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An Oversimplified Description
of Statistics versus CS



The View From Computer Science

Prediction




The View From Statistics




CS:
o what algorithm should I use (or invent)?
o what are the properties of the algorithm? (running time, com-

plexity)

Statistics:

o what assumptions about the data are reasonable?

O what is the best we can do under those assumptions?

o how do I design an estimator (predictor, algorithm) to achieve
this performance?



Prediction

o CS view:
O training data == algorithm

X == |Algorithm | == prediction

O properties of the algorithm



e Statistics view:

o model: (X1,Y7),...,(Xn,Yp) ~PeP
o what P is reasonable?

o optimal method: find m such that

sup E(Y — mi(X))2 = inf sup E(Y — mi(X))>
PcP m PeP

X = |Algorithm | == prediction m(X)

O Also interested in m(x) and confidence interval for m(x)

* “optimal” refers to optimality in the minimax sense. There are
other notions of optimality.



e Example:
Predict change in bone mineral density Y from age X
O best predictor is the regression function m(x) = E(Y|X = z)
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In addition to predicting Y from X we want to know:

O what is the best estimator of m given smoothness assumptions?
o what features in m are real?

o confidence band for m(x)

o how different are men and woman?
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Background

11



Terminology

Statistics CS

Estimation Learning

Classifier Hypothesis
Classification Classification/learning
Regression Regression
Confidence Interval 7777

Kernels Parzen windows
Mercer Kernels Kernels

felelels semisupervised learning
distribution free agnostic

sequential design active learning

O(-) O(-)

an = bn, an =— @(bn)

bn = O(an) an = Q2(bp)
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Models

Xq,...

A statistical model is a collection P of probability distributions.

7A)(fn,"\-/P

Parametric model: P ={P,:0 € © C R%}

Example: P = all Gaussia

Nonparametric model: P i

n distributions

s infinite dimensional.

Example: P is all distributions.

Example: Sobolev space:

PZ{P: p =

dp " 2
G | @@ < c}
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Typical Statistical Problems

e Estimate a parameter 6 = T'(P) such as the mean:

minimax risk inf sup IE43p||§—9(P)|\2
9 PcP

e Construct a confidence interval Cp:

coverage inf P(O(P) e Cp) >1—a.
PeP
e Nonparametric Density Estimation: Yi,...,Y, ~ p:
minimax risk inf sup Ep/(ﬁ—p)Q.
p PeP
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ypical Statistical Problems

e Nonparametric Regression: (Xq1,Y7),...,(Xn,Yn): Estimate
m(x) =E(Y| ==z). i.e. Predict Y € R.

minimax risk inf sup Ep/(ﬂ —m)?.
m PecP

e Predict Y € {0,1} i.e. classification.

minimax risk inf sup P(h(X) #Y).
h PeP
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Empirical Measures
e Empirical measure 13n puts mass 1/n at each X;.

e Glivenko-Cantelli Theorem:
sup |P(A) — Pu(A)| 5 0
AeA

of A is a VC class.

e Exponential inequality:

P (sup |Pp(A) — P(A)| > e) < Cenee’
AcA

e Donsker’s Theorem:

{vVn(Pn(A) — P(A)) : Aec A} ~ B = Brownian bridge

This means that {\/n(Pn(A) — P(A)) is approximately Normal,
uniformly over A.

e [ he concern with asymptotic Normality seems to be an impor-

tant difference between CS and Statistics. 6



Empirical Measures
e Parameter (or functional) 8 = T'(P)
e Plug-in estimator: 8 = T(P,)
e Example: If 8 = mean then § = T(P,) = X = sample mean

e Example: If 8 = first eigenvector of ¥ = E(X — p)(X — p)?
then 6 = T'(P,) = PCA
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Many Normal Means

Yi=p;+oe, 1=1,2,..., EZNN(Oal)

This is a surprisingly rich “laboratory” for doing theory. It can be
shown that many problems (density estimation, nonparametric
regression, etc) are ‘“statistically isomorphic” to this model.

The Sobolev space of order p in function space corresponds to
the Sobolev ellipsoid:
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Minimax Estimation
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Minimax Estimation
e 0 =0(P)
e 0 can be a parameter, a function, a prediction etc.
e estimator 0 = g(X1,..., Xn)
e loss function L(6,0): example: (6 — 0)2
e Minimax risk:

Rn = inf sup Ep (L(@(P), 5))
0 PeP



Minimax Estimation

Goals:

e compute the minimax risk

e find lower and upper bounds on R,

e compute the minimax rate: R, <X rn

e find an estimator that achieves the minimax risk (or at least
the minimax rate)

Tools for lower bounds:

e Fano’s inequality

e Assouad’s lemma

o LeCam’'s lemma

e Bayes estimators with constant risk
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Fano's Inequality

inf sup Ep(d(,6(P))) > inf sup Ep(d(8,6(P)))
9 PeP 9 PcF

where F' = {Po, Pq,..., PM}

Suppose that
and

log M
16

1 M
IV; Z P;, Py) <
where K(P,Q) = [plog(p/q), then

infsup Ey(d(0,0)) > Cin
9 OcF

(This version is due to Tsybakov (2003).)
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Examples

e the mean of a Normal

e maximum likelihood

e functionals

e densities

e Sobolev spaces

e high dimensional classification
e semi-supervised learning

e manifold learning
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Example: Normal
X1,...,Xn~N(6,1)

L(0,0) = £(||0 — 6]|) where ¢ is bowl-shaped (convex, symmetric
level sets)

The uniqgue minimax estimator (over all bowl-shaped loss func-
tions) is
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Example: Maximum Likelihood
X1,...,Xp~P
PeP={{F: 0c©}

0, = arg max L(9)
USS,

where
L(0) = |] pe(Xy)
i=1

where pg is the density of Fy.
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When is Maximum Likelihood Minimax?

Short answer: For typical parametric models, fixed dimension,

large sample sizes (and some regularity conditions) the mle is
(aproximately) minimax.

Long answer: (Le Cam and Hajek): Under certions conditions:

F n—oo

sup liminf sup Egné(\/ﬁ(én — 6p)) > Risk(mle)
cF

where 0, = 6 + h/+/n and F varies over all finite sets.

e [ his fails apart for nonparametric problems

e It also fails apart for high dimensional parametric problems (see
Martin's tutorial)
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Example: Functionals
(Donoho and Liu, 1991).

Let 6§ = T'(P). Define the modulus of continuity

w(e) =sup{|T'(P) -T(Q)|: H(P,Q) <e, PeP}

where H?(P,Q) = [(\/p —+/q)2. If T is a linear functional and P
is convex then

inf sup Epl(T, — T(F)) = ©(w(n"1/2)).
Tn Pep

The lower bound is valid over all functionals.

Examples:

o T'(P) = p(z)

o T(P) = [p?(z)dx
o T(P) = mode of p
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Example: Estimating a Density Function

Let X1,...,Xn ~ P where X; € R? and

PeP = {P L op= %, /(p”(a:))Qda: < C’}.

Let L(p,p) = [(p(z) — p(x))2dz. Then, there exists a universal

constant C' > 0 such that

C
inf sup EpL(p,p) > .

Furthermore, if we use the kernel estimator

1 &1 |z — Xil|
o _1¢a1
p(x) nz; - < -

with kernel K and bandwidth h = n—1/(4+d) then

C
EpL(p,p) < :
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Example: Sobolev Spaces

Y;;:N(/*LZ'7O-2)1 i:1727"°7

:{ ZN22p<C}

Pinsker’'s theorem:

A
inf sup E 2 P
A uep pllf — pl| NCTYICTESY
where
2p/(2p+1)
A, = (E)Q”/ CrtD) ojeptyy (P (2p + 1)1/ Cr+D)
To\r p+1

There is a known estimator that achieves the minimax risk.

There is also a known estimator that achieves the minimax risk
without knowledge of p. This is called an adaptive minimax

estimator. 59



Example: High-Dimensonal Classification

Why can we classify well in high dimensions? Here is a minimax
explanation. (Audibert and Tsybakov 2007, Kohler and Krzyzak
2006).

Risk:

R(h) =P(Y # h(X)) —P(Y # hgayes(X)).

One expects a minimax rate of

1
© (nﬁ/(25+d))
where 3 is the smoothness of

m(x) = E(Y|X = x)
and d = dimension(X). This is O(1) as d — ~o.

But ...
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High-Dimensional Classification

Recall that the Bayes classifier is

)1 ifm(x) >1/2
h(w) = { 0 if m(z) < 1/2.

Low noise condition (large margin):
1
P (‘m(X) _ 5‘ < t) < cte.
If « is large, the classes are well-separated.

T hen:

inf sup R(h) > Cn~A1+)/(26+d)
h pep -
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High-Dimensional Classification

If we use the plug-in classifier:

h(z) = I(7i(z) > 1/2)

where m is the kernel regression estimator with bandwidth A =
n—l/(26—|—d) then

PeP -

This rate behaves like O(1/n) when « is large. In fact, when
a = oo, the rate is e~ ",

Moral: Fast rates come from the assumption not the classifier.
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Example: Semi-supervised Inference

Two minimax analyses: Lafferty and Wasserman (2007) and
Singh, Nowak and Zhu (2008).

Labeled data (X1,Y7),...,(Xn,Yn) and unlabeled data (X1,...,Xy).
Want to classify or to estimate

m(x) = E(Y|X = x).

Cluster assumption: m is smooth over clusters of the marginal

p(x).

Lafferty and Wasserman (2007) showed that may/may not im-

prove the minimax rate of convergence depending on the as-
sumptions.
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Example: Semi-supervised Inference

Singh, Nowak and Zhu (2008) obtained the following upper and
lower bounds, based on distance v between clusters:

v semi non-semi SSL helps?
I n—2a/(2a—|—d) n—2a/(2a+d) NO

11 n—2a/(2a—|—d) n—2a/(2a—|—d) NO

Il n—20/(2atd) nl/d YES

IV n—1/d nl/d NO

vV n—2a/(2a—|—d) nl/d YES

VI n—2a/(2a+d) ,nl/d YES

Benefit of stating models precisely: can say when an algorithm
does/does not work.
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Example: Estimating a Manifold

(From Genovese, Perone-Pacifico, Verdinelli, Wasserman 2010).

YL:f(Uz)_I_E? 1=1,...,n

where Y; € RP. Here, Uq,...,U, are unobserved and U; € [0, 1]¢
with d < D.

f:10,1]¢ - RP

and the image of f is a smooth manifold M. Suppose that g
has support on a ball of radius o.

How well can we estimate M7
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Example: Estimating a Manifold
Specific case: D=2 and d=1 so M is a curve.

If a ball of radius A can roll freely on M and if ¢ < A. Then

C

inf sup Epdpy (M, M) > 373

M Pep
where

dg(A,B) =inf{e: AC B, B C A%}

is the Hausdorff distance and

= |J B(z,¢).

x€A
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Example: Estimating a Manifold
Originally, we estimated the support S of Y; by
R n
S = U B(Ywen)
1
and then took M to be the medial axis (middle) of S.

But... it turns out that this does not achieve the minimax rate.

The minimax bound is achieved by:
O using a smooth estimate of S
o finding the center (medial axis) of the support.
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Adaptivity

Let {©,} be a collection of spaces. Suppose that the minimax
risk is rn(a) for O4:
rn(a) = inf sup EgL(6,0).
9 0cO©qy

Can we find an estimator 6 such that, for each «,

sup EyL(6,0) < rn(a)
0cOq

without knowledge of «?
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Example: Wavelet Regression

Y; = f(X;) + ¢

Assume that f € BJ , (Besov space).

The minimax rate depends on (p,q,0).

Donoho et al:

e expand f in a wavelet basis: f =3, 8, ,¥; k().
e Set Z; =1y Yi(X;).

e Set 3; = soft(Z;) where
soft(z) = sign(z)(|z| — X))+

then f(z) = Y, B;4;(x) is adaptive minimax, that is, it achieves

the minimax risk over BJ . without knowledge of (p,q, o).
39



Confidence Sets

Find C,, = C,(X1,...,Xn) such that

inf Pp(0 e Cp) > 1—
0co 9( n)_ o

Very different from prediction. There are NO adaptive confi-
dence sets (Low 1997, Genovese and Wasserman 2007): If

Y =m(X) 4+ oe
with m € Lipschitz(s):
im(z) — m(y)| < slz —y
and 0 < s < L then, if
Pl<m<u)>1-«

then

lu = oo = (

Thus, cannot adapt to s < L.

A\ 1/3 -2\ 1/3
109 ) ><<L7> « (14 o(1)).
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Example: CMB

Example: Estimating the power spectrum of the cosmic mi-
crowave backgound radiation (CMB) from WMAP. Peaks give
vital information about dark matter, comsological parameters
etc. (Genovese, Miller, Nichol, Arjunwadkar, Wasserman 2004).

G, i+ Df2n
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Bayesian Inference

Frequentist View:

O probability means long run frequency
O 6 is fixed, X is random

O procedures have frequency guarantees

Frequentist confidence interval: Cj:

inf Pp(0eC)y) =1 —
B b(0 € Cn) “

Bayesian View:

O probability is subjective degree-of-belief

O 6 is a random variable

O procedures do not have frequency guarantees

Bayesian interval:

P(QECn|D) =1 —«
42



Bayesian Inference

The two approches are not always compatible. That is, we can
have P(0 € Cp|D) = 1 — a and yet

inf Py(6 € C),) ~ 0.
0co «9( S n)
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Bayes versus Frequentist

Example: (Robins and Ritov)

(X].? R17 Yl)a IR (Xna Rn7 Yn)
where
X; e R29090 k. {0,1}, Y;e{0,1}.

e \We observe X;.

e We generate R; ~ Bernoulli(w(X;)) where 7 : R20000 _, [0, 1] is
a known function.

o If R, =1 we observe Y;. If R, = 0 we do not observe Y;.

Goal: estimate § =P(Y; = 1).

When R; = 0 then we have missing data since the Y;'s are not
observed. This problem is a simplification of a real situation that
occurs in some randomized clinical trials.
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Bayes versus Frequentist

Frequentist Analysis. Let

g=Ly it
n /=3 7(X;)
Then
E(0) = 6
and

Vn(d — 0) ~ N(0,72).

Use Hoeffding's inequality to get a finite sample 95 percent con-
fidence interval. The length of the interval is O(n~1/2). No
assumptions at all about the 20,000 dimensional regression func-
tion m(x):

m(x) =E(Y|X =x) =P(Y = 1|X = x).
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Bayes versus Frequentist

Bayesian Analysis. To make the problem simpler, let us assume
that f(x) is known. Note that

f=P(Y =1) = /m(:c)f(:c)da:.

The likelihood is

Lim) = T[ £(XiRoY)
1=1

= I fCXD)FRIX) F(Yi X))
1=1

< [[F(vilx)™

n
. _v1R;
T [m(X)Yi(1 —m(x;))t Y]
i=1
where m € M all 20,000 dimensional functions. The likelihood
has no information.
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Bayes versus Frequentist
The Bayes (or likelihood) estimator is not consistent.

T he likelihood is useless in some high-dimensional problems. The
Bayesian analysis ignores the randomization probabilities 7(X;)
since they drop out of the likelihood. But the frequentist esti-
mator is explicitly a function of the n(X;)’'s.
Also,

ir}fIP’p(H cCp)>1—a
but if P(# € B|Data) =1 — «a then

infPp(60 € B) ~ 0.

a7



Robustness and Influence Functions

Modern robust statistical theory was developed by Huber, Ham-
pel, Tukey and others in the 1960’s and 1970's. It seems rele-
vant for privacy theory and was used explicity in Dwork and Lei
(2009).

Intuitively, an estimator is robust if making a small change in
the data does not affect the estimator too much. (Similar to

differential privacy.)

Let 6 =T (P). The influence function:
T((1—¢€)P 4+ €bz) —T(P)

€

¢p(z) = lim

where 6, is a point mass at x. Want a bounded (or even re-
descending) influence function.
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Robustness and Influence Functions

If  =T(P) = the mean then ¢¥p(x) =2 — 0 and

sup [Yp(x)| = oo.

If 6 =T (P) = the median then

__sign(z —0)
Yp(z) = 27(0)
and
1
sup |¢p(z)| = 27(6) =

assuming f > 0.
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Robustness and Influence Functions

Tukey's biweight estimator has a redescending influence func-
tion:

As far as I know, Dwork and Lei (2009) is the only paper linking
robustness and privacy.
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Statistical View of
Differential Privacy

e Zhou and Wasserman, (JASA, 2010).

e Rinaldo, Wasserman and Zhou (in progress)
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Differential Privacy

Database x = (x1,...,zn). Empirical distribution P¥.

Release z = (z1,...,2;). Empirical distribution PZ.
Mechanism: M ={Q:;: = € X}

Require that
Qu(Z € A) <e®Qy(Z € A) for all A

whenever x ~ y (x and y differ in one coordinate).
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Differential Privacy

Conditional minimax risk:

inf sup
x xeD

Marginal minimax risk when X = (Xq,...,Xp) ~ P:

inf sup
{Qz} PeP

Eq,d(P*, P%)

EpEq, d(P, P?)
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Differential Privacy

Some distances:

Kolmogorov-Smirnov (KS) distance:

d(P,Q) = ,sup [P(X1 <t1,...,Xg <tg)-Q(X1 <tg,...,Xg < L)l
1:---5ld

Lo distance:
AP,Q) = [(-D?

where p is the density of a smoothed verion of P.

Wasserstein (Mallow, earth-mover) distance:
d(P,Q) = infEg||X - Y||°

where X ~ P, Y ~ @ and the infimum is over all joint distributions
R with marginals P and Q.
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Differential Privacy

Exponential mechanism

Draw:
Z = (Z1,...,2k) ~ q(z|lz) x e

where ¢ depends on d, n and k.

—cad(P*,P?)
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Differential Privacy
(Zhou and Wasserman, JASA, 2010).
X=(Xq,...,Xp)~P
X=2—Qr — Z=(Z1,...,2;)
Compare:

d(P, P?) to d(P, P?).

Data Release mechanism
Distance || smoothed | perturbed | exp. Mminimax
histogram | histogram | mech. || rate
Lo n—2/Cr+3) | p,=2/C+1) | NA n—2/C+)
KS n—2/(64r) n—2/(2+r) n—1/3 n—1/2

Are these rates optimal? Let's take a minimax view ...



Differential Privacy

Let d(P* P?) = ||P* — P?||lc be KS distance. For simplicity,
assume that X; € [0, 1]. Recall that the Conditional risk is

sup Eg, d(P”, F4)

xeD
Let D= {z: ||P* —Ul|loo <} where U is the uniform. Then

)
inf sup Eq d(P*, F%) > —
mechanisms zep % 2

and if q(z|x) o exp{—nal|P* — P?||x} then the bound is achieved.
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Differential Privacy

Marginal risk: X = (X1,...,Xpn) ~ P:
sup EPEQxd(P, PZ)
pPeP

where P = {P : p is bounded} Then

C
inf sup EpEp d P,FZ >
mechanismspgpa PEQd( )2 VN

and again is achieved by the exponential mechanism.

This as the same rate as the non-privatized data. We are cur-
rently extending the results to other distances.
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THE END
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