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Aleksandra Slavković Differentially Private Estimators & Basic Statistical Inference



Introduction
Some Definitions

ε−differential Privacy Framework
Hypothesis Testing

Conclusions

Privacy v.s. Utility
Rigorous Definition of Privacy
Outline
Clinical Trials
Outline

Data privacy & Data analysis

Obtain valid statistical results while minimizing the loss of privacy and
confidentiality of individuals and organizations.

Research Communities:
Statistics: statistical disclosure limitation.
Computer science: privacy-preserving data mining.

Nature of the problem has changed
Duality + Usability + Transparency
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Differential Privacy (DP) Framework

Precise guarantees on privacy in the presence of arbitrary side
information, (possibly) in advance of data collection and publication.

Recent theoretical developments on connections between DP and
traditional statistical inference

Parametric estimation [Smith].
Robust statistics [Dwork & Lei].
Approximation of smooth densities [Wasserman & Zhou].
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Our goals

Understand how rigorous notions of privacy relate to statistical
inference
Evaluate how private and non-private estimators compare for
parametric exponential families
Evaluate the differential privacy framework to some popular
statistical models such as log-linear models (contigency tables) or
logistic regression models.
Develop concrete methodology that data analysts can use
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Clinical Trials
Clinial Trials:

Data exchange: many confirmatory studies and careful
meta-analyses are required to produce practical impact, i.e.
changes to medical practice or public policy.
Legacy: ClinicalTrials.gov is currently the largest registry in the
world; it warehouses 86,148 trials with locations in 172 countries
as of today.
Finite (typically small) sample size N.

Two research questions:
How should we publish these current trial datasets for statistical
analysis without compromising individual privacy?
How should we design future trials to allow for such safe public
sharing of results?
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Outline

For this talk,
focus on binomial distribution to evaluate the statistical efficiency
of ML estimators and differential private estimators.
illustrate the role of sample size in this interaction between
statistical efficiency and privacy requirement.
propose approximate sample size adjustment factors needed for
sample size calculation in classical hypothesis testing.
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Exponential Family

The exponential family density: f (x |θ) = h(x)exp
(

∑i θiSi(x)−K (θ)
)

Si(x)s are sufficient statistics.
θi ’s are natural parameters.
K (θ) is the normalizing constant.

Consider a random sample x1, . . . ,xN from f (x |θ). The Maximum
Likelihood estimate of θ , TN(x), is obtained by maximizing the
likelihood function L(θ) =∏N

k=1 f (xk |θ).

TN(x) is a function of sufficient statistics Si(x)s. Under the exponential
family, all information of the random sample are contained in these
sufficient statistics.
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Asymptotic Efficiency of MLEs and Arbitrary Estimators

Theorem (Cramér) Let X1,X2... be i.i.d with density f (x |θ),θ ∈ Θ and
let θ0 denote the true value of θ . Let the MLE of θ0 be T (x). Under
appropriate regularity conditions:

√
N(TN(x)−θ)

D→ Normal
(

0, I−1(θ)
)

where I(θ) is Fisher information.

An arbitrary estimator T εN(x) is asymptotically efficient if it is also true
that: √

N(T εN(x)−θ)
D→ Normal

(

0, I−1(θ)
)
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Mean Squared Errors

To compare the statistical quality of TN(x) and T εN(x) on a finite
sample size, we can use the mean square error criterion:

MSETN(x)(θ) = Eθ
[

(TN(x)−θ)2]

MSET εN(x)(θ) = Eθ
[

(T εN(x)−θ)2]
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Data Access and Sharing

Communication between data servers and researchers:
Datasets are contained in some centralized servers.
Researchers access the servers to obtain sufficient statistics
needed statistical inference.
Differential privacy framework basically plays the role of a proxy
by computing these statistics then adding Laplace noise to them
before returning them to researchers.

Researchers can share data (or results) with others; e.g, in the context
of clinical trials.

Focus on parametric inference with exponential families.
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Neighboring Datasets & Differential Privacy

Two datasets x = (x1,x2, ...,xn) and x’ = (x ′1,x ′2, ...,x ′n) are neighbors
if and only if they are different at only one sample; i.e., rearrange
x = (x1,x2, ...,xi , ...,xn) and x’ = (x1,x2, ...,x ′i , ...,xn) for some i in
1 ≤ i ≤ n.

Definition
A statistic T(.) is ε-differentially private if for all neighboring datasets x,
x’, and for all measurable subsets A:

P(T (x)∈A)
P(T (x’)∈A) ≤ eε

The parameter ε > 0 is a measure of the information leakage.
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Algorithm

Input: A data set x = (x1, ...,xN) ∈ DN .
Parameters:

Λ is the range of Ti(x), or diameter of the parameter space.
ε > 0 is the level of privacy to achieve, i.e., perturbation
parameter.

Algorithm 1:
Obtain the sufficient statistics T1(x), ...,Tm(x).
For each Ti(x) draw a random observation R from Laplace( Λ

Nε )
and compute T εi (x) = Ti(x)+R.
Return T εi (x)’s.
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ε−differential Privacy and Asymptotic Efficiency

[Smith] shows that privacy estimators theoretically achieve asymptotic
efficiency when the sample sizes go to infinity.

Following lemmas are relevant for the binomial and multinomial
models given our setting. We need to add more assumptions are
needed for other models.

Lemma 1: Algorithm 1 satisfies ε−differental privacy.

Lemma 2: Under the regularity conditions of normal asymptotic
distributions of ML estimators, if Λ is bounded and ε is fixed, the
estimators T εi (x) are asymptotically unbiased, normal, and efficient.
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The Triangle: MSE , ε , and N

There are interactions among:
1 Quality of the estimator MSE .
2 Differential privacy parameter ε .
3 Sample size N.

Since TN(x) is asymptotically unbiased, MSETN(x)(θ) ≈ Var
[

TN(x)
]

.
We will standardize both MSETN(x)(θ) and MSET εN(x)(θ) by

Var
[

TN(x)
]

.
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Trade-off between Privacy and Efficiency through ε
Binomial: p = 0.5, sample size N = 100, simulation size M = 10000,
Lap( 1

Nε )
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Trade-off between Privacy and Efficiency through ε
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Achieving Asymptotic Efficiency by Controling Data Size
Binomial: p = 0.5, privacy level ε = 0.1, simulation size M = 10000,
Lap( 1

Nε )
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Achieving Asymptotic Efficiency by Controling Data Size
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Concrete Methodology — Hypothesis Testing

Many research questions in clinical trials are typically formulated in
ways to test if we have sufficient evidence to reject some default
theory or a null hypothesis in favor of a alternative hypothesis.

Ho : p = p0 versus Ha : p = p0 +δ .

Two criteria for comparing statistical hypothesis tests:
1 The confidence level of a test is defined as 1−α where α , the

type I error, is the probability of rejecting the null hypothesis when
it is true.

2 The power of a test calculated as 1−β is the probablity of
rejecting the null hypothesis when it is false (β is the type II error).
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Concrete Methodology — Hypothesis testing

β (θ) = Pθ (X ∈ RR)

{

Prob. of Type I error if θ ∈ Θ0
1- Prob. of Type II error if θ ∈ Θc

0
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Concrete Methodology – Hypothesis Testing

Many funding agencies and ethics boards frequently request a power
analysis (sample size calculation) to be done before the study is
conducted.

Two settings under the differential privacy:
A priori determination of the revised finite sample size needed to
achieve certain size and power of the test while maintaining the
required differential privacy ε .
If data are already available, researchers need to adjust original
sample sizes for meta-analyses when calculation is based on
differentially private sufficient statistics.

Aleksandra Slavković Differentially Private Estimators & Basic Statistical Inference



Introduction
Some Definitions

ε−differential Privacy Framework
Hypothesis Testing

Conclusions

Setting
Test for a Proportion
Approximate Factor K

Test for a proportion

Let x1,x2, ...,xN ∼ Bernoulli (p). The sufficient statistic p̂ = 1
N ∑

N
i=1 xi is

also the estimator of interest for p.

Ho : p = p0 versus Ha : p = p0 +δ .

N is the original sample size to achieve the confidence level 1−α and
the power 1−β in the case we do not deploy the differential privacy
framework.

Under the differential privacy framework, to achieve the confidence
level 1−α and the power 1−β , the privacy-preserving sample size
Nε = K ∗N.
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Concrete Methodology – Hypothesis Testing

Simulations show that when the true data size is large enough the
difference between N and Nε is not significant.

We need to resolve the trade-off between statistical efficiency and
privacy requirement by increasing the required sample size to control
for the effect of noise.

Propose adjustment factors K > 1:
A priori sample size determination: Nε = K ∗N
Meta-analyses: N = Nε/K .
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Without Differential Private Noise

Define σ 2 = p̄(1− p̄) where p̄ = p0 + δ
2

Under Ho : p̂ ∼ N
(

p0,
σ2

N

)

versus Under Ha : p̂ ∼ N
(

p0 +δ , σ
2

N

)

To achieve the confidence level 1−α and the power 1−β , we solve:

p0 + z1−α/2

√

σ 2

N
= p0 +δ − z1−β

√

σ 2

N

Then, the original sample size:

N =
(z1−α/2 + z1−β)

2σ 2

δ 2
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With Differential Privacy Noise

Under Ho :

N
(

p0,
σ 2

Nε

)

+L
(

√
2

εNε

)

≈ N
(

p0,
σ 2

Nε +
2

ε2(Nε )2

)

Under Ha:

N
(

p0 +δ ,
σ 2

Nε

)

+L
(

√
2

εNε

)

≈ N
(

p0 +δ ,
σ 2

Nε +
2

ε2(Nε )2

)

Here we approximate L
( √

2
εNε

)

by N
(

0, 2
ε2(Nε )2

)
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Test for a proportion

The privacy-preserving sample size Nε is calculated by solving:

p0 + z1−α/2

√

σ 2

Nε +
2

ε2(Nε)2 = p0 +δ − z1−β

√

σ 2

Nε +
2

ε2(Nε )2 (1)

Then:

Nε = N(
1
2

+
1
2

√

1+
8δ 2

ε2(z1−α/2 + z1−β )2σ 4 ), (2)
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Test for a proportion

Here we are interested in the approximate sample size correction
factor under the DP framework:

K =
1
2

+
1
2

√

1+
8δ 2

ε2(z1−α/2 + z1−β )2σ 4 (3)

We can calculate a better approximate sample size correction factor K
by solving the equation:

F−1
Xo (1−α/2) = F−1

Xa (1−β ) (4)

with respect to the variable Nε , where sampling distributions of p̂ are
Xo ∼ NL(p0,

σ2

Nε ,εNε ,εNε ,1), and Xa ∼ NL(p0 +δ , σ
2

Nε ,εNε ,εNε ,1).
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Sample size correction factor K

Table: α = .05, β = .4, p0 = .25, δ = .1, classical sample size N = 103 and
the DP sample size N ′ = KN.

ε 0.1 0.2 0.3 0.4 0.5
Norm-Lap K 3.65 2.12 1.64 1.42 1.29
Norm-Norm K 3.58 2.10 1.63 1.41 1.29

Table: α = .05, β = .1, p0 = .25, δ = .1, classical sample size N = 221 and
the DP sample size N ′ = KN.

ε 0.1 0.2 0.3 0.4 0.5
Norm-Lap K 2.62 1.64 1.35 1.22 1.15
Norm-Norm K 2.64 1.65 1.35 1.22 1.15
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Sample size correction factor K
Table: The effect of correcting factors on achieving α with α = .05, β = .1,
p0 = .25, δ = .1. True sample size is N = 221.

ε 0.1 0.2 0.3 0.4 0.5
No Correction 0.1606 0.0763 0.0496 0.0350 0.0315
Norm-Appr K 0.0943 0.0557 0.0403 0.0376 0.0288
Norm-Lapl K 0.0937 0.0538 0.0387 0.0335 0.0267

Table: The effect of correcting factors on achieving β with α = .05, β = .1,
p0 = .25, δ = .1. True sample size is N = 221.

ε 0.1 0.2 0.3 0.4 0.5
No Correction 0.2562 0.1817 0.1459 0.1355 0.1209
Norm-Appr K 0.0249 0.0434 0.0629 0.0754 0.0814
Norm-Lapl K 0.0238 0.0451 0.0633 0.0752 0.0830
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Sample size correction factor K
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Exact Methods for small N
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Conclusions

Current results:
Evaluate the effect of the data size on the asymptotic efficency of
ε−differential estimators for Binomial and Multinomial
parameters.
Develop rules for sample size calculation and power analysis

Frequentist testing for a single proportion
χ2 test of independence

Ongoing and future work:
Evaluate the ε−differential privacy framework for log-linear
models and logistic regression models.
Apply differential privacy to Bayesian credible intervals.
New statistical tests
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Conclusions
Thank you!
χ2 test of independence

Thank you!
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