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Growing Concern of Individual Privacy

» |dentity theft
» Breach in sensitive data (e.g. medical record)
» Hacker
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Privacy Protection by Adding Noise

» With differential privacy as the emerging
privacy protection technique

» With double exponential noise at the core
» Success has been found in various
regression-type of settings
» Dwork (06) (Differential privacy)
» Zhou et al. (09) (PCA)
» Chaudhuri & Moteleoni (08) (logistic reg.)
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Linkage to Statistical Literature

» Tradeoff between utility and privacy is related
to Statistical decision theory

» Differential privacy is reminiscent to lower
bound argument in Statistics (e.g. Le Cam)
» Duality between two areas:
» Confidentiality: adding noise
» Statistics: noise removal
» Recent effort in linking two areas together:

» Dwork and Lei (2009): differential privacy and
robustness

» Wasserman et al (2009): matrix masking and PCA
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Forge linkage between Confidentiality and recent
statistical literature in sparse inference
» Adding noise to sparse data

» Phase diagrams for when data mining is
impossible /possible

» Individual privacy

» Application to restricted statistical queries
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» A natural phenomenon found in many
application areas

» Only a small fraction of the data contains
relevant information or signals, others are
irrelevant or noise

» How to exploit sparsity has been the theme of
many active statistical areas
» Wavelet
» Variable selection
» Cancer classification
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An Example

A database contains diagnostic results for HIV

» Labels: 0 for Normal, 1 for HIV

» Sparsity: out of many such labels, the fraction
of 1's is small (low risk population)
» Goal: add proper amount of noise so that

» the 1's can not be successfully identified
» valid data mining is still possible

Problem: how much noise to add?
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Two Interconnected Problems

Sanitized Data (Gaussian Noise Added):
Xi = Bi+z, Bi=0/1, z X N(,0%), 1<i<p

For which (¢, 0),
Impossibility /Possibility: valid inference is impossible/possible

No Recover/Recovery: individual 1's can't/can be identified

For double exponential noise, see Donoho and Jin (2004)
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Model and Re-normalization

Original Setting:

Xi = Bi + z, M, 1<i<p
For convenient, divide both sides by o
Xi = Bi + z, m, 1<i<p
where " 1 .
s={5 e . s
Note:

» Driving parameters change from (e,0) to (e, 7)!
> Marginally,

X; (1= €)N(0,1) + eN(r, 1)
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Impossibility /Possibility

The study of impossibility /possibility turns out to
be closely related to the study of the following
testing problem:

Ho: X < N(0,1)
VS.
pr) ; X: (1 —¢€)N(0,1) 4+ eN(T,1)

Problem: for which (¢,7) Hp and Hl(p) separate
completely, and for which they are inseparable
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Calibrations of (e, 7)

For asymptotics, let p — oo, and link (¢,7) to p by
parameters (¥, r)

» To model sparsity:
e=ec,=p ", 0<v <1,

» 0 <9 < 1/2: moderately sparse
» 1/2 <9 < 1: very sparse

» For recovery, or hypothesis testing when it is very sparse,
interesting range of 7 is

Tp =/ 2r log p, r>0

» For hypothesis testing when it is moderately sparse,
interesting range of 7 is

7, = O(p’1/?) (which is algebraically small)
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Detection Boundary (Very Sparse)

Ho:  Xi 2 N@©,1):;  HP ' X (1 —e,)N0,1) + e,N(rp, 1)

Theorem 1. If ¢, = p~” and Tp = v/ 2r log p, where
1/2 <49 < 1andr >0, then:

If r > p(9¥), Hy and pr) separate asymptotically,
If r < p(¥), Hoy and pr) merge asymptotically.
where

<d <3
<Y <1

Bl NI

)-3
o) = {(1F)

We call r = p(1)) the "detection boundary."
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Detectable

ep=p ", 7,=+2rlogp, 1/2 <9 <1 (very sparse)
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Detection Boundary (Moderately Sparse)

Ho: XM NO,1):; HP: X2 (1-€,)N0,1)+ e,N(r,, 1)

Theorem 2. If ¢, = p~? and 0 < ¥ < 1/2. Then

Tp pt/2" — 501 Hy and H:fp) separate asymptotically
— 0 Hy and Hl(p) merge asymptotically
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0.8

0.7

Detectable

O

ep=p ", 7,=+2rlogp, 1/2 <9 <1 (very sparse).
Note: the detection boundary reaches 0 to the left.
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Interpretation

» Critical 02 (recall that 02 = %):
T

> O(Iog( ) for very sparse case (¥ > 1/2)
» O(p'~?Y) for moderately sparse case (¢ < 1/2)
» sparsifying data helps privacy protection
» Undetectable region: valid inference impossible

» impossible to tell whether ¢, = 0 or not

» analyst unable to tell whether this is sanitized
data, or pure white noise

» impossible to accurately estimate ¢,
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Sketch of Proofs

» For (¥, r) in the undetectable region, show that
as p — oo, the Hellinger distance between the

joint density under Hy and that under pr)

— 0

» For (¥, r) in the detectable region, show that
as p — 0o, the Neyman-Pearson’s Likelihood
ratio test (LRT) has level — 0 and power — 1

» LRT needs (9, r); prefer to some method that
does not depend on (¥, r)
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(Tukey's) Higher Criticism

Observe X1, Xa, ..., X,

» Convert each X; to a p-value by
mj = P(N(0,1) > X))

» Sorting all p-values in the ascending order:
(1) < T(2) < ... < T(p)

» Higher Criticism is defined as

HC: = max U/p) — )
{1<j<p/2} \/7T(J)(1 — 7T(j))

Donoho and Jin (2004)
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Higher Criticism, |

Ho: X; " N(0,1); HP X % (1= €,)N(0,1) + €,N(7,, 1)

Higher Criticism Test (HCT): rejecting Hp if and only if

HC* > \/2(1 + 6) log log n, say, 0=0.1

Theorem 3. Fix (U, r) in the “interior” of the detectable
region. As p — o0, the level of HCT — 0 and the power of

HCT — 1.

“Interior”:
{ r > p(v), if 1/2 <9 <1 (very sparse)

75-pl/2=0 .
N TR if 0 < v <1/2 (moderately sparse)
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Detectable Region

» Higher Criticism test yields full power detection
» It is possible to consistently estimate (ep, 7,)

» In broader models where nonzero [3; maybe
unequal, it is possible to have a nonzero
confidence for ¢,

Remaining Problem: Identifying nonzero 3; and
Individual Privacy

See details in Cai et al. (2007), Meinshausen and Rice (2006)
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Hamming Distance

» For any estimator B the hamming distance is
p
Hamm,(0,r) = E, -, [Z 1{sgn(ﬁ,-)¢sgnwj)}]
j=1

» For an appropriately chosen threshold t = t,,

8 = Tp; Xj > tp
! 0, X < t,

Problem: what is the best t,?
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Intruder’s Option

X% (1-€e)N(O0,1) + e,N(p,1),  ep=p ",  1,=1/2rlogp

Theorem 4. The best threshold for the intruder is

| tg(v,r), r>4, v+r oz b
o {\B/2q9log T, or<t, tB(ﬁ’r)_2\/_ 2logp

which gives the optimal Hamming distance

(9+n)°

=L(p)-p'~# r>1
Hamm, (9, r g )
ol ){Nplﬁ, O<r<d

where L(p) denotes a multi-log(p) term.

Genovese, Jin, Wasserman (2009); T: not unique

Jiashun Jin Privacy Protection for Sparse Data



Phase Change

» Phase change in the optimal threshold:

t ) t :

P <1, ifr> + >1, otherwise
Tp Tp

» Phase change in individual privacy:

N ~1 r>1
PG = 7olfj = 75) { algebraically small, r <
» Phase change in the optimal rate:

~pep, 0<r<d (No Recovery),
Hammp(9,r) ¢ < pep, 9 < r < (1++/1—49)? (Almost Full Recovery)
o(l), r>(1++V1-9)? (Exact Recovery)
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Phase Diagram (Recovery)

asf Exact Recovery
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Connection to Differential Privacy

» Except that in Region of Exact Recovery, we
can finesse the data without noticing by either

» replace a few signals by noise
» replace a few noise by signal
» Idea: Hellinger distance between the joint
densities before and after the finessing = o(1)

» Related to the optimal rate of estimating ¢,
(see Cai et al. (2007)).
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Application to Variable Selection

Linear model:

Y=W3+2Z,  Z~ NO,I,)

» W= W,,; p: dimension; n: sample size
» (. p by 1 (unknown)
» Modern setting:

p > n, (3 is sparse

Goal: decide which coordinates of (3 are nonzero
and which are zero
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Example: Statistical Queries

» Database allows for a total of n queries

» For the i-th query, the database randomly
generates a weight vector

-
Wi = (Wi17XI'27 DRI Wip)

and returns

yi = W,-Tﬁ—i—z,-, z ~ N(0,1), 1<i<n

» In matrix form, Y = Wpg+ Z
Dinur and Nissim (2004)
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Asymptotic Model (Variable Selection)

Suppose
» W = (W(’.aj))lgign,lijép
..\ did 1
W(’a./) ~ N(O’ _)
n
» as before,
5 Ty prob. €,
7= o, prob. 1 —¢,

» for parameters ¢,0 € (0,1) and r > 0,

n=rp’ €p = p~ ", Tp, = y/2rlogp




Optimal Rate in Hamming Distance, Il

Fix 0 <v,0,r <1,

n=p? €p = p Y, Tp = /2rlogp

Theorem 5. Suppose 6 > 2(1 — ). The optimal
Hamming distance

(9402

Hamm, (9, r) —L(p) Yo r>v,
~ pt=? O<r<d

where L(p) denotes a multi-log(p) term.

Genovese, Jin, Wasserman (2009)
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Phase Diagram (Recovery)
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Sketch of Proofs

» Region of No Recovery: relate the variable
selection to hypotheses testing

HO’,' . ﬂ,’ =0 VS. H17,' . 5,' = Tp

Let fy; be the density associated with Hp;, and
f1; be the density associated with H;;. For any
procedure, the Hamming distance
> [|(1 — ep)foi — ephailln

» Region of Almost Full Recovery/Exact
Recovery: use the Lasso

Note: improves that in Wainwright (2006)



» A variable selection procedure proposed by
Chen et al. (1995) and Tibshirani (1996).

» Look for solution B that minimizes

ly — WBII> + A8,

with || - || for #2-norm and | - |; for ¢>-norm.

Suppose n = n, = p’ and § > 2(1 — ). Setting the
tuning parameter

V4
A=2-maxqy ——, 17 -1/20lo
{2\/19r } &P

yields the optimal rate in Hamming distance
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Take-home messages

» Discussed adding noise approach to privacy
protection for sparse data
» Introduced precise demarcation for

» when data mining is impossible/possible
» when accurately identifying individual signals is
impossible/possible

» Tried to forge links between confidentiality and
current statistical literature

Jiashun Jin Privacy Protection for Sparse Data



www.stat.cmu.edu /Jiashun /Research/

Donoho and Jin (2004): Higher Criticism and Phase Diagram
Cai, Jin, and Low (2007): Estimating €,
Fienberg and Jin (2009): Multiplicity issues in Confidentiality

Genovese, Jin, Wasserman (2010):  Variable Selection and the Lasso

In preparation: linkage to confidentiality
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