
Privacy Protection for Sparse Data

Jiashun Jin

Carnegie Mellon University

Feb. 24, 2010

Jiashun Jin Privacy Protection for Sparse Data



Collaborators

Alphabetically:

Tony Cai University of Pennsylvania
David Donoho Stanford University
Stephen Fienberg Carnegie Mellon University
Christopher Genovese Carnegie Mellon University
Mark Low University of Pennsylvania
Larry Wasserman Carnegie Mellon University

Jiashun Jin Privacy Protection for Sparse Data



Growing Concern of Individual Privacy

I Identity theft

I Breach in sensitive data (e.g. medical record)

I Hacker
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Privacy Protection by Adding Noise

I With differential privacy as the emerging
privacy protection technique

I With double exponential noise at the core
I Success has been found in various

regression-type of settings
I Dwork (06) (Differential privacy)
I Zhou et al. (09) (PCA)
I Chaudhuri & Moteleoni (08) (logistic reg.)
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Linkage to Statistical Literature

I Tradeoff between utility and privacy is related
to Statistical decision theory

I Differential privacy is reminiscent to lower
bound argument in Statistics (e.g. Le Cam)

I Duality between two areas:
I Confidentiality: adding noise
I Statistics: noise removal

I Recent effort in linking two areas together:
I Dwork and Lei (2009): differential privacy and

robustness
I Wasserman et al (2009): matrix masking and PCA
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For Today

Forge linkage between Confidentiality and recent
statistical literature in sparse inference

I Adding noise to sparse data

I Phase diagrams for when data mining is
impossible/possible

I Individual privacy

I Application to restricted statistical queries
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Sparsity

I A natural phenomenon found in many
application areas

I Only a small fraction of the data contains
relevant information or signals, others are
irrelevant or noise

I How to exploit sparsity has been the theme of
many active statistical areas

I Wavelet
I Variable selection
I Cancer classification
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An Example

A database contains diagnostic results for HIV

I Labels: 0 for Normal, 1 for HIV

I Sparsity: out of many such labels, the fraction
of 1’s is small (low risk population)

I Goal: add proper amount of noise so that
I the 1’s can not be successfully identified
I valid data mining is still possible

Problem: how much noise to add?
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Two Interconnected Problems

Sanitized Data (Gaussian Noise Added):

Xi = βi+zi , βi = 0/1, zi
iid∼ N(0, σ2), 1 ≤ i ≤ p

For which (ε, σ),

Impossibility/Possibility: valid inference is impossible/possible

No Recover/Recovery: individual 1’s can’t/can be identified

For double exponential noise, see Donoho and Jin (2004)
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Model and Re-normalization

Original Setting:

Xi = βi + zi , zi
iid∼ N(0, σ2), 1 ≤ i ≤ p

For convenient, divide both sides by σ:

Xi = βi + zi , zi
iid∼ N(0, 1), 1 ≤ i ≤ p

where

βi =

{
τ, with prob. ε,
0, with prob. 1− ε, τ =

1

σ

Note:

I Driving parameters change from (ε, σ) to (ε, τ)!

I Marginally,

Xi
iid∼ (1− ε)N(0, 1) + εN(τ, 1)
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Impossibility/Possibility

The study of impossibility/possibility turns out to
be closely related to the study of the following
testing problem:

H0 : Xj
iid∼ N(0, 1)

vs.

H
(p)
1 : Xi

iid∼ (1− ε)N(0, 1) + εN(τ, 1)

Problem: for which (ε, τ) H0 and H
(p)
1 separate

completely, and for which they are inseparable
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Calibrations of (ε, τ )
For asymptotics, let p →∞, and link (ε, τ) to p by
parameters (ϑ, r)

I To model sparsity:

ε = εp = p−ϑ, 0 < ϑ < 1,

I 0 < ϑ < 1/2: moderately sparse
I 1/2 < ϑ < 1: very sparse

I For recovery, or hypothesis testing when it is very sparse,
interesting range of τ is

τp =
√

2r log p, r > 0

I For hypothesis testing when it is moderately sparse,
interesting range of τ is

τp = O(pϑ−1/2) (which is algebraically small)
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Detection Boundary (Very Sparse)

H0 : Xi
iid∼ N(0, 1); H

(p)
1 : Xi

iid∼ (1− εp)N(0, 1) + εpN(τp, 1)

Theorem 1. If εp = p−ϑ and τp =
√

2r log p, where
1/2 < ϑ < 1 and r > 0, then:

If r > ρ(ϑ), H0 and H
(p)
1 separate asymptotically,

If r < ρ(ϑ), H0 and H
(p)
1 merge asymptotically.

where

ρ(ϑ) =

{
ϑ− 1

2 ,
1
2 < ϑ < 3

4 ,

(1−
√

1− ϑ)2, 3
4 < ϑ < 1.

We call r = ρ(ϑ) the “detection boundary.”
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Detection Boundary (Moderately Sparse)

H0 : Xi
iid∼ N(0, 1); H

(p)
1 : Xi

iid∼ (1− εp)N(0, 1) + εpN(τp, 1)

Theorem 2. If εp = p−ϑ and 0 < ϑ < 1/2. Then

τp · p1/2−ϑ →∞: H0 and H
(p)
1 separate asymptotically

τp · p1/2−ϑ → 0: H0 and H
(p)
1 merge asymptotically
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Interpretation

I Critical σ2 (recall that σ2 = 1
τ 2 ):

I O( 1
log(p)

) for very sparse case (ϑ > 1/2)

I O(p1−2ϑ) for moderately sparse case (ϑ < 1/2)
I sparsifying data helps privacy protection

I Undetectable region: valid inference impossible
I impossible to tell whether εp = 0 or not
I analyst unable to tell whether this is sanitized

data, or pure white noise
I impossible to accurately estimate εp
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Sketch of Proofs

I For (ϑ, r) in the undetectable region, show that
as p →∞, the Hellinger distance between the

joint density under H0 and that under H
(p)
1

→ 0

I For (ϑ, r) in the detectable region, show that
as p →∞, the Neyman-Pearson’s Likelihood
ratio test (LRT) has level → 0 and power → 1

I LRT needs (ϑ, r); prefer to some method that
does not depend on (ϑ, r)
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(Tukey’s) Higher Criticism

Observe X1,X2, . . . ,Xp

I Convert each Xi to a p-value by
πj = P(N(0, 1) ≥ Xj)

I Sorting all p-values in the ascending order:
π(1) < π(2) < . . . < π(p)

I Higher Criticism is defined as

HC ∗p = max
{1≤j≤p/2}

(j/p)− π(j)√
π(j)(1− π(j))

Donoho and Jin (2004)
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Higher Criticism, II

H0 : Xj
iid∼ N(0, 1); H

(p)
1 : Xj

iid∼ (1− εp)N(0, 1) + εpN(τp, 1)

Higher Criticism Test (HCT): rejecting H0 if and only if

HC ∗n ≥
√

2(1 + δ) log log n, say, δ = 0.1

Theorem 3. Fix (ϑ, r) in the “interior” of the detectable
region. As p →∞, the level of HCT → 0 and the power of
HCT → 1.

“Interior”:{
r > ρ(ϑ), if 1/2 < ϑ < 1 (very sparse)
τp ·p1/2−ϑ
√

2 log log p
→∞, if 0 < ϑ < 1/2 (moderately sparse)
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Detectable Region

I Higher Criticism test yields full power detection

I It is possible to consistently estimate (εp, τp)

I In broader models where nonzero βj maybe
unequal, it is possible to have a nonzero
confidence for εp

Remaining Problem: Identifying nonzero βj and
Individual Privacy

See details in Cai et al. (2007), Meinshausen and Rice (2006)
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Hamming Distance

I For any estimator β̂, the hamming distance is

Hammp(ϑ, r) = Eεp,τp

[ p∑
j=1

1{sgn(β̂j)6=sgn(βj)}

]
I For an appropriately chosen threshold t = tp,

βj =

{
τp, Xj ≥ tp
0, Xj < tp

Problem: what is the best tp?

Jiashun Jin Privacy Protection for Sparse Data



Intruder’s Option

Xi
iid∼ (1− εp)N(0, 1) + εpN(τp, 1), εp = p−ϑ, τp =

√
2r log p

Theorem 4. The best threshold for the intruder is

tp =

{
tB(ϑ, r), r > ϑ,√

2ϑ log p †, r < ϑ;
tB(ϑ, r) =

ϑ + r

2
√

r

√
2 log p

which gives the optimal Hamming distance

Hammp(ϑ, r)

{
= L(p) · p1− (ϑ+r)2

4r , r > ϑ,
∼ p1−ϑ, 0 < r < ϑ

where L(p) denotes a multi-log(p) term.

Genovese, Jin, Wasserman (2009); †: not unique
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Phase Change

I Phase change in the optimal threshold:

tp
τp
< 1, if r > ϑ;

tp
τp
> 1, otherwise

I Phase change in individual privacy:

P(β̂j = τp|βj = τp)

{
∼ 1 r > ϑ
algebraically small, r < ϑ

I Phase change in the optimal rate:

Hammp(ϑ, r)


∼ pεp, 0 < r < ϑ (No Recovery),
� pεp, ϑ < r < (1 +

√
1− ϑ)2 (Almost Full Recovery)

o(1), r > (1 +
√

1− ϑ)2 (Exact Recovery)
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Phase Diagram (Recovery)
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Connection to Differential Privacy

I Except that in Region of Exact Recovery, we
can finesse the data without noticing by either

I replace a few signals by noise
I replace a few noise by signal

I Idea: Hellinger distance between the joint
densities before and after the finessing = o(1)

I Related to the optimal rate of estimating εp
(see Cai et al. (2007)).
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Application to Variable Selection

Linear model:

Y = Wβ + Z , Z ∼ N(0, In)

I W = Wn,p; p: dimension; n: sample size

I β: p by 1 (unknown)

I Modern setting:

p � n, β is sparse

Goal: decide which coordinates of β are nonzero
and which are zero

Jiashun Jin Privacy Protection for Sparse Data



Example: Statistical Queries

I Database allows for a total of n queries

I For the i -th query, the database randomly
generates a weight vector

wi = (wi1, xi2, . . . ,wip)T

and returns

yi = wT
i β+zi , zi ∼ N(0, 1), 1 ≤ i ≤ n

I In matrix form, Y = Wβ + Z

Dinur and Nissim (2004)
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Asymptotic Model (Variable Selection)

Suppose
I W =

(
w(i , j)

)
1≤i≤n,1≤j≤p

w(i , j)
iid∼ N(0,

1

n
)

I as before,

βj =

{
τp, prob. εp,
0, prob. 1− εp

I for parameters ϑ, θ ∈ (0, 1) and r > 0,

n = pθ, εp = p−ϑ, τp =
√

2r log p
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Optimal Rate in Hamming Distance, II

Fix 0 < ϑ, θ, r < 1,

n = pθ, εp = p−ϑ, τp =
√

2r log p

Theorem 5. Suppose θ > 2(1− ϑ). The optimal
Hamming distance

Hammp(ϑ, r)

{
= L(p) · p1− (ϑ+r)2

4r , r > ϑ,
∼ p1−ϑ, 0 < r < ϑ

where L(p) denotes a multi-log(p) term.

Genovese, Jin, Wasserman (2009)
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Phase Diagram (Recovery)
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Sketch of Proofs

I Region of No Recovery: relate the variable
selection to hypotheses testing

H0,i : βi = 0 vs. H1,i : βi = τp

Let f0i be the density associated with H0i , and
f1i be the density associated with H1i . For any
procedure, the Hamming distance
≥ ‖(1− εp)f0i − εpf1i‖1

I Region of Almost Full Recovery/Exact
Recovery: use the Lasso

Note: improves that in Wainwright (2006)
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The Lasso

I A variable selection procedure proposed by
Chen et al. (1995) and Tibshirani (1996).

I Look for solution β̂ that minimizes

‖y −Wβ‖2 + λ|β|1,

with ‖ · ‖ for `2-norm and | · |1 for `2-norm.

Suppose n = np = pθ and θ > 2(1− ϑ). Setting the
tuning parameter

λ = 2 ·max

{
ϑ + r

2
√
ϑr
, 1

}
·
√

2ϑ log p

yields the optimal rate in Hamming distance
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Take-home messages

I Discussed adding noise approach to privacy
protection for sparse data

I Introduced precise demarcation for
I when data mining is impossible/possible
I when accurately identifying individual signals is

impossible/possible

I Tried to forge links between confidentiality and
current statistical literature
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Website

www.stat.cmu.edu/̃ jiashun/Research/

Donoho and Jin (2004): Higher Criticism and Phase Diagram
Cai, Jin, and Low (2007): Estimating εp
Fienberg and Jin (2009): Multiplicity issues in Confidentiality
Genovese, Jin, Wasserman (2010): Variable Selection and the Lasso

In preparation: linkage to confidentiality

Jiashun Jin Privacy Protection for Sparse Data


