Computational Complexity &
Differential Privacy

Salil Vadhan
Harvard University

Joint works with Cynthia Dwork, Kunal Talwar, Andrew McGregor, llya Mironov,
Moni Naor, Omkant Pandey, Toni Pitassi, Omer Reingold, Guy Rothblum, Jon Uliman



Computational Complexity

When do computational resource constraints
change what is possible?

Examples:

e Computational Learning Theory [Valiant '84]:
small VC dimension;é learnable with efficient algorithms
(bad news)

 Cryptography [Diffie & Hellman '76]: don’t need long shared
secrets against a computationally bounded adversary
(good news)



Today: Computational Complexity
in Differential Privacy

|. Computationally bounded curator
— Makes differential privacy harder
— Differentially private & accurate synthetic data infeasible to construct
— Open: release other types of summaries/models?

Il. Computationally bounded adversary

— Makes differential privacy easier

— Provable gain in accuracy for 2-party protocols
(e.g. for estimating Hamming distance)



PART I: COMPUTATIONALLY
BOUNDED CURATORS



Cynthia’s Dream: Noninteractive Data Release

Original Database D Sanitization C(D)



Noninteractive Data Release: Desidarata

(€,0)-differential privacy:
for every D,, D, that differ in one row and every set T,

Pr[C(D,) e T] < exp(e)- Pr[C(D,)e T]+9,
with o negligible

Utility: C(D) allows answering many questions about D

Computational efficiency: Cis polynomial-time computable.



Utility: Counting Queries

D = (Xq,..,.X,) e X"

P={mn:X—>{0,1}}

For any me P, want to estimate (from C(D)) counting query
7(D):=(%, m(x)/n

within accuracy error £ o

>35

Example: 1 1

X ={0,1)¢
P = {conjunctions on < k variables}
Counting query = k-way marginal

e.g. What fraction of people in D
smoke and have cancer?

R O Rk Rk = O
N = T = T = T
R O Kk =L O



Form of Output
e Ideal: C(D) is a synthetic dataset
0 0

— Ve P |n(C(D))-nt(D)| £
— Values consistent
— Use existing software

o O O O =,
=
S - O B

e Alternatives?
— Explicit list of |P| answers (e.g. contingency table)
— Median of several synthetic datasets [RR10]
— Program M s.t. V e P |M(n)-n(D)|< a



Positive Results

[DNO3,DN04,  O(|P|Y?/ag) O(d¥2/aLe)
BDMNO5]

= (Xq,...,X,)€({0,1}9)"
eP={n:{0,1}— {0,1}}
+ 1(D):=(1/n) X, m(x)
* 0L = accuracy error
* £ = privacy



Positive Results

[DNO3,DN04,  O(|P|Y?/ag) O(d¥2/aLe) poly(n,|P]) poly(n,d¥)
BDMNO5]

= (Xq,...,X,)€({0,1}9)"
eP={n:{0,1}— {0,1}}
+ 1(D):=(1/n) X, m(x)
* 0L = accuracy error
* £ = privacy



Positive Results

[DNO3,DN04,  O(|P|Y?/ag) O(d¥2/ae) poly(n,|P|) poly(n,d¥)
BDMNO5]
[BDCKMTO7] O(d*/ae) Y poly(n,29)

= (Xq,...,X,)€({0,1}9)"
eP={n:{0,1}— {0,1}}
+ 1(D):=(1/n) X, m(x)
* 0L = accuracy error
* £ = privacy



Positive Results

[DNO3,DN04,  O(|P|Y?/ag) O(d¥2/ae) poly(n,|P|) poly(n,d¥)
BDMNO5]

[BDCKMTO7] O((2d)*/ae) Y poly(n,29)
[BLROS] O(d-log|P|/a’¢) O(dk/a¢) Y

= (Xq,...,X,)€({0,1}9)"
eP={n:{0,1}— {0,1}}
+ 1(D):=(1/n) X, m(x)
* 0L = accuracy error
* £ = privacy



Positive Results

[DNO3,DN04,  O(|P|Y?/ag) O(d¥2/ae) poly(n,|P|) poly(n,d¥)
BDMNO5]

[BDCKMTO7] O((2d)*/ae) Y poly(n,29)
[BLROS] O(d-log|P|/a’¢) O(dk/a¢) Y qpoly(n,|P|,29)  gpoly(n,29)

= (Xq,...,X,)€({0,1}9)"
eP={n:{0,1}— {0,1}}
+ 1(D):=(1/n) X, m(x)
* 0L = accuracy error
* £ = privacy



Positive Results

computational complexity

[DNO3,DN04,  O(|P|Y?/ag) O(d¥2/aLe)

BDMNO5]

[BDCKMTO7] O((2d)*/ae) Y
[BLROS] O(d-log|P|/a’¢) O(dk/o3e) Y
[DNRRVO9, O(d-log?|P|/a%€) O(dk?/a%€) Y
DRV10]

Summary: Can construct synthetic databases
accurate on huge families of counting queries,
but complexity may be exponential in dimensions
of data and query set P.

Question: is this inherent?

poly(n,|P])

poly(n,d)

poly(n,29)

gpoly(n,|P|,29)  qgpoly(n,29)
poly(n,|P],29)

poly(n,|P],29)

= (Xq,...,X,)€({0,1}9)"
eP={n:{0,1}— {0,1}}
+ 1(D):=(1/n) X, m(x)
* 0L = accuracy error
* £ = privacy



Negative Results for Synthetic Data

Summary:
 Producing accurate & differentially private synthetic data is as
hard as breaking cryptography (e.g. factoring large integers).

* Inherently exponential in dimensionality of data (and in
dimensionality of queries).



Negative Results for Synthetic Data

Thm [DNRRVO09]: Under standard crypto assumptions (OWF),
there is no n=poly(d) and curator that:

— Produces synthetic databases.

— Is differentially private.

— Runs in time poly(n,d).

— Achieves accuracy error a=.99 for P = {circuits of size d?} (so | P|~2d2)

Thm [UV10]: Under standard crypto assumptions (OWF),
there is no n=poly(d) and curator that:

— Produces synthetic databases.

— Is differentially private.

— Runs in time poly(n,d).

— Achieves accuracy error a=.01 for 2-way marginals.




Tool 1: Digital Signature Schemes

A digital signature scheme consists of algorithms (Gen,Sign,Ver):

On security parameter d, Gen(d) = (SK,PK) e {0,1}9x {0,1}¢
On me {0,1}¢, can compute o=Sign.,(m)e{0,1}¢ s.t. Ver, (m,c)=1

Given many (m,o) pairs, infeasible to generate new (m’,c’)
satisfying Very,

Gen, Sign, Ver all computable by circuits of size d?.



Hard-to-Sanitize Databases

* Generate random (PK,SK)« Gen(d), m;, m,,..., m_« {0,1}¢

D
m;, Sighg, (m,)
m Signg, (m
- .g selma) curator
m,  Signg(m;) )
[ 0
m, Signg (m,)

e Ver,, € {circuits of size d?}=P
 Ver,(D)=1

C(D)
m’y O,
m’, G,
[ [
m’, Oy

e Verp (C(D)) =2 1-a>0
e JiVery,(m’,c)=1

Case 1: m’,¢D = Forgery!

Case 2: m’.eD = Reidentification!



Negative Results for Synthetic Data

Thm [DNRRVO09]: Under standard crypto assumptions (OWF),
there is no n=poly(d) and curator that:

— Produces synthetic databases.

— Is differentially private.

— Runs in time poly(n,d).

— Achieves accuracy error a=.99 for P = {circuits of size d?} (so | P|~2d2)

Thm [UV10]: Under standard crypto assumptions (OWF),
there is no n=poly(d) and curator that:

— Produces synthetic databases.

— Is differentially private.

— Runs in time poly(n,d).

— Achieves accuracy error a=.01 for 3-way marginals.




Tool 2: Probabilistically Checkable Proofs

The PCP Theorem: 3 efficient algorithms (Red,Enc,Dec)
S.1.

ze {0,1}¢ satisfying
all of o,

Vv
\

Enc

w s.t. V(w)=1

N

Set of 3-clauses on

Circuit V of size d2 —>| Red —{ d’=poly(d) vars

Oy={X,V Xc V =X,
_le \/ VSV Xdl,...}

Dec [¢ 2’ € {0,1}% satisfying
.99 fraction of @,

AN

w’ s.t. V(w')=1




Hard-to-Sanitize Databases

* Generate random (PK,SK)« Gen(d), m,, m,,..., m_« {0,1}°

Verp C(D)

m,  Signg(m,) \l' Z

m, Sighg, (m,) Enc

curator 2
m,  Signg(m,) ) 2 — > .

[ [ []

m, Sighg(m,) Z,

4
Z,

4
Zy

 Each clause in @y is

| > satisfied by > 1-a of the Z',
e Jis.t. Z’; satisfies > 1-a
of the clauses
e Dec(z’) = valid (m’,c))

* Let @y = Red(Ver,,)

e Eachclausein @, is
satisfied by all z

Case 1: m’,¢D = Forgery!
Case 2: m’.eD = Reidentification!



Part | Conclusions

 Producing private, synthetic databases that preserve simple

statistics requires computation exponential in the dimension
of the data.

How to bypass?

e Average-case accuracy: Heuristics that don’t give good

accuracy on all databases, only those from some class of
models.

e Non-synthetic data:

— Thm [DNRRVO09]: For general P (e.g. P={circuits of size d?}),
1 efficient curators “iff” —3 efficient “traitor-tracing” schemes

— But for structured P (e.g. P={all marginals}), wide open!



PART II: COMPUTATIONALLY
BOUNDED ADVERSARIES



Motivation

Differential privacy protects even against adversaries with
unlimited computational power.

Can we gain by restricting to adversaries with bounded (but
still huge) computational power?

— Better accuracy/utility?

— Enormous success in cryptography from considering computationally
bounded adversaries.



Definitions [MPRV09]

* (g,neg(k))-differential privacy: for all D,, D, differing in one
row, every set T, and security parameter Kk,

Pr[C,(D,)e T] < exp(e)- Pr[C,(D,)e T]+neg(k),

e Computational e-differential privacy v1: for all D;, D, differing
in one row, every probabilistic poly(k)-time algorithm T, and
security parameter Kk,

Pr[T(C.(D,))=1] < exp(e)- Pr[T(C,(D,))=1]+neg(k)

immediatet i_ open: requires generalization of
" Dense Model Thm [GT04,RTTV08]

{-ﬂ

e Computational e-differential privacy v2: 3 (g,neg(k))-
differentially private C’, such that for all D,
C.(D) and C’ (D) are computationally indistinguishable.



2-Party Privacy

e 2-party (& multiparty) privacy: each party has a sensitive
dataset, want to do a joint computation f(D,,Dy)

. ‘ D, |
2 4
My Y1

. Y2
) My-1 [
m, v
Z, = f(D,,Dg) Zg= f(D,,Dg)

 A’sview should be a (computational) differentially private
function of Dy (even if A deviates from protocol),
and vice-versa



Benefit of Computational Differential Privacy

Thm: Under standard cryptographic assumptions (OT),
1 2-party computational e-differentially private protocol for
estimating Hamming distance of bitvectors, with error O(1/¢).

Proof: generic paradigm

e Centralized Solution: Trusted third party could compute diff.
private approx. to Hamming distance w/error O(1/¢)

e Distribute via Secure Function Evaluation [Yao86,GMW86]:
Centralized solution — distributed protocol s.t. no
computationally bounded party can learn anything other than
its output.

Remark: More efficient or improved protocols by direct
constructions [DKMMNO6,BKO08,MPRV09]



Benefit of Computational Differential Privacy

Thm: Under standard cryptographic assumptions (OT),
3 2-party computational e-differentially private protocol for
estimating Hamming distance of bitvectors, with error O(1/¢).

Thm [MPRV0O9,MMPRTV10]: The best 2-party differentially
private protocol (vs. unbounded adversaries) for estimating
Hamming distance has error ®~(n/2).

Computational privacy = significant gain in accuracy!
And efficiency gains too [BNOO6].



Conclusions

e Computational complexity is relevant to differential privacy.
* Bad news: producing synthetic data is intractable
 Good news: better protocols against bounded adversaries

Interaction with differential privacy likely to benefit complexity
theory too.



