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Technigues for differential Erivacz

* Global sensitivity and noise addition
» basic framework
> statistical examples
» extensions
* Local sensitivity
» When global sensitivity just won’t cut it
* Exponential sampling

> When noise addition makes no sense
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Outeut Perturbation

Individuals “Curator”
— Jell me £0O”
332 ell me X
X i : —> A f(x)+noise) User

ajn *
i local random

coins

» May be repeated many times

« Composition Lemma: q releases are jointly qe-differentially private

» May be noninteractive

* Non-interactive: release pre-defined summary stats + noise

* How much noise is sufficient?
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Global Sensitivity [DMNS06]

X

+ Consider f : D" — R

Individuals

i‘ e

“Curator’”

A

“J’ell me f(x)”

- User
f(x) + n0|se)

i/

local random
coins

(for convenience: fix n)

* Intuition: f(X) can be released accurately when f is insensitive

* Global Sensitivity: [Gsf —

to individual entries 1,2, ...

75677,

Imax

neighbors x,x’

If(z) — f(:v’)\ll)

* Example: If f(x) = #{diabetics in data set}, then GS; =
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Global Sensitivity [DMNS06]

Individuals “Curator”

i* > “Jell me £(x)”
X A f(x) + noise) User

i/ local random

coins

Consider f : D" — R (for convenience: fix n)

Intuition: f(X) can be released accurately when f is insensitive
to individual entries *1,%2,...,Zy

Global Sensitivity: [GSf =  Imnax Hf(f) — f(fl)Hl)

neighbors x,x’

Example: If f(x) = #{diabetics in data set}, then GS¢ =1

[Theorem: If A(x) =f(x) + Lap (%)d, then A is e-differentially private.)
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Global Sensitivitz: Noise Distribution

[Theorem: If A(x) =f(x) + Lap (%)d, then A is e-differentially private.j

_ vl

Laplace distribution Lap(A) has density h(y) oc e™ >

h(y)

V@
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Global Sensitivitz: Noise Distribution

[Theorem: If A(x) =f(x) + Lap (%)d, then A is e-differentially private.j

_ vl

Laplace distribution Lap(A) has density h(y) oc e™ >

h(y+)ANP(Y)

4

_. 115l

Sliding property of Lap(%): M};(—_% <e °r forall y,0
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Global Sensitivitz: Noise Distribution

[Theorem: If A(x) =f(x) + Lap (%)d, then A is e-differentially private.j

[yl

Laplace distribution Lap(A) has density h(y) oc e™ >

h(y+)ANP(Y)

4

[16]]

Sliding property of Lap(GSf). h?(_%) < e 5 for all y, 6

Proof idea: A(x): blue curve
/

A(x"): red curve

= f(z) — f(2') <GSy
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Examele: Histograms

f(x) = (n1,n2,...,nq) where nj = #{i : x; in j-th bin}

Lap(1/e€)

0 1/d 1

v
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Examele: Histograms

* Say xi,X2,...,.Xn in domain D
» Partition D into d disjoint bins
»f(x) = (n1,n2,...,nq) where nj = #{i : x; in j-th bin}
> GSr= |

> Sufficient to add noise Lap(1/¢) to each count

0 1/d 1

v
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Examele: Histograms

* Say xi,X2,...,.Xn in domain D
» Partition D into d disjoint bins
»f(x) = (n1,n2,...,nq) where nj = #{i : x; in j-th bin}
» GSr= |
> Sufficient to add noise Lap(1/¢) to each count
* Example

>D =[0,] \

> bins = intervals -

v

0 1/d 1

39



Contingencz Tables

* Work horse of releases from US statistical agencies

» Frequencies of combinations of set of categorical attributes

ABO and Rh Blood lType

"
M)

 Treat as a “hiStogram” Frequencies in the United States
> Eight bins (O+,0-,..,AB+,AB-) ABciviaT oy e ma in
45%
> Add constant noise to counts i Py e =
to achieve differential privacy R B s =
> Change to proportions is O(%) R s e =
R
* Problem for practice: RS PR T

» Some entries may be negative. Multiple tables inconsistent.

» [BCDKMT] Multiple noisy tables can be “rounded” to a
consistent set of tables corresponding to real data.
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Covariance Matrix

Suppose each person’s data is a real vector

- \
Database is a matrix X /_ 11 _\
The covariance matrix of X is i = :

.  vT '
(roughly) the matrix f(X) =X "X i \— 2 _)/

> Entries measure correlation between attributes

» First step of many analyses, e.g. PCA

Lemma: IfD = {z € R? : ||z||; <1} then GS¢ < |
> Proof: Write f(X)=X"'X =" z/z;
Observe thathiT:BiHl < H.CBZH%

Constant noise per entry suffices for differential privacy
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Examele: Distance to a Proeertz

* Say P = set of “good” databases
» e.g. well-clustered databases
* Distanceto P =

# points in x that must be
changed to make x in P o X

» Always has GS = 1

* Example:

distance
toP

> Distance to data set with
“good clustering”



When Does Noise Not Matter?
* Average: A(x) = Z + Lap(=-)

» Suppose X, X, X3, ...,Xn are i.i.d. random variables

> X is a random variable, and \/ﬁ : (X' _ M)lNormal
>[ AX) _)_( .0 if ex/n — oo with n

StdDev(X)

» No accuracy cost for privacy:

« A(X) is “as good as” X for statistical inference*
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Examele: Histograms

* Say xi,X2,...,.Xn in domain B [0,I]
» Partition [0,1] into d disjoint-bins- intervals
»f(x) = (n1,n2,...,nq) where nj = #{i : x; in j-th bin}
> GSr= |

> Sufficient to add noise Lap(1/¢) to each count

* (For any smooth density /4, if X| i.i.d. ~ h,

noisy histogram converges to / ]q
-

i 1
L > Expected L, error O(é/iﬁ) if n> /

» Same as “best” non-private histogram 0 1 1

» Noted independently by [Wasserman-Zhou ‘09, S.’09]

v

A
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Variants in other metrics

» Consider f : D" — R¢
* Global Sensitivity: [Gsf = max |[f(z) - f(iU’)Ha-z\

neighbors x,x’

[Theorem: If A(x) = f(x) —I—M, then A is gdifferentially private.)

N (0, (Gsf-s-6 1n(1/5))2> (e, 5)

* Example: Ask for counts of d predicates

» f(x) = vector of counts.

> GSy =/d
> Add noise V/@1n(1/9) per entry instead of d

€ €
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Using global sensitivitz

* Many natural functions have low GS, e.g.:

» Sample mean, histogram, covariance matrix, distance to a
function, estimators with bounded “sensitivity curve”, ...

* More generally, view as “programming interface”
Individuals “Curator”

—u o e 166
To —>| “Tell me f(x)”’
: — A ) + noise. User

xn 4
i local random

coins

» May be repeated many times

« Composition Lemma: q releases are jointly ge-differentially private

» May be noninteractive

* Non-interactive: release pre-defined summary stats + noise
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Using global sensitivitz

* Many natural functions have low GS, e.g.:

» Sample mean, histogram, covariance matrix, distance to a
function, estimators with bounded “sensitivity curve”, ...

* More generally, view as “programming interface”

» Many algorithms can be expressed as a sequence of low-
sensitivity queries

[BDMN] perceptron, k-means,“SQ” learning algorithms

[FFKN] coreset computation for clustering

'[MW] gradient ascent algorithm for logistic regression

» Post-processing can improve accuracy
« [BCDKMT] Multiple contingency tables
* [HRMS] Sorted histograms

» Applications made easier by SQL-like language [McSherry]
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‘Programming”: k-means algorithm

* Given n points in R% want natural “grouping”

e Start with k candidate “cluster centers’” my,...,mg

°| For T rounds:

(Voronoi partition)
> S; = {x;: closest center is m}{

» mj = average of points in § ¥~ (new candidate centers)

Doo
oo
®poo

00

oo

Image credit: Wikipedia 48
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k-means via Iow-sensitivitz queries [BDMN]

* Suppose D = {z € R?: ||z]|; < 1}

O
* [ For T rounds: - —
. = -
> S = {xi: closest center is m;} O
o (@
> m; = average of points in §; St

* Differentially private version: In each round,

» Ask two queries:
* (ci,...,ck) = (noisy) counts for Voronoi partition (GS =1)

* (My,...,M) = (noisy) sums of points in each Voronoi cell (GS =1)
> Set m; = Mj/Cj

. 2T o |
Set ¢ = —answer queries with noise Lap(=) per entry
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Better accuracy via consistencz

* Can sometimes “post-process’” perturbed answers to

reduce noise
» Use extra structure in desired output

* Example: [HRMS]

» Data: x; = website visited today by Penn State student i

» Goal: release popularity distribution of websites

> No site hames

o |
A

(1) e=1.0

I 7))

» Answer = Sorted histogram

To}
—

Count

> |dea: after adding noise, e oo

output “closest” sorted sequence

[¢)]

10 15 20 25
Index
Image credit: Hays et al, arXiv:0904.0942 50



Better accuracy via consistenc

* Suppose that original answer must lie in set C
»>eg. C={yinR?: yi<y, <. <ydg}

* |dea: noise

» Compute Y’ = f(x) + noise

» Release closest pointin C to y’

* Proposition: If C is convex, L, error never increases

* Sometimes improves significantly, e.g.

» [HMRS]: If sorted histogram changes slowly, error drops to
from ¢ to polylog(d)

€

€
» [BCDKMT]: If releasing all k-way contingency tables, can

project onto consistent tables and save factor of 2X in noise
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Global Sensitivitz Summarz

* Simple framework for output perturbation with strong
privacy guarantees
» Noise levels small enough to allow meaningful analysis

> General interface

* Improved in several respects
» Local vs global sensitivity [NRS]: Add less noise on “good”
instances
» Releasing many functions simultaneously [BLR,DNNRV,RR]

» Beyond function approximation: many tasks not so simple

 Auction design [MT], learning [KLNRS,CM,...], inference
[MKAGV,WZ]....
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Local and Smooth
Sensitivity
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High Global Sensitivity: Median

Ezample 1: median of x1,...,x, € [0,1]
r=0---001---1 2 =0---011---1
—— = —— =
i i
median(z) = 0 median(z’) = 1
GSmedian: 1

e Noise magnitude: % Too much noise!

e But for most neighbor databases x, 2/,

imedian(x) — median(x’)| is small.

e Can we add less noise on "good” instances?
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High Global Sensitivity: Cluster centers

Database entries: points in a metric space. /

o o © o
o o
o
o o)
o o)
o ©°o o %o
) )
° o ° o ° 0 ©o
o o o o
°© o 20 °© o od °© o %o °© o 909
o o o o
o o) o o
o %o o °o o %o o %o

Global sensitivity of cluster centers is roughly the
diameter of the space.

e But intuitively, if clustering is "good”, cluster centers
should be insensitive.
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Database entries: points in a metric space. /
X X

Global sensitivity of cluster centers is roughly the
diameter of the space.

e But intuitively, if clustering is "good”, cluster centers
should be insensitive.
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H

ich Global Sensitivity: Cluster centers

Database entries: points in a metric space. /
X X

Global sensitivity of cluster centers is roughly the
diameter of the space.

e But intuitively, if clustering is "good”, cluster centers
should be insensitive.
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Global versus local [NRS07]
f(y’)

T )
f(x
ﬁ% £ 11{// adding\‘*.‘-/*(x’)

f()’() noise A(x)

D" R Distributions on R¢

* Global sensitivity is worst case over inputs

* Local sensitivity: [LSf(iIZ‘) _ max Hf(a;) — f(g;/)Hlj

x’ neighbor of x

* Reminder: GS;(x) = maxLSy(x)

* Goal: add less noise when local sensitivity is lower
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Local Sensitivitz

4 )

LSp(z) = max [|f(z) = f(«")]x

x’ neighbor of x

- A

Example: medianfor 0 < x; <.-- <z, <1, oddn

0 21 e Tin—1 T, Tm+1 e Ty 1
—e /‘l ?I |‘\ ® I >
new median median new median
when z,, =0 when z =1

I—Smedian(x) — max(xm — Tm—1,Lm+1 — xm)



Instance-based noise: first attempt

Can we have noise magnitude o LS¢(z) instead of GS;?

Problem: Noise magnitude might reveal information.

Example: median

— o o e .« o / — .« o e .« o
r = 300001 31 ' = 300011 31
median(x) = 0 medlan(a:’ ) =
I—Smedian(x> =0 I—Smedlan(x,)
Pr[A(z) =0] =1 Pr[A(z) = 0] =0

A is not e-indistinguishable

Lesson: Noise magnitude must be an insensitive function.
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Instance-based noise

* Problem: can’t be close to high-sensitivity instance

* Two approaches:

» [NRS’07] Compute a “smoothed” version of local sensitivity

» [DL09+] Use global sensitivity to get a diffe.p. upper bound on

local sensitivity.

61
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Instance-based noise

* Problem: can’t be close to high-sensitivity instance

* Two approaches:

» [NRS’07] Compute a “smoothed” version of local sensitivity

» [DL09+] Use global sensitivity to get a diffe.p. upper bound on

local sensitivity.

high local
sensitivity

low local
sensitivity
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» [DL09+] Use global sensitivity to get a diffe.p. upper bound on
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Smooth Bounds on Sensitivitz

Design sensitivity function S(x)

e S(x) is an e-smooth upper bound on LS¢(x) if:

— for all z: S(z) > LS¢(x)
— for all neighbors z,2’ :  S(z) < e S ()
A
LS¢ ()
-
Theorem

S(z)

If A(x) = f(x) + noise ( > then A is ’'-indistinguishable.

Erample: GSy is always a smooth bound on LS¢(z)



Smooth Bounds on Sensitivitz

Design sensitivity function S(x)

e S(x) is an e-smooth upper bound on LS¢(x) if:

— for all z: S(z) > LS¢(x)
— for all neighbors z,2’ :  S(z) < e S ()
A
S(z)
LS ()
-
Theorem

S(z)

If A(x) = f(x) + noise ( > then A is ’'-indistinguishable.

Erample: GSy is always a smooth bound on LS¢(z)



Smooth Bounds on Sensitivit

Smooth sensitivity S%(x)= max (LSf(y)e—ﬁ'dist(w,y))
y

Lemma

For every e-smooth bound S:  S}(x) < S(x) for all x.

Intuition: little noise when far from sensitive instances

low
smooth
sensitivity

high local
sensitivity

low local
sensitivity

D’n
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Comeuting Smooth Sensitivitz

Observation
i(z)= max e . LSlj(x)

k=0,1,....n
k _
where LS%(x) = y:dig%iz()gk LS¢(y).

Example: median

k _
LSmedian(x) — t_OI{la%f_'_l(xm—l-t—i—k—i—l — Im—i—t)
0 2 LIm—k—1 . Lm Lm+k+1 Tn 1
@ ? @ @ ? @ @ @ *o—|—»
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|Orshanskiy| S* is computable in O(nlogn) time.



Comeuting Smooth Sensitivitz

Recall: Smooth sensitivity S%(z) = max (LSf(y)@—g'dist(fc,y))
y

Observation
Si(z) = max e *. LSlj(x)

k=0,1,....n
k _
where LS%(x) = y:dig%iz()gk LS¢(y).

Example: median

k _
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|Orshanskiy| S* is computable in O(nlogn) time.
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Algorithmic Questions

* Applying this framework requires computing

smooth bounds on sensitivity

»When can compute smooth bounds efficiently?

»How can we avoid this for “complicated” functions?

66



Results [NRS '07,DL09]

* [NRS] Computation of smoothed sensitivity for several
useful functions

» Order statistics (e.g. median, quartiles, max, min)
» Trimmed mean
» # of triangles in a graph

» Min. spanning tree cost

* [DL09] Connection to “robust” statistics

» Algorithms for bounding local sensitivity of
order statistics, linear regression

* Generic framework for smoothing functions so they
have low sensitivity

» Based on sampling; see my Thursday talk
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Exponential Sampling
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Exponential Sampling [McSherry-Talwar]

* Sometimes noise addition makes no sense

» mode of a distribution
» minimum cut in a graph

> decision tree classifier

* [MT] Motivation: auction design

» Differential privacy implies approximate truthfulness

* Subsequently applied broadly
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Examele: Mode

Data: xi = website visited by student i today
Range: Y = {website names}

For each name y, let q(y; x) = #{i : xi = y}
Goal: output the most frequently visited site

|

Procedure: Given x,

Output website yy with probability r«(y) o< exp(eq(y; x))J

Popular sites exponentially
more likely than rare ones

Website scores don'’t
change too quickly
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Examele: Mode

{Procedure: Given x, J

* Output website yy with probability r,(y) o< exp(eq(y;x))

* Claim: The mechanism is 2¢&-differentially private

e B e€4(y3x) ZzEY e€4(zx7) o

re(y)  ecayx’) | > ey ef4zX)

* In expectation, outputs element
with # occurrences
> max - (In |Y[) / €

q(y;x)
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Exeonential Sameling

Ingredients:
* Set of outputs Y with prior distribution p(y)

* Score function q(y;x) such that
for all outputs y, neighbors x,x: |q(y;x) - q(y;x’)| =< |

Procedure: Given x,
* Output yy fromY with probability (1) X p(y)e_e‘J(y?X)

* Example [MKAGV]:

» Y= parameter space for parametric model q(y:

> q = log-likelihood based on x Ty (1

» Output draw from
“squashed” posterior 7x(y) & p(y;X)° | .

» Differentially private if log-likelihood is bounded




AEEncation: Sznthetic Data

Individuals “Curator”
t—u
To ~> synthetic
i - *) A data
/ /
Ty .eny Ty

"

local random
coins

Users

Government,
researchers,
businesses
(or)
Malicious
adversary

* Goal: new data set with “similar” statistical properties

» Specify precisely the set of preserved properties

» [Blum, Ligett, Roth 2008] broad theoretical possibility results

» Improved parameters, hardness [DNRRV], cont. data [WZ]

> [Machanavajjhala, Kifer, Abowd, Gehrke,Vilhuber 2008, McSherry-Talwar 2008]

* Differentially private geographic data, in use at US Census bureau
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Synthetic Data [BLR]

* Given:

> collection of predicates C={P\,...,P«}

» x = large data set
* Quality of a data set y:

> q(Y;x) = - max{pec} | frequency of P in y - frequency of P in x |
* Y = {small data sets}

* |dea:
>y is good for x if q(y; x) = - 10%, and bad if q(y;x) < -20%.
» A good small data set exists since a sample from x is good

» Exponential mechanism assigns very low weight to bad y
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Changing the Model:
Reducing Trust
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Changing the Model

e So far: trusted curator

» single point of failure

* Approaches to reducing dependency

» Randomized response [Warner, EGS, KLNRS]

* Each individual keeps his data & randomizes answers to curator

» Cryptographic “secure function evaluation” [DKMMN]

* Individuals jointly, securely simulate a virtual curator

» “Short memory” curators [DNPRY]

* Curators keeps data only for limited time

 Privacy is maintained even if curator’s memory is leaked
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Distributed Private Data Mining

Individuals Users

D G Government,
i —> protocol A(X) researchers,
L9 i —> . . < > businesses
| simulating A (o)
: / Malicious
X ni adversary

* Eliminate the trusted “Curator” [DKMMN]

* Use cryptographic protocols to jointly mine shared data

> Individuals retain data

» Mining algorithm still needs to respect (differential) privacy;

the crypto protocols address orthogonal concerns [BNO]

77



This taIk:Technigues &Terminologz

* Basic tools:
» Noise addition via global sensitivity
» local/smooth sensitivity, sample-aggregate

» exponential sampling
* Things | didn’t cover:
» lower bounds [DMNS,GR,HT,KRS,...]
» combinatorial optimization [GLMRT]
» convex optimization [CM,...]
» auction design [MT]
» “directional” global sensitivity [HT]
» relaxations of differential privacy [MGAKV,MPRV]

> and more!
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A quote

The work described herein has, for the first time, placed
private data analysis on a strong mathematical foundation.
The literature connects differential privacy to decision the-
ory, economics, robust statistics, geometry, additive combi-
natorics, cryptography, complexity theory, learning theory,
and machine learning. Differential privacy thrives because
it is natural, it is not domain-specific, and it enjoys fruitful
interplay with other fields. This flexibility gives hope for
a principled approach to privacy in cases, like private data
analysis, where traditional notions of cryptographic security
are inappropriate or impracticable.

C. Dwork, Comm.ACM, to appear.
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