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Problem Deﬁniﬂon

e [nput Database x € R"
— Thought of as Histogram of N people

« Want to compute linear function Fx € R¢
— FEach entry of F in {—1,1}
* Output approximation M(x) such that

— M is differentially private (w.r.t. to I; norm)
— M(x) is close to Fx



Dferenﬁal Privacy

| DworkMcSherryNissimSmith06 |

A mechanism M provides s—differential privacy if
for all x;,x, € Z , for any S € R

PriM(x,) € S]
PF[M(XZ) c S] = exp(s|x1 R x2|1)

Neighboring Databases: [x; — x,| < 1. One person
changes type from i to j. Output distribution
nearly unchanged.
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Problem Deﬁniﬁon

e [nput Database x € R"
— Thought of as Histogram of N people

« Want to compute linear function Fx € R¢
— FEach entry of F in {—1,1}
* Output distribution M (x) such that

— M is differentially private (w.r.t. to I; norm)

—Ey| |IFx — M(x)||, ] is as small as possible.



Problem Deﬁniﬁon

e [nput Database x € R"

« Want Fx € R? with F € {—1, +1}¢X"

* Define distribution M(x) for every x € R"
e Minimize max Ey[||Fx — M(x)||,]

xX€ERM

Let err(F,M) denote the above error

Let err(F) denote min err(F,M)
M is eDP



Questions

 How big can err(F) be?
— Universal upper bounds?

— Lower bounds?

e Given F, what is err(F) ¢



Known results [1 of 2]

| DworkMcSherryNissimSmith06 ]
[Laplacian mechanism gives €DP for any F

Thus err(F) < O(d\/a)

— l.e. error at most d per coordinate

' BlumligettRoth08]

2 1
Can do with error ~0(N 3 d§) per coordinate

— Better than Laplacian when N is small

— Result more general, d is VC dimension of concept
class.



Known results 2 of 2]

| DinurNissim03]
For random F, err(F) = Q(d)
—1i.e. need error at least Vd per coordinate

— LLower bound applies to essentially any privacy
definition

Various extensions [DMTO07,DY08,KRY09]
| GhoshRoughgardenSundararajan09 ]

[Laplace noise is optimal for d=1



The Ioody K

Given F € {—1,1}4x"

LLet K = FB{ be the
image of the unit [, ball
under F.

K 1s symmetric convex
hull of columns of F.

We relate err(F) to
parameters of K




Results
1
Lower bound: err(F) = Q(d+d Vol(K)a)
Upper bound: err(F) < 0(d E cxlllzll5])

For Random F (using [KlartagKozma09]):

err(F) is O(d) - min (\/E, logg>



Results

1
Lower bound: err(F) = Q(d+/d Vol(K)a)
Upper bound: err(F) < 0(d E cxlllzll5])

For Random F:

err(F) is ©(d) - min (\/E, N

n
loga

— For d < logn, Laplace is optimal
— For d > logn, can do better.

| for random F



Results

O conketure rom comvex geometry

Assume the Hyperplane conjecture.

Then for any F, we give an eDP mechanism M
3
such that err(F,M) <0 (logi d) -err(F)

3

—l.e. we give a O (logE d) approximation to the
best eDP mechanism.

— For specific F, error can be much smaller than
lower bounds for random F.




Lower Bound

Basic idea:

Suppose Vol(K) is large, error small.

Then can find exp(d) points in dK that are
mutually far (distance 2r from each other).

Let y4, ..., Y5 be such a code.
Let x4, ..., xg be preimages.

| =

By low error Pr[M(x;) € B(y;,r)] = ”

exp(—ed)

By Privacy:Pr[M(x;) € B(y;, 1)] 2 —,

y;’s far: Pr{M(x;) € UB(y;, )] 2 29D

Contradiction!




Upper Bound

Basic Idea: Tailor noise to K
Consider norm ||+||x
Iyllx = min{A:y € AK'}
By definition ||[Fx; — Fx,|lx < |21 — X314

Use Exponential mechanism [McSherryT.07] M:
On input x € R

Sample y with prob. o« exp(elly — Fx||g)
Same as:

Pick r from appropriate distribution
Sample y from Fx + rK

Fx



Upper Bound

Calculation: err(F,Mg) < 0(d E,cxlllzl],])

1
Recall lower bound: err(F) = Q(dVd Vol(K)a)

Hyperplane conjecture: /l

: : E
For any isotropic K, 25X lZ” is 0(\/_)
Vol(K)d

i, ETEME) 0(1)

err(F)




Upper Bound

[sotropic: same expected projection in all
directions

E,cx|[{z, u)?]is the same for all unit vectors u

When K is not isotropic, we can decompose
along directions with approximately equal
expected projection.

Apply Mg to K restricted to those
directions.




In fact very general

e Let K be the (symmetric convex hull of the)
set of changes to any function G: D — R¢

that one person can cause.
K = symconv {G(x) — G(x’): x,x neighbours}

 Mechanism My works for arbitrary G

e Can actually use any K’ 2 K



Efﬂc lent Imp lementation

As defined mechanism M requires sampling uniformly
from K.

Can get arbitrarily close to the uniform distribution
using geometric random walks.

[Leads to polynomial time algorithm with the same
guarantees.

Polynomial not awesome.



Caveats

* [Lower bound applies for small € and large N.
(E.g. N = n? suffices)

e Better mechanisms do exist when N 1s small.



Linear Pro gram

Minimize

ZM(x,a) =1

u(x,a) =0

ux,a) < exp(e) u(x', a)

> uxalla - Fxl) < E
a

E

Vx € R"

Vx € R",Va € R4

Vx, x’ neighbours € R® Va € R¢

Vx € R"



Conclusions

Gave new mechanisms and lower bounds for
differentially private mechanisms

Better polynomial running times?

Better lower bounds/mechanisms for small N9

Online mechanisms®?
Relaxations of eDP??

Compute err(F) for specific functions F.



