allele Frequencies and Signs

Statistics Precision		Recovered Information %				
r^2	p-value	single SNP frequency	pair-wise frequency	sign of r		
0.1	0.1	12.1	1.8	6.7		
0.1	0.00001	40.6	11.7	31.7		
0.01	*	100	50.1	98.7		
0.001	*	100	90.4	100		
0.0001	*	100	95.1	100		

Statistical Powers

20 times more powerful than Homer's test (T_p)

Recover Haplotypes

- Linear equation solving: rref
- Integer Programming: bintprog
- 100 individuals, 10 blocks, 174 SNPs
- System: 2.80GHz Core 2 Duo, 3GB memory
- Fully restored within 12 hours

Discussion

Genotypes vs. Haplotypes

- Defense
 - ➤ Differential privacy

Conclusion

New attacks and new understanding

Many open research problems

Contacts

- Dr. XiaoFeng Wang
- **•** 812-856-1862
- Web: <u>www.informatics.indiana.e</u> du/xw7
- System Security Lab: <u>sysseclab.informatics.india</u> <u>na.edu</u>

- Dr. Haixu Tang
- **•** 812-856-1859
- Web: <u>www.informatics.indiana.e</u> du/hatang

References

- Good: from the same population
- Bad: from different populations

More In-depth Studies

Larger populations:

N	50	100	200	400	800	1600
power (%)	99.9	85.7	67.2	40.4	36.2	18.1

Low-precision statistics (200 cases, 200 references)

Precision of r^C	0.5	0.2	0.1	0.01	0.001
$\%$ power π left	12	74	85	100	100