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Problem Definition 

• Input Database 𝑥 ∈ ℝ𝑛 

– Thought of as Histogram of 𝑁 people 

• Want to compute linear function 𝐹𝑥 ∈ ℝ𝑑 
– Each entry of 𝐹 in *−1,1+ 

• Output approximation 𝑀(𝑥) such that 

–𝑀 is differentially private (w.r.t. to 𝑙1 norm) 

–𝑀(𝑥) is close to 𝐹𝑥 

 

 



Differential Privacy 

[DworkMcSherryNissimSmith06] 
A mechanism 𝑀 provides 𝜀-differential privacy if 
for all 𝑥1, 𝑥2  ∈ ℤ+

𝑛     , for any 𝑆 ⊆ ℝ𝑑 
 

Pr 𝑀 𝑥1 ∈ 𝑆

Pr 𝑀 𝑥2 ∈ 𝑆
≤ exp 𝜀 𝑥1 − 𝑥2 1  

 
Neighboring Databases: 𝑥1 − 𝑥2 ≤ 1. One person 
changes type from 𝑖 to 𝑗. Output distribution 
nearly unchanged. 
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Problem Definition 

• Input Database 𝑥 ∈ ℝ𝑛 

• Want 𝐹𝑥 ∈ ℝ𝑑 with 𝐹 ∈ −1,+1 𝑑×𝑛 

• Define distribution 𝑀(𝑥) for every 𝑥 ∈ ℝ𝑛  

• Minimize max
𝑥∈ℝ𝑛
𝐸𝑀 𝐹𝑥 − 𝑀 𝑥 2  

 

Let 𝑒𝑟𝑟 𝐹,𝑀  denote the above error  

Let 𝑒𝑟𝑟 𝐹  denote min
𝑀 𝑖𝑠 𝜀DP

𝑒𝑟𝑟 𝐹,𝑀  



Questions 

 

• How big can 𝑒𝑟𝑟 𝐹  be?  

– Universal upper bounds? 

– Lower bounds? 

 

• Given 𝐹, what is 𝑒𝑟𝑟 𝐹  ? 

 



Known results [1 of 2] 

[DworkMcSherryNissimSmith06] 

Laplacian mechanism gives 𝜀𝐷𝑃 for any 𝐹 

Thus 𝑒𝑟𝑟 𝐹 ≤ 𝑂 𝑑 𝑑  
– i.e. error at most 𝑑 per coordinate 

[BlumLigettRoth08] 

Can do with error ~𝑂 𝑁
2

3 𝑑
1

3  per coordinate 
– Better than Laplacian when N is small 

– Result more general, d is VC dimension of concept 
class. 



Known results [2 of 2] 

[DinurNissim03] 

For random 𝐹,  𝑒𝑟𝑟 𝐹 ≥ Ω 𝑑  

– i.e. need error at least 𝑑 per coordinate 

– Lower bound applies to essentially any privacy 
definition 

Various extensions [DMT07,DY08,KRY09] 

[GhoshRoughgardenSundararajan09] 

Laplace noise is optimal for d=1 



The body K 

Given 𝐹 ∈ −1,1 𝑑×𝑛  
 
Let 𝐾 =  𝐹𝐵1

𝑛 be the 
image of the unit 𝑙1 ball 
under 𝐹. 
𝐾 is symmetric convex 
hull of columns of 𝐹. 
 
We relate 𝑒𝑟𝑟 𝐹  to 
parameters of 𝐾 

𝐹 

𝐵1
𝑛 

𝐾 



Results 

Lower bound:  𝑒𝑟𝑟 𝐹 ≥ Ω(𝑑 𝑑 𝑉𝑜𝑙 𝐾
1

𝑑) 

 

Upper bound: 𝑒𝑟𝑟 𝐹 ≤ 𝑂 𝑑 𝐸𝑧∈𝐾 𝑧 2  

 

For Random 𝐹   (using [KlartagKozma09]): 

       

 𝑒𝑟𝑟 𝐹  is Θ 𝑑 ⋅min 𝑑, log
𝑛

𝑑
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For Random 𝐹: 

 𝑒𝑟𝑟 𝐹  is Θ 𝑑 ⋅min 𝑑, log
𝑛

𝑑
 

– For 𝑑 < log 𝑛, Laplace is optimal for random F 

– For 𝑑 > log 𝑛, can do better. 



Results 

Assume the Hyperplane conjecture.  

Then for any 𝐹, we give an 𝜀𝐷𝑃 mechanism 𝑀 

such that  𝑒𝑟𝑟 𝐹,𝑀 ≤ 𝑂 log
3

2 𝑑 ⋅ 𝑒𝑟𝑟(𝐹) 

 

– I.e. we give a 𝑂 log
3

2 𝑑  approximation to the 
best 𝜀𝐷𝑃 mechanism. 

– For specific 𝐹, error can be much smaller than 
lower bounds for random 𝐹. 

 

Old conjecture from convex geometry 



Lower Bound 

Basic idea: 

Suppose 𝑉𝑜𝑙(𝐾) is large, error small. 

Then can find exp(𝑑) points in 𝑑𝐾 that are 
mutually far (distance 2𝑟 from each other). 

Let 𝑦1, … , 𝑦𝑆 be such a code. 

Let 𝑥1, … , 𝑥𝑆 be preimages. 

By low error Pr 𝑀 𝑥𝑖 ∈ 𝐵 𝑦𝑖 , 𝑟 ≥
1

2
 

By Privacy:Pr 𝑀 𝑥𝑗 ∈ 𝐵 𝑦𝑖 , 𝑟 ≥
exp −𝜀𝑑

2
 

 

𝑦𝑖’s far: Pr 𝑀 𝑥𝑗 ∈ ⋃𝐵 𝑦𝑖 , 𝑟 ≥
exp (1−𝜀)𝑑

2
 

Contradiction! 

 

𝑑𝐵1
𝑛 

𝑑𝐾 



Upper Bound 

Basic Idea: Tailor noise to 𝐾 

Consider norm ⋅ 𝐾 
𝑦 𝐾 =  min *𝜆: 𝑦 ∈ 𝜆𝐾 + 

By definition 𝐹𝑥1 − 𝐹𝑥2 𝐾 ≤ 𝑥1 − 𝑥2 1 

 

Use Exponential mechanism [McSherryT.07] 𝑀𝐾: 

On input 𝑥 ∈ℝ𝑛 

Sample 𝑦 with prob. ∝ exp 𝜀 𝑦 − 𝐹𝑥 𝐾  

Same as:  

Pick 𝑟 from appropriate distribution 

Sample y from 𝐹𝑥 +  𝑟𝐾 

 

 
𝐹𝑥 



Upper Bound 

Calculation: 𝑒𝑟𝑟 𝐹,𝑀𝐾 ≤ 𝑂 𝑑 𝐸𝑧∈𝐾 𝑧 2  

 

Recall lower bound:  𝑒𝑟𝑟 𝐹 ≥ Ω(𝑑 𝑑 𝑉𝑜𝑙 𝐾
1

𝑑) 

 

Hyperplane conjecture: 

For any isotropic 𝐾, 
𝐸𝑧∈𝐾 𝑧 2

𝑉𝑜𝑙 𝐾
1
𝑑

 is 𝑂 𝑑  

  i.e. 
𝑒𝑟𝑟 𝐹,𝑀𝐾

𝑒𝑟𝑟 𝐹
 is 𝑂 1  

Value for the 
ball in ℝ𝑑 



Upper Bound 

Isotropic: same expected projection in all 
directions 

𝐸𝑧∈𝐾 𝑧, 𝑢
2 is the same for all unit vectors 𝑢 

 

When 𝐾 is not isotropic, we can decompose 
along directions with approximately equal 
expected projection. 

Apply 𝑀𝐾 to 𝐾 restricted to those 
directions. 



In fact very general 

• Let 𝐾 be the (symmetric convex hull of the) 
set of changes to any function 𝐺:  𝐷 → ℝ𝑑 
that one person can cause. 
𝐾 = 𝑠𝑦𝑚𝑐𝑜𝑛𝑣 * 𝐺 𝑥 − 𝐺 𝑥’ :  𝑥, 𝑥’ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠+ 

 

• Mechanism 𝑀𝐾 works for arbitrary 𝐺 

• Can actually use any 𝐾’ ⊇ 𝐾 

 

 



Efficient Implementation 

As defined mechanism 𝑀𝐾 requires sampling uniformly 
from 𝐾. 

Can get arbitrarily close to the uniform distribution 
using geometric random walks. 

Leads to polynomial time algorithm with the same 
guarantees. 

Polynomial not awesome. 



Caveats 

• Lower bound applies for small 𝜀 and large 𝑁. 
(E.g.  𝑁 ≈ 𝑛2 suffices) 

• Better mechanisms do exist when 𝑁 is small. 

 

 



Linear Program 

  

 

 

 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  E 

 𝜇 𝑥, 𝑎

𝑎

=  1 ∀𝑥 ∈ ℝ𝑛 

𝜇 𝑥, 𝑎 ≥ 0 
 

∀𝑥 ∈ ℝ𝑛, ∀𝑎 ∈ ℝ𝑑 
 

𝜇 𝑥, 𝑎 ≤ exp 𝜀 𝜇 𝑥’, 𝑎  ∀𝑥, 𝑥’ neighbours ∈ ℝ𝑛, ∀𝑎 ∈ ℝ𝑑 

 𝜇 𝑥, 𝑎 𝑎 − 𝐹𝑥

𝑎

≤ 𝐸 ∀𝑥 ∈ ℝ𝑛  



Conclusions 

• Gave new mechanisms and lower bounds for 
differentially private mechanisms 

 

• Better polynomial running times? 

• Better lower bounds/mechanisms for small 𝑁? 

• Online mechanisms? 

• Relaxations of 𝜀𝐷𝑃? 

• Compute 𝑒𝑟𝑟(𝐹) for specific functions 𝐹. 


