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When global sensitivity just won’t cut it

• Exponential sampling

When noise addition makes no sense
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Output Perturbation

34

“Curator”Individuals
x1

x2

xn

...

local random 
coins

A
“Tell me f(x)”

f(x) + noise User{x
May be repeated many times

• Composition Lemma: q releases are jointly qε-differentially private

May be noninteractive
• Non-interactive: release pre-defined summary stats + noise

• How much noise is sufficient?



Global Sensitivity [DMNS06]

• Consider                              (for convenience: fix n)

• Intuition:  f(x) can be released accurately when f is insensitive 
  to individual entries

• Global Sensitivity: 

• Example: If f(x) = #{diabetics in data set}, then GSf =1  

35

“Curator”Individuals
x1

x2

xn

...

local random 
coins

A
“Tell me f(x)”

f(x) + noise

x1, x2, . . . , xn

GSf = max
neighbors x,x′

‖f(x)− f(x′)‖1

User{x
f : Dn → Rd



Global Sensitivity [DMNS06]

• Consider                              (for convenience: fix n)

• Intuition:  f(x) can be released accurately when f is insensitive 
  to individual entries

• Global Sensitivity: 

• Example: If f(x) = #{diabetics in data set}, then GSf =1  

35

“Curator”Individuals
x1

x2

xn

...

local random 
coins

A
“Tell me f(x)”
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neighbors x,x′
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User{x

Theorem: If A(x) = f(x) + Lap
(

GSf
ε

)d
, then A is ε-differentially private.

f : Dn → Rd



Global Sensitivity: Noise Distribution
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Global sensitivity: noise distribution

Theorem

If A(x) = f(x) + Lap
(

GSf

ε

)
then A is ε-indistinguishable.

Laplace distribution Lap(λ) has density h(y) ∝ e−
‖y‖1

λ
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"

y
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Global sensitivity: noise distribution

Theorem
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, then A is ε-differentially private.
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Global sensitivity: noise distribution

Theorem

If A(x) = f(x) + Lap
(

GSf

ε

)
then A is ε-indistinguishable.

Laplace distribution Lap(λ) has density h(y) ∝ e−
‖y‖1

λ

!

"

y

h(y)h(y+δ)

Sliding property of Lap
(

GSf

ε

)
: h(y)

h(y+δ) ≤ e
ε· ‖δ‖

GSf for all y, δ

Proof idea: A(x): blue curve

A(x′): red curve

δ = f(x) − f(x′) ≤ GSf

11

Theorem: If A(x) = f(x) + Lap
(

GSf
ε

)d
, then A is ε-differentially private.



Example: Histograms
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Lap(1/ε)

1/d0 1

f(x) = (n1, n2, . . . , nd) where nj = #{i : xi in j-th bin}



Example: Histograms
• Say x1,x2,...,xn in domain D

Partition D into d disjoint bins

  

GSf = 1

 Sufficient to add noise                to each count
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Example: Histograms
• Say x1,x2,...,xn in domain D

Partition D into d disjoint bins

  

GSf = 1

 Sufficient to add noise                to each count

• Example

D = [0,1]

bins = intervals

39

Lap(1/ε)

1/d0 1

f(x) = (n1, n2, . . . , nd) where nj = #{i : xi in j-th bin}



Contingency Tables
• Work horse of releases from US statistical agencies

 Frequencies of combinations of set of categorical attributes

• Treat as a “histogram”
Eight bins (O+,O-,...,AB+,AB-)

Add constant noise to counts 
to achieve differential privacy

Change to proportions is 

• Problem for practice:
 Some entries may be negative. Multiple tables inconsistent.

 [BCDKMT] Multiple noisy tables can be “rounded” to a 
consistent set of tables corresponding to real data.

40

O( 1
n )



Covariance Matrix
• Suppose each person’s data is a real vector

• Database is a matrix X 

• The covariance matrix of X is 

(roughly) the matrix  

Entries measure correlation between attributes

 First step of many analyses, e.g. PCA

• Lemma: If                                        then GSf ≤ 1

Proof:  Write

Observe that 

• Constant noise per entry suffices for differential privacy
41

f(X) = X!X

X =





− x1 −
− x2 −

...
− xn −





f(X) = X!X =
∑n

i=1 x!i xi

D = {x ∈ Rd : ‖x‖1 ≤ 1}

‖x!i xi‖1 ≤ ‖xi‖2
1



Example: Distance to a Property
• Say P = set of “good” databases

e.g. well-clustered databases

• Distance to P =  
# points in x that must be 
changed to make x in P

Always has GS = 1

• Example:

Distance to data set with 
“good clustering”

P
x

distance 
to P



• Average:  

 Suppose X1, X2, X3, ...,Xn are i.i.d. random variables

     is a random variable, and 

                             if 

No accuracy cost for privacy: 

• A(X) is “as good as”     for statistical inference*

-1.5 -1 -0.5 0 0.5 1 1.5

0.8

When Does Noise Not Matter?

43

A(x) = x̄ + Lap( 1
εn )

X̄

X̄

ε
√

n→∞ with n

X̄ A(X)

√
n · (X̄ − µ) D−→Normal

A(X)− X̄

StdDev(X̄)
P−→0



Example: Histograms
• Say x1,x2,...,xn in domain D

Partition [0,1] into d disjoint bins

  

GSf = 1

 Sufficient to add noise                to each count

• For any smooth density h, if Xi i.i.d. ~ h, 
noisy histogram converges to h
Expected L2 error              if  

 Same as “best” non-private histogram

Noted independently by [Wasserman-Zhou ‘09, S. ’09] 44

Lap(1/ε)

1/d0 1

O( 1
3√n

) n! 1
ε3

[0,1]

intervals

f(x) = (n1, n2, . . . , nd) where nj = #{i : xi in j-th bin}



• Consider 

• Global Sensitivity: 

• Example:  Ask for counts of d predicates 

 f(x) = vector of counts. 

  

Add noise                     per entry instead of 

Variants in other metrics

45

GSf = max
neighbors x,x′

‖f(x)− f(x′)‖1

Theorem: If A(x) = f(x) + Lap
(

GSf
ε

)d
, then A is ε-differentially private.

f : Dn → Rd

2

√
d ln(1/δ)

ε

GSf =
√

d

(ε, δ)

d
ε

N

(
0,

(GSf · 3 ·
√

ln(1/δ)
ε

)2
)



Using global sensitivity
• Many natural functions have low GS, e.g.:

 Sample mean, histogram, covariance matrix, distance to a 
function, estimators with bounded “sensitivity curve”, ...

• More generally, view as “programming interface”

May be repeated many times
• Composition Lemma: q releases are jointly qε-differentially private

May be noninteractive
• Non-interactive: release pre-defined summary stats + noise 46
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x2
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“Tell me f(x)”

f(x) + noise User



Using global sensitivity
• Many natural functions have low GS, e.g.:

 Sample mean, histogram, covariance matrix, distance to a 
function, estimators with bounded “sensitivity curve”, ...

• More generally, view as “programming interface”

Many algorithms can be expressed as a sequence of low-
sensitivity queries

• [BDMN] perceptron, k-means, “SQ” learning algorithms

• [FFKN] coreset computation for clustering

• [MW] gradient ascent algorithm for logistic regression

Post-processing can improve accuracy
• [BCDKMT] Multiple contingency tables

• [HRMS] Sorted histograms

Applications made easier by SQL-like language [McSherry]

47



“Programming”: k-means algorithm
• Given n points in     , want natural “grouping”

• Start with k candidate “cluster centers” m1,...,mk

• For T rounds:

 Sj = {xi:  closest center is mj}

mj = average of points in Sj  

48

(Voronoi partition)

(new candidate centers)

Rd

Image credit:  Wikipedia
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k-means via low-sensitivity queries [BDMN]

• Suppose 

• For T rounds:

 Sj = {xi:  closest center is mj}

mj = average of points in Sj 

• Differentially private version: In each round,

Ask two queries:

• (c1,...,ck) = (noisy) counts for Voronoi partition (GS =1)

• (M1,...,Mk) = (noisy) sums of points in each Voronoi cell (GS =1)

 Set mj = Mj / cj

• Set            , answer queries with noise            per entry

49

D = {x ∈ Rd : ‖x‖1 ≤ 1}

Lap( 1
ε′ )ε′ =

2T

ε



Better accuracy via consistency
• Can sometimes “post-process” perturbed answers to 

reduce noise

Use extra structure in desired output

• Example: [HRMS]

Data: xi = website visited today by Penn State student i 

Goal: release popularity distribution of websites

No site names

Answer = Sorted histogram

 Idea: after adding noise, 

output “closest” sorted sequence

50

Theorem 1. Denote Lk = minj∈[k,n] maxi∈[1,j] M [i, j] and
Uk = maxi∈[1,k] minj∈[i,n] M [i, j]. The minimum L2 solu-
tion s, is unique and given by: s[k] = Lk = Uk.

We compute s using dynamic programming on Uk, which
can be written as Uk = max(Uk−1,minj∈[k,n] M [k, j]) for
k ≥ 2. At each step k, the only computation is to find the
minimum cumulative average M [k, j] for j = k, . . . , n and
compare it to Uk−1. Finding the minimum average takes
linear time for each k ∈ [1, n] so the total runtime is O(n2).

3.2 Utility Analysis: the accuracy of S

In this section, we analyze S and show that it has much
better utility than S̃ (and therefore much better utility than
L̃ for unattributed histograms). Before presenting the the-
oretical statement of utility, we first give an example that
illustrates under what conditions S is likely to reduce error.

0 5 10 15 20 25

1
0

1
5

2
0

Index

C
o
u
n
t

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !

!

! ! ! !

!= 1.0! S(I)
s
~

s

Figure 3: Example of how s reduces the error of s̃.

Example 5. Figure 3 shows a sequence S(I) along with
a sampled s̃ and inferred s. While the values in s̃ deviate
considerably from S(I), s lies very close to the true answer.
In particular, for subsequence [1, 20], the true sequence S(I)
is uniform and the constrained inference process effectively
averages out the noise of s̃. At the twenty-first position,
which is a unique count in S(I), and constrained inference
does not refine the noisy answer, i.e., s[21] = s̃[21].

Fig 3 suggests that error(S) will be low for sequences in
which many counts are the same (Fig 7 in Appendix D gives
another intuitive view of the error reduction). The following
theorem quantifies the accuracy of S precisely. Let n and
d denote the number of values and the number of distinct
values in S(I) respectively. Let n1, n2, . . . , nd be the number
of times each of the d distinct values occur in S(I) (thus∑

i ni = n).

Theorem 2. There exist constants c1 and c2 independent
of n and d such that

error(S) ≤
d∑

i=1

c1 log
3 ni + c2
ε2

Thus error(S) = O(d log3 n/ε2) whereas error(S̃) = Θ(n/ε2).

The above theorem shows that constrained inference boosts
accuracy. In particular, if the number of distinct elements
d is 1, then error(S) = O(log3 n/ε2), while error(S̃) =
Θ(n/ε2). On the other hand, if d = n, then error(S) =
O(n/ε2) and thus both error(S) and error(S̃) scale linearly
in n. That is an extreme case, but for most unattributed

histograms found in practice, d $ n, which makes error(S)
significantly lower than error(S̃). In Sec. 5, experiments
on real data demonstrate that the error of S can be several
orders of magnitude lower than the error of S̃.

4. UNIVERSAL HISTOGRAMS
While the query sequence L is the conventional strategy

for computing a universal histogram, this strategy has lim-
ited utility under differential privacy. While accurate for
small ranges, the noise in the unit-length counts accumu-
lates under summation, so for larger ranges, the estimates
can easily become useless.
To support universal histograms, we propose an alterna-

tive query sequence that, in addition to asking for unit-
length intervals, asks for interval counts of larger granularity.
While asking for counts at multiple levels of granularity will
require adding more noise for privacy, this approach trades
off slightly lower accuracy at small ranges for much greater
accuracy at larger ranges.
Our alternative query sequence, denoted H, consists of a

sequence of hierarchical intervals. Conceptually, these inter-
vals are arranged in a tree T . Each node v ∈ T corresponds
to an interval, and each node has k children, corresponding
to k equally sized subintervals. The root of the tree is the
interval [x1, xn], which is recursively divided into subinter-
vals until, at leaves of the tree, the intervals are unit-length,
[x1], [x2], . . . , [xn]. For notational convenience, we define the
height of the tree " as the number of nodes, rather than
edges, along the path from a leaf to the root. To transform
the tree into sequence, we arrange the interval counts in the
order given by a breadth-first traversal of the tree.

C0**

C00* C01*

C000 C001 C010 C011

Figure 4: The tree T associated with query H for
the example in Fig. 2.

Example 6. Continuing from the example in Fig 2, we
describe H for the src domain. The intervals are arranged
into a binary (k = 2) tree, as shown in Fig 4. The root is
associated with the interval [0∗∗], which is evenly subdivided
among its children. The unit-length intervals at the leaves
are [000], [001], [010], [011]. The height of the tree is " = 3.
The intervals of the tree are arranged into a query se-

quence H = 〈C0∗∗, C00∗, C01∗, C000, C001, C010, C011〉. Eval-
uated on instance I from Fig. 2, the answer is H(I) =
〈14, 2, 12, 2, 0, 10, 2〉.

To answer H under differential privacy, we must deter-
mine its sensitivity. This proposition is proved in Appendix C.

Proposition 3. The sensitivity of H is ".

By Propositions 1 and 3, the following algorithm is ε-
differentially private:

H̃(I) = H(I) + 〈Lap("/ε)〉m

where m is the length of sequence H, equal to the number
of counts in the tree.

5

Image credit:  Hays et al, arXiv:0904.0942



Better accuracy via consistency
• Suppose that original answer must lie in set C

e.g.   C = {y in Rd   :   y1≤ y2 ≤ ... ≤ yd}

• Idea: 

Compute y’ = f(x) + noise

Release closest point in C to y’

• Proposition: If C is convex, L2 error never increases

• Sometimes improves significantly, e.g.

 [HMRS]: If sorted histogram changes slowly, error drops to               
from        to

 [BCDKMT]: If releasing all k-way contingency tables, can 
project onto consistent tables and save factor of 2k in noise  

51

d
ε

polylog(d)
ε

f(x)

y’

output

C

noise



Global Sensitivity Summary
• Simple framework for output perturbation with strong 

privacy guarantees

Noise levels small enough to allow meaningful analysis

General interface

• Improved in several respects

Local vs global sensitivity [NRS]: Add less noise on “good” 
instances 

Releasing many functions simultaneously [BLR,DNNRV,RR]

Beyond function approximation: many tasks not so simple
• Auction design [MT], learning [KLNRS,CM,...], inference 

[MKAGV,WZ],...

52



Local and Smooth
Sensitivity

53



High Global Sensitivity: Median

54

High global sensitivity: example 1

Example 1: median of x1, . . . , xn ∈ [0, 1]

x = 0 · · · 0︸ ︷︷ ︸
n−1

2

0 1 · · · 1︸ ︷︷ ︸
n−1

2

x′ = 0 · · · 0︸ ︷︷ ︸
n−1

2

1 1 · · · 1︸ ︷︷ ︸
n−1

2

median(x) = 0 median(x′) = 1

GSmedian = 1

• Noise magnitude: 1
ε . Too much noise!

• But for most neighbor databases x, x′,

|median(x) − median(x′)| is small.

• Can we add less noise on ”good” instances?

14



High Global Sensitivity: Cluster centers
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High global sensitivity: example 3

Example 3: cluster centers

Database entries: points in a metric space.
x

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!" !"!" !"!" !"

!"
!"!"!"!" !"!"

!" !"!" !"!" !" !"!"!"!"!" !"!"
!"

x′

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!" !"!" !"!" !"

!"
!"!"!"!" !"!"

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!"

Global sensitivity of cluster centers is roughly the

diameter of the space.

• But intuitively, if clustering is ”good”, cluster centers

should be insensitive.
16



High Global Sensitivity: Cluster centers
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High global sensitivity: example 3

Example 3: cluster centers

Database entries: points in a metric space.
x

!" !"!" !"!" !"
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!"!"!"!" !"!"
!" !"!" !"!" !"

!"
!"!"!"!" !"!"

!" !"!" !"!" !" !"!"!"!"!" !"!"
!"

!"
#$

x′

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!" !"!" !"!" !"

!"
!"!"!"!" !"!"

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!"

!"
#$

Global sensitivity of cluster centers is roughly the

diameter of the space.

• But intuitively, if clustering is ”good”, cluster centers

should be insensitive.
16



High Global Sensitivity: Cluster centers
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High global sensitivity: example 3

Example 3: cluster centers

Database entries: points in a metric space.
x

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!" !"!" !"!" !"

!"
!"!"!"!" !"!"

!" !"!" !"!" !" !"!"!"!"!" !"!"
!"

#$
#$

!"
#$

x′

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!" !"!" !"!" !"

!"
!"!"!"!" !"!"

!" !"!" !"!" !"
!"

!"!"!"!" !"!"
!"

#$
#$

!"
#$

Global sensitivity of cluster centers is roughly the

diameter of the space.

• But intuitively, if clustering is ”good”, cluster centers

should be insensitive.
16



• Global sensitivity is worst case over inputs

• Local sensitivity: 

• Reminder: 

• Goal: add less noise when local sensitivity is lower
58

Global versus local [NRS07]

Dn Rd

x
x’ f

Distributions on Rd

A(x)
A(x′)adding 

noise

y
y’

f(y)

f(x’)

f(x)

f(y’)

LSf (x) = max
x′ neighbor of x

‖f(x)− f(x′)‖1

GSf (x) = max
x

LSf (x)



Local Sensitivity

59

Local sensitivity

Local sensitivity LSf (x) = max
x′: neighbor of x

‖f(x) − f(x′)‖1

Reminder: GSf = max
x

LSf (x)

Example: median for 0 ≤ x1 ≤ · · · ≤ xn ≤ 1, odd n

!0 1! !! !!x1 xnxm−1 xm+1xm. . . . . .

"
median

#
new median
when x′

n = 0

$
new median
when x′

1 = 1

LSmedian(x) = max(xm − xm−1, xm+1 − xm)

Goal: Release f(x) with less noise when LSf (x) is lower.

17

LSf (x) = max
x′ neighbor of x

‖f(x)− f(x′)‖1



Instance-based noise: first attempt

60

Instance-based noise: first attempt

Can we have noise magnitude ∝ LSf (x) instead of GSf?

Problem: Noise magnitude might reveal information.

Example: median

x = 0 · · · 0︸ ︷︷ ︸
n−3

2

000 1 · · · 1︸ ︷︷ ︸
n−3

2

x′ = 0 · · · 0︸ ︷︷ ︸
n−3

2

001 1 · · · 1︸ ︷︷ ︸
n−3

2

median(x) = 0 median(x′) = 0

LSmedian(x) = 0 LSmedian(x′) = 1

Pr[A(x) = 0] = 1 Pr[A(x) = 0] = 0

A is not ε-indistinguishable

Lesson: Noise magnitude must be an insensitive function.

18



Instance-based noise
• Problem: can’t be close to high-sensitivity instance

• Two approaches:

 [NRS’07] Compute a “smoothed” version of local sensitivity

 [DL’09+] Use global sensitivity to get a diffe.p. upper bound on 

local sensitivity. 

61
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Instance-based noise
• Problem: can’t be close to high-sensitivity instance

• Two approaches:

 [NRS’07] Compute a “smoothed” version of local sensitivity

 [DL’09+] Use global sensitivity to get a diffe.p. upper bound on 

local sensitivity. 
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Dnx
x’

y
y’

low local 
sensitivity

high local 
sensitivity

add low 
noise here



Smooth Bounds on Sensitivity

62

Smooth bounds on local sensitivity

Design sensitivity function S(x)

• S(x) is an ε-smooth upper bound on LSf (x) if:
– for all x: S(x) ≥ LSf (x)
– for all neighbors x, x′ : S(x) ≤ eεS(x′)

!

"

x

LSf (x)

Theorem

If A(x) = f(x) + noise

(
S(x)

ε

)
then A is ε′-indistinguishable.

Example: GSf is always a smooth bound on LSf (x)
19



Smooth Bounds on Sensitivity
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Smooth bounds on local sensitivity

Design sensitivity function S(x)

• S(x) is an ε-smooth upper bound on LSf (x) if:
– for all x: S(x) ≥ LSf (x)
– for all neighbors x, x′ : S(x) ≤ eεS(x′)

!

"

x

LSf (x)

S(x)

Theorem

If A(x) = f(x) + noise

(
S(x)

ε

)
then A is ε′-indistinguishable.

Example: GSf is always a smooth bound on LSf (x)
19



Smooth Bounds on Sensitivity
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Dnx
x’

y
y’

Smooth Sensitivity

Smooth sensitivity S∗
f (x)= max

y

(
LSf (y)e−ε·dist(x,y)

)

Lemma
For every ε-smooth bound S: S∗

f (x) ≤ S(x) for all x.

Intuition: little noise when far from sensitive instances

database space

high local

sensitivity

low local

sensitivity

low smooth sensitivity

20

low local 
sensitivity

high local 
sensitivity

low 
smooth 
sensitivity



Computing Smooth Sensitivity

65

Computing smooth sensitivity

Recall: Smooth sensitivity S∗
f (x) = max

y

(
LSf (y)e−ε·dist(x,y)

)

Observation
S∗

f (x) = max
k=0,1,...,n

e−kε · LSk
f (x)

where LSk
f (x) = max

y:dist(x,y)≤k
LSf (y).

Example: median

LSk
median(x) = max

t=0,1,...,k+1
(xm+t+k+1 − xm+t)

!0 1! !! !!! ! ! !x1 xnxm−k−1 xm+k+1xm. . . . . .. . . . . .

. . .

• S∗
median(x) is computable in O(n2) time.
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Algorithmic Questions

• Applying this framework requires computing 

smooth bounds on sensitivity

When can compute smooth bounds efficiently?

How can we avoid this for “complicated” functions?
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Results [NRS ’07,DL’09]
• [NRS] Computation of smoothed sensitivity for several 

useful functions
Order statistics (e.g. median, quartiles, max, min)

Trimmed mean

# of triangles in a graph 

Min. spanning tree cost

• [DL’09] Connection to “robust” statistics
Algorithms for bounding local sensitivity of 

order statistics, linear regression

• Generic framework for smoothing functions so they 
have low sensitivity
Based on sampling; see my Thursday talk
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Exponential Sampling
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Exponential Sampling [McSherry-Talwar]
• Sometimes noise addition makes no sense

mode of a distribution

minimum cut in a graph

decision tree classifier

• [MT] Motivation: auction design

Differential privacy implies approximate truthfulness

• Subsequently applied broadly
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Example: Mode

• Data: xi = website visited by student i today
• Range:  Y = {website names}
• For each name y, let q(y; x) = #{i : xi = y}
• Goal: output the most frequently visited site
Procedure: Given x,
• Output website y0 with probability
• Popular sites exponentially 

more likely than rare ones
• Website scores don’t 

change too quickly
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q(y; x)
rx(y)

rx′(y)

rx(y) ∝ exp(εq(y; x))



Example: Mode

Procedure: Given x,
• Output website y0 with probability

• Claim: The mechanism is 2ε-differentially private

• In expectation, outputs element 
with # occurrences 
≥ max - (ln |Y|) / ε
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q(y; x)
rx(y)

rx′(y)

rx(y) ∝ exp(εq(y; x))

rx(y)
rx′(y)

=
eεq(y;x)

eεq(y;x′)
·
∑

z∈Y eεq(z;x′)

∑
z∈Y eεq(z;x)

≤ e2ε



Exponential Sampling 

Ingredients:
• Set of outputs Y with prior distribution p(y)
• Score function q(y;x) such that 

   for all outputs y, neighbors x,x’:   |q(y;x) - q(y;x’)| ≤ 1
Procedure: Given x,
• Output y0 from Y with probability

• Example [MKAGV]:
Y= parameter space for parametric model
q = log-likelihood based on x
Output draw from 

“squashed” posterior
Differentially private if log-likelihood is bounded 

rx(y) ∝ p(y)e−εq(y;x)

q(y; x)
rx(y)

rx(y) ∝ p(y; x)ε



Application: Synthetic Data

• Goal: new data set with “similar” statistical properties

 Specify precisely the set of preserved properties

 [Blum, Ligett, Roth 2008] broad theoretical possibility results

 Improved parameters, hardness [DNRRV], cont. data [WZ]

 [Machanavajjhala, Kifer, Abowd, Gehrke, Vilhuber 2008, McSherry-Talwar 2008] 

• Differentially private geographic data, in use at US Census bureau
73
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Synthetic Data [BLR]
• Given: 

 collection of predicates C={P1,...,PK}

x = large data set

• Quality of a data set y:

q(y;x) =  - max{P∈C} | frequency of P in y - frequency of P in x |

• Y = {small data sets}

• Idea:

 y is good for x if q(y; x) ≥ - 10%, and bad if q(y;x) ≤ -20%. 

A good small data set exists since a sample from x is good

Exponential mechanism assigns very low weight to bad y
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Changing the Model:
Reducing Trust
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Changing the Model
• So far: trusted curator

 single point of failure

• Approaches to reducing dependency

Randomized response [Warner, EGS, KLNRS]

• Each individual keeps his data & randomizes answers to curator

Cryptographic “secure function evaluation” [DKMMN]

• Individuals jointly, securely simulate a virtual curator

 “Short memory” curators [DNPRY]

• Curators keeps data only for limited time

• Privacy is maintained even if curator’s memory is leaked
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Distributed Private Data Mining

• Eliminate the trusted “Curator” [DKMMN]

• Use cryptographic protocols to jointly mine shared data

 Individuals retain data

Mining algorithm still needs to respect (differential) privacy;

the crypto protocols address orthogonal concerns [BNO]
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This talk: Techniques & Terminology
• Basic tools:

Noise addition via global sensitivity

 local/smooth sensitivity, sample-aggregate

exponential sampling

• Things I didn’t cover:
 lower bounds [DMNS,GR,HT,KRS,...]

 combinatorial optimization [GLMRT] 

 convex optimization [CM,...]

 auction design [MT]

 “directional” global sensitivity [HT]

 relaxations of differential privacy [MGAKV,MPRV]

 and more!
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negatives” when sampling from D1. Letting θ denote the
fraction of entries in the table with value 1, the output is
4(θ − 1/2)/ε + Lap(1/ε|X|).

Intuitively, the internal state is differentially private be-
cause, for each b ∈ {0, 1}, e−ε ≤ PrD1 [b]/PrD0 [b] ≤ eε; pri-
vacy for the output is ensured by the addition of Laplacian
noise. Over all, the algorithm is 2ε-differentially pan-private.

7. CONCLUSIONS
The differential privacy frontier is expanding rapidly, and

there is insufficient space here to list all the interesting direc-
tions currently under investigation by the community. We
identify a few of these.

The Geometry of Differential Privacy. Sharper upper and
lower bounds on noise required for achieving differential pri-
vacy against a sequence of linear queries can be obtained by
understanding the geometry of the query sequence [13]. In
some cases dependencies among the queries can be exploited
by the curator to markedly improve the accuracy of the re-
sponses. Generalizing this investigation to the non-linear
and interactive cases would be of significant interest.

Algorithmic Complexity. We have so far ignored questions
of computational complexity. Many, but not all, of the tech-
niques described here have efficient implementations. For
example, there are instances of the synthetic data generation
problem that, under standard cryptographic assumptions,
have no polynomial time implementation [10]. It follows
that there are cases in which the exponential mechanism
has no efficient implementation. When can this powerful
tool be implemented efficiently, and how?

An Alternative to Differential Privacy? Is there an alter-
native, “ad omnia,” guarantee that composes automatically,
and permits even better accuracy than differential privacy?
Can cryptography be helpful in this regard [19]?

The work described herein has, for the first time, placed
private data analysis on a strong mathematical foundation.
The literature connects differential privacy to decision the-
ory, economics, robust statistics, geometry, additive combi-
natorics, cryptography, complexity theory, learning theory,
and machine learning. Differential privacy thrives because
it is natural, it is not domain-specific, and it enjoys fruitful
interplay with other fields. This flexibility gives hope for
a principled approach to privacy in cases, like private data
analysis, where traditional notions of cryptographic security
are inappropriate or impracticable.
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