
Tutorial

on

Statistical Inference

Larry Wasserman

Carnegie Mellon University

February 2010

1



Outline

• CS versus Statistics

• Background

• Minimax Theory

• (Confidence Sets)

• (Bayes versus Frequentist)

• (Robustness)

• Statistical View of Differential Privacy

2



An Oversimplified Description

of Statistics versus CS

3



Statistics

Prediction

The View From Computer Science
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Prediction

Statistics

The View From Statistics
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CS:

o what algorithm should I use (or invent)?

o what are the properties of the algorithm? (running time, com-

plexity)

Statistics:

o what assumptions about the data are reasonable?

o what is the best we can do under those assumptions?

o how do I design an estimator (predictor, algorithm) to achieve

this performance?
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Prediction

• CS view:

o training data =⇒ algorithm

X =⇒ Algorithm =⇒ prediction

o properties of the algorithm

7



• Statistics view:

o model: (X1, Y1), . . . , (Xn, Yn) ∼ P ∈ P
o what P is reasonable?

o optimal method: find m̂ such that

sup
P∈P

E(Y − m̂(X))2 = inf
m̂

sup
P∈P

E(Y − m̂(X))2

X =⇒ Algorithm =⇒ prediction m̂(X)

o Also interested in m̂(x) and confidence interval for m̂(x)

* “optimal” refers to optimality in the minimax sense. There are

other notions of optimality.
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• Example:

Predict change in bone mineral density Y from age X

o best predictor is the regression function m(x) = E(Y |X = x)
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In addition to predicting Y from X we want to know:

o what is the best estimator of m given smoothness assumptions?

o what features in m̂ are real?

o confidence band for m(x)

o how different are men and woman?
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Background
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Terminology

Statistics CS
Estimation Learning
Classifier Hypothesis
Classification Classification/learning
Regression Regression
Confidence Interval ????
Kernels Parzen windows
Mercer Kernels Kernels
???? semisupervised learning
distribution free agnostic
sequential design active learning
O(·) O(·)
an � bn an = Θ(bn)
bn = O(an) an = Ω(bn)
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Models

X1, . . . , Xn ∼ P

• A statistical model is a collection P of probability distributions.

• Parametric model: P = {Pθ : θ ∈ Θ ⊂ Rd}

• Example: P = all Gaussian distributions

• Nonparametric model: P is infinite dimensional.

• Example: P is all distributions.

• Example: Sobolev space:

P =

P : p =
dP

dµ
,
∫

(p′′(x))2dx ≤ C


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Typical Statistical Problems

• Estimate a parameter θ = T (P ) such as the mean:

minimax risk inf
θ̂

sup
P∈P

EP ||θ̂ − θ(P )||2

• Construct a confidence interval Cn:

coverage inf
P∈P

P (θ(P ) ∈ Cn) ≥ 1− α.

• Nonparametric Density Estimation: Y1, . . . , Yn ∼ p:

minimax risk inf
p̂

sup
P∈P

EP
∫

(p̂− p)2.
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Typical Statistical Problems

• Nonparametric Regression: (X1, Y1), . . . , (Xn, Yn): Estimate

m(x) = E(Y | = x). i.e. Predict Y ∈ R.

minimax risk inf
m̂

sup
P∈P

EP
∫

(m̂−m)2.

• Predict Y ∈ {0,1} i.e. classification.

minimax risk inf
ĥ

sup
P∈P

P (h(X) 6= Y ).
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Empirical Measures

• Empirical measure P̂n puts mass 1/n at each Xi.

• Glivenko-Cantelli Theorem:

sup
A∈A

|P (A)− P̂n(A)| P→ 0

of A is a VC class.

• Exponential inequality:

P
(

sup
A∈A

|Pn(A)− P (A)| > ε

)
≤ Ce−ncε

2

• Donsker’s Theorem:

{
√
n(P̂n(A)− P (A)) : A ∈ A} B = Brownian bridge

This means that {
√
n(P̂n(A) − P (A)) is approximately Normal,

uniformly over A.

• The concern with asymptotic Normality seems to be an impor-

tant difference between CS and Statistics.
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Empirical Measures

• Parameter (or functional) θ = T (P )

• Plug-in estimator: θ̂ = T (P̂n)

• Example: If θ = mean then θ̂ = T (Pn) = X = sample mean

• Example: If θ = first eigenvector of Σ = E(X − µ)(X − µ)T

then θ̂ = T (Pn) = PCA
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Many Normal Means

Yi = µi + σεi, i = 1,2, . . . , εi ∼ N(0,1)

This is a surprisingly rich “laboratory” for doing theory. It can be

shown that many problems (density estimation, nonparametric

regression, etc) are “statistically isomorphic” to this model.

The Sobolev space of order p in function space corresponds to

the Sobolev ellipsoid:

Θ =

µ :
∞∑
i=1

µ2
i i

2p ≤ C

.
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Minimax Estimation
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Minimax Estimation

• θ = θ(P )

• θ can be a parameter, a function, a prediction etc.

• estimator θ̂ = g(X1, . . . , Xn)

• loss function L(θ, θ̂): example: (θ̂ − θ)2

• minimax risk:

Rn = inf
θ̂

sup
P∈P

EP
(
L(θ(P ), θ̂)

)
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Minimax Estimation

Goals:

• compute the minimax risk

• find lower and upper bounds on Rn

• compute the minimax rate: Rn � rn
• find an estimator that achieves the minimax risk (or at least

the minimax rate)

Tools for lower bounds:

• Fano’s inequality

• Assouad’s lemma

• LeCam’s lemma

• Bayes estimators with constant risk
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Fano’s Inequality

inf
θ̂

sup
P∈P

EP (d(θ̂, θ(P ))) ≥ inf
θ̂

sup
P∈F

EP (d(θ̂, θ(P )))

where F = {P0, P1, . . . , PM}

Suppose that

d(θj, θk) ≥ ψn

and

1

M

M∑
j=1

K(Pj, P0) ≤
logM

16

where K(P,Q) =
∫
p log(p/q), then

inf
θ̂

sup
θ∈F

Eθ(d(θ̂, θ)) ≥ Cψn

(This version is due to Tsybakov (2003).)
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Examples

• the mean of a Normal

• maximum likelihood

• functionals

• densities

• Sobolev spaces

• high dimensional classification

• semi-supervised learning

• manifold learning
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Example: Normal

X1, . . . , Xn ∼ N(θ,1)

L(θ, θ̂) = `(||θ − θ̂||) where ` is bowl-shaped (convex, symmetric

level sets)

The unique minimax estimator (over all bowl-shaped loss func-

tions) is

θ̂ =
1

n

n∑
i=1

Xi = X.
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Example: Maximum Likelihood

X1, . . . , Xn ∼ P

P ∈ P = {Pθ : θ ∈ Θ}

θ̂n = arg max
θ∈Θ

L(θ)

where

L(θ) =
n∏
i=1

pθ(Xi)

where pθ is the density of Pθ.
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When is Maximum Likelihood Minimax?

Short answer: For typical parametric models, fixed dimension,

large sample sizes (and some regularity conditions) the mle is

(aproximately) minimax.

Long answer: (Le Cam and Hajek): Under certions conditions:

sup
F

lim inf
n→∞ sup

h∈F
Eθn`(

√
n(θ̂n − θn)) ≥ Risk(mle)

where θn = θ + h/
√
n and F varies over all finite sets.

• This fails apart for nonparametric problems

• It also fails apart for high dimensional parametric problems (see

Martin’s tutorial)
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Example: Functionals

(Donoho and Liu, 1991).

Let θ = T (P ). Define the modulus of continuity

ω(ε) = sup{|T (P )− T (Q)| : H(P,Q) ≤ ε, P ∈ P}

where H2(P,Q) =
∫

(
√
p−√q)2. If T is a linear functional and P

is convex then

inf
Tn

sup
P∈P

EP `(Tn − T (F )) = Θ(ω(n−1/2)).

The lower bound is valid over all functionals.

Examples:

o T (P ) = p(x)

o T (P ) =
∫
p2(x)dx

o T (P ) = mode of p

27



Example: Estimating a Density Function

Let X1, . . . , Xn ∼ P where Xi ∈ Rd and

P ∈ P =

P : p =
dP

dµ
,
∫

(p′′(x))2dx ≤ C

.

Let L(p, p̂) =
∫

(p(x) − p̂(x))2dx. Then, there exists a universal

constant C > 0 such that

inf
p̂

sup
P∈P

EPL(p, p̂) ≥
C

n4/(4+d)
.

Furthermore, if we use the kernel estimator

p̂(x) =
1

n

n∑
i=1

1

hd
K

(
||x−Xi||

h

)

with kernel K and bandwidth h � n−1/(4+d) then

sup
P∈P

EPL(p, p̂) ≤
c

n4/(4+d)
.
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Example: Sobolev Spaces

Yi = N(µi, σ
2), i = 1,2, . . . ,

Θ =

µ :
∞∑
i=1

µ2
i i

2p ≤ C

.
Pinsker’s theorem:

inf
µ̂

sup
µ∈Θ

Eµ||µ̂− µ||2 ∼
Ap

n2p/(2p+1)

where

Ap =
(σ
π

)2p/(2p+1)
e2/(2p+1)

(
p

p+ 1

)2p/(2p+1)

(2p+ 1)1/(2p+1)

There is a known estimator that achieves the minimax risk.

There is also a known estimator that achieves the minimax risk

without knowledge of p. This is called an adaptive minimax

estimator.
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Example: High-Dimensonal Classification

Why can we classify well in high dimensions? Here is a minimax

explanation. (Audibert and Tsybakov 2007, Kohler and Krzyzak

2006).

Risk:

R(h) = P(Y 6= h(X))− P(Y 6= hBayes(X)).

One expects a minimax rate of

O

(
1

nβ/(2β+d)

)
where β is the smoothness of

m(x) = E(Y |X = x)

and d = dimension(X). This is O(1) as d→∞.

But ...
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High-Dimensional Classification

Recall that the Bayes classifier is

h(x) =

{
1 if m(x) ≥ 1/2
0 if m(x) < 1/2.

Low noise condition (large margin):

P
(∣∣∣∣m(X)−

1

2

∣∣∣∣ ≤ t) ≤ Ctα.
If α is large, the classes are well-separated.

Then:

inf
h

sup
P∈P

R(h) ≥ Cn−β(1+α)/(2β+d)

31



High-Dimensional Classification

If we use the plug-in classifier:

h(x) = I(m̂(x) > 1/2)

where m̂ is the kernel regression estimator with bandwidth h =

n−1/(2β+d) then

sup
P∈P

R(h) ≤ C′n−β(1+α)/(2β+d).

This rate behaves like O(1/n) when α is large. In fact, when

α =∞, the rate is e−cn.

Moral: Fast rates come from the assumption not the classifier.
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Example: Semi-supervised Inference

Two minimax analyses: Lafferty and Wasserman (2007) and

Singh, Nowak and Zhu (2008).

Labeled data (X1, Y1), . . . , (Xn, Yn) and unlabeled data (X1, . . . , XN).

Want to classify or to estimate

m(x) = E(Y |X = x).

Cluster assumption: m is smooth over clusters of the marginal

p(x).

Lafferty and Wasserman (2007) showed that may/may not im-

prove the minimax rate of convergence depending on the as-

sumptions.
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Example: Semi-supervised Inference

Singh, Nowak and Zhu (2008) obtained the following upper and

lower bounds, based on distance γ between clusters:

γ semi non-semi SSL helps?

I n−2α/(2α+d) n−2α/(2α+d) NO

II n−2α/(2α+d) n−2α/(2α+d) NO

III n−2α/(2α+d) n1/d YES
IV n−1/d n1/d NO

V n−2α/(2α+d) n1/d YES

VI n−2α/(2α+d) n1/d YES

Benefit of stating models precisely: can say when an algorithm

does/does not work.

34



Example: Estimating a Manifold

(From Genovese, Perone-Pacifico, Verdinelli, Wasserman 2010).

Yi = f(Ui) + ε, i = 1, . . . , n

where Yi ∈ RD. Here, U1, . . . , Un are unobserved and Ui ∈ [0,1]d

with d < D.

f : [0,1]d → RD

and the image of f is a smooth manifold M . Suppose that εi
has support on a ball of radius σ.

How well can we estimate M?
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Example: Estimating a Manifold

Specific case: D = 2 and d = 1 so M is a curve.

If a ball of radius ∆ can roll freely on M and if σ < ∆. Then

inf
M̂

sup
P∈P

EpdH(M, M̂) ≥
C

n2/3

where

dH(A,B) = inf {ε : A ⊂ Bε, B ⊂ Aε}

is the Hausdorff distance and

Aε =
⋃
x∈A

B(x, ε).
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Example: Estimating a Manifold

Originally, we estimated the support S of Yi by

Ŝ =
n⋃
i=1

B(Yi, εn)

and then took M̂ to be the medial axis (middle) of Ŝ.

But... it turns out that this does not achieve the minimax rate.

The minimax bound is achieved by:

o using a smooth estimate of S

o finding the center (medial axis) of the support.
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Adaptivity

Let {Θα} be a collection of spaces. Suppose that the minimax

risk is rn(α) for Θα:

rn(α) = inf
θ̂

sup
θ∈Θα

EθL(θ̂, θ).

Can we find an estimator θ̂ such that, for each α,

sup
θ∈Θα

EθL(θ̂, θ) � rn(α)

without knowledge of α?
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Example: Wavelet Regression

Yi = f(Xi) + εi

Assume that f ∈ Bσp,q (Besov space).

The minimax rate depends on (p, q, σ).

Donoho et al:

• expand f in a wavelet basis: f =
∑
j,k βj,kψj,k(x).

• Set Zj = 1
n

∑n
i=1 Yiψj(Xi).

• Set β̂j = soft(Zj) where

soft(x) = sign(x)(|x| − λ)+

then f̂(x) =
∑
j β̂jψj(x) is adaptive minimax, that is, it achieves

the minimax risk over Bσp,q without knowledge of (p, q, σ).
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Confidence Sets

Find Cn = Cn(X1, . . . , Xn) such that

inf
θ∈Θ

Pθ(θ ∈ Cn) ≥ 1− α

Very different from prediction. There are NO adaptive confi-

dence sets (Low 1997, Genovese and Wasserman 2007): If

Y = m(X) + σε

with m ∈ Lipschitz(s):

|m(x)−m(y)| ≤ s|x− y|

and 0 ≤ s ≤ L then, if

P(` ≤ m ≤ u) ≥ 1− α

then

||u− l||∞ =
(

logn

n

)1/3
×
(
Lσ2

2

)1/3

× (1 + o(1)).

Thus, cannot adapt to s < L.
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Example: CMB

Example: Estimating the power spectrum of the cosmic mi-

crowave backgound radiation (CMB) from WMAP. Peaks give

vital information about dark matter, comsological parameters

etc. (Genovese, Miller, Nichol, Arjunwadkar, Wasserman 2004).

41



Bayesian Inference

Frequentist View:

o probability means long run frequency

o θ is fixed, X is random

o procedures have frequency guarantees

Frequentist confidence interval: Cn:

inf
θ∈Θ

Pθ(θ ∈ Cn) = 1− α

Bayesian View:

o probability is subjective degree-of-belief

o θ is a random variable

o procedures do not have frequency guarantees

Bayesian interval:

P (θ ∈ Cn|D) = 1− α
42



Bayesian Inference

The two approches are not always compatible. That is, we can

have P (θ ∈ Cn|D) = 1− α and yet

inf
θ∈Θ

Pθ(θ ∈ Cn) ≈ 0.
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Bayes versus Frequentist

Example: (Robins and Ritov)

(X1, R1, Y1), . . . , (Xn, Rn, Yn)

where

Xi ∈ R20000, Ri ∈ {0,1}, Yi ∈ {0,1}.

• We observe Xi.

• We generate Ri ∼ Bernoulli(π(Xi)) where π : R20000 → [0,1] is

a known function.

• If Ri = 1 we observe Yi. If Ri = 0 we do not observe Yi.

Goal: estimate θ = P(Yi = 1).

When Ri = 0 then we have missing data since the Yi’s are not

observed. This problem is a simplification of a real situation that

occurs in some randomized clinical trials.
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Bayes versus Frequentist

Frequentist Analysis. Let

θ̂ =
1

n

n∑
i=1

YiRi
π(Xi)

.

Then

E(θ̂) = θ

and
√
n(θ̂ − θ) N(0, τ2).

Use Hoeffding’s inequality to get a finite sample 95 percent con-

fidence interval. The length of the interval is O(n−1/2). No

assumptions at all about the 20,000 dimensional regression func-

tion m(x):

m(x) = E(Y |X = x) = P(Y = 1|X = x).
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Bayes versus Frequentist

Bayesian Analysis. To make the problem simpler, let us assume

that f(x) is known. Note that

θ = P(Y = 1) =
∫
m(x)f(x)dx.

The likelihood is

L(m) =
n∏
i=1

f(Xi, Ri, Yi)

=
n∏
i=1

f(Xi)f(Ri|Xi)f(Yi|Xi)Ri

∝
∏
i

f(Yi|Xi)Ri

∝
n∏
i=1

[
m(Xi)

Yi(1−m(Xi))1−Yi
]Ri

where m ∈ M all 20,000 dimensional functions. The likelihood

has no information.
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Bayes versus Frequentist

The Bayes (or likelihood) estimator is not consistent.

The likelihood is useless in some high-dimensional problems. The

Bayesian analysis ignores the randomization probabilities π(Xi)

since they drop out of the likelihood. But the frequentist esti-

mator is explicitly a function of the π(Xi)’s.

Also,

inf
P

PP (θ ∈ Cn) ≥ 1− α

but if P(θ ∈ B|Data) = 1− α then

inf
P

PP (θ ∈ B) ≈ 0.
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Robustness and Influence Functions

Modern robust statistical theory was developed by Huber, Ham-

pel, Tukey and others in the 1960’s and 1970’s. It seems rele-

vant for privacy theory and was used explicity in Dwork and Lei

(2009).

Intuitively, an estimator is robust if making a small change in

the data does not affect the estimator too much. (Similar to

differential privacy.)

Let θ = T (P ). The influence function:

ψP (x) = lim
ε→0

T ((1− ε)P + εδx)− T (P )

ε

where δx is a point mass at x. Want a bounded (or even re-

descending) influence function.
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Robustness and Influence Functions

If θ = T (P ) = the mean then ψP (x) = x− θ and

sup
x
|ψP (x)| =∞.

If θ = T (P ) = the median then

ψP (x) =
sign(x− θ)

2f(θ)

and

sup
x
|ψP (x)| =

1

2f(θ)
<∞

assuming f > 0.
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Robustness and Influence Functions

Tukey’s biweight estimator has a redescending influence func-

tion:
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As far as I know, Dwork and Lei (2009) is the only paper linking

robustness and privacy.
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Statistical View of

Differential Privacy

• Zhou and Wasserman, (JASA, 2010).

• Rinaldo, Wasserman and Zhou (in progress)
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Differential Privacy

Database x = (x1, . . . , xn). Empirical distribution Px.

Release z = (z1, . . . , zk). Empirical distribution P z.

Mechanism: M = {Qx : x ∈ X}

x −→ Qx −→ Z

Require that

Qx(Z ∈ A) ≤ eαQy(Z ∈ A) for all A

whenever x ∼ y (x and y differ in one coordinate).
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Differential Privacy

Conditional minimax risk:

inf
Qx

sup
x∈D

EQxd(Px, PZ)

Marginal minimax risk when X = (X1, . . . , Xn) ∼ P :

inf
{Qx}

sup
P∈P

EPEQxd(P, PZ)

53



Differential Privacy

Some distances:

Kolmogorov-Smirnov (KS) distance:

d(P,Q) = sup
t1,...,td

|P (X1 ≤ t1, . . . , Xd ≤ td)−Q(X1 ≤ t1, . . . , Xd ≤ td)|.

L2 distance:

d(P,Q) =
∫

(p̃− q̃)2

where p̃ is the density of a smoothed verion of P .

Wasserstein (Mallow, earth-mover) distance:

d(P,Q) = inf
R

ER||X − Y ||2

where X ∼ P , Y ∼ Q and the infimum is over all joint distributions

R with marginals P and Q.
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Differential Privacy

Exponential mechanism

Draw:

Z = (Z1, . . . , Zk) ∼ q(z|x) ∝ e−cαd(Px,P z)

where c depends on d, n and k.
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Differential Privacy

(Zhou and Wasserman, JASA, 2010).

X = (X1, . . . , Xn) ∼ P

X = x −→ Qx −→ Z = (Z1, . . . , Zk)

Compare:

d(P, Px) to d(P, P z).

Data Release mechanism
Distance smoothed perturbed exp. minimax

histogram histogram mech. rate
L2 n−2/(2r+3) n−2/(2+r) NA n−2/(2+r)

KS n−2/(6+r) n−2/(2+r) n−1/3 n−1/2

Are these rates optimal? Let’s take a minimax view ...
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Differential Privacy

Let d(Px, P z) = ||Px − P z||∞ be KS distance. For simplicity,

assume that Xi ∈ [0,1]. Recall that the Conditional risk is

sup
x∈D

EQxd(Px, FZ)

Let D = {x : ||Px − U ||∞ ≤ δ} where U is the uniform. Then

inf
mechanisms

sup
x∈D

EQxd(Px, FZ) ≥
δ

2

and if q(z|x) ∝ exp{−nα||Px−P z||∞} then the bound is achieved.
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Differential Privacy

Marginal risk: X = (X1, . . . , Xn) ∼ P :

sup
P∈P

EPEQxd(P, P z)

where P = {P : p is bounded} Then

inf
mechanisms

sup
P∈P

EPEQxd(P, FZ) ≥
C
√
n

and again is achieved by the exponential mechanism.

This as the same rate as the non-privatized data. We are cur-

rently extending the results to other distances.
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THE END
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