Entropy-Based Ensemble Prediction Schemes

Sangil Kim

Program in Applied Mathematics

University of Arizona

and

Gregory Eyink

Applied Mathematics & Statistics

The Johns Hopkins University

Supported by NSF Grant # DMS-0113649.

The Filtering Problem

A state vector $\mathbf{x}_t \in \mathbb{R}^p$ evolves via

$$\mathbf{x}_{t+1} = \mathbf{F}_t(\mathbf{x}_t, \eta_t), \quad t = 0, 1, ..., T$$
 (1)

 $\mathbf{F}_t: \mathbb{R}^p \times \mathbb{R}^r \to \mathbb{R}^p$ and $\boldsymbol{\eta}_t \in \mathbb{R}^r$ is a random noise vector. Initial conditions \mathbf{x}_0 are chosen randomly from $P_0(\mathbf{x})$.

Measurements are taken

$$y_t = h_t(x_t) + \epsilon_t, \tag{2}$$

for a subset of t, where $\mathbf{h}_t : \mathbb{R}^p \to \mathbb{R}^q$ and $\epsilon_t \in \mathbb{R}^q$ are random observation errors. Generally,

$$1 \ll q \ll p$$
.

We assume that ϵ_t is an $N(\mathbf{0}, \mathbf{R}_t)$ random q-vector, i.e. normal with mean $\mathbf{0}$ and covariance matrix \mathbf{R}_t , and that $\mathbf{h}_t(\mathbf{x}) = \mathcal{H}_t \mathbf{x} + \mathbf{d}_t$ is affine, for a q-vector \mathbf{d}_t and $q \times p$ matrix \mathcal{H}_t .

Problems in Geophysical Estimation

- (1) Dynamics are nonlinear and statistics may be highly non-Gaussian
- (2) States of very low a priori probability before measurements can become very probable afterward
- (3) State spaces of the dynamics are often very high-dimensional and only small ensembles of solutions may be generated.

An example can help to illustrate some of these difficulties....

2D Thermohaline Convection

McWilliams & Thual (1991) considered, for $0 \le z \le d, -\ell < y < \ell$, the equations

$$\partial_t \nabla^2 \psi + J(\psi, \nabla^2 \psi) = g(\alpha_T \partial_y T - \alpha_S \partial_y S) + \nu \nabla^4 \psi$$
$$\partial_t T + J(\psi, T) = \kappa_T \nabla^2 T$$
$$\partial_t S + J(\psi, S) = \kappa_S \nabla^2 S$$

with free-slip b.c. for stream function

$$\psi = 0, \quad \partial_n^2 \psi = 0$$

and boundary conditions

$$T(y,d) = \Delta T \cdot \theta(y), \quad \partial_z S(y,d) = \Delta S \cdot F(y)/d$$

$$\partial_z T(y,0) = 0, \quad \partial_z S(y,0) = 0$$

$$\partial_y T(\pm \ell, z) = 0, \quad \partial_y S(\pm \ell, z) = 0$$

for temperature and salinity.

Surface Forcing

McWilliams & Thual took

$$\theta(y) = F(y) = \cos y$$

Instead, we'll consider

$$\theta(y) = \cos y$$

but

$$F(y,t) = \bar{F}(y) + \tilde{F}(y,t)$$

 $\bar{F}(y)$ is the systematic salinity flux, specified later, and $\tilde{F}(y,t)$ is random salinity flux, taken to be zero-mean Gaussian white-noise with covariance

$$\langle \widetilde{F}(y,t)\widetilde{F}(y',t')\rangle = \Sigma_0^2 \cdot \delta(y-y')\delta(t-t')$$

Small Aspect-Ratio Limit

Cessi & Young (1992) considered

$$\epsilon \equiv rac{\pi d}{\ell} \ll 1.$$

Nondimensionalize as

$$(y,z) = d\left(\frac{\hat{y}}{\epsilon}, \hat{z}\right), \quad t = \frac{d^2}{\kappa_T}\hat{t}, \quad \psi = \frac{\kappa_T}{\epsilon}\hat{\psi}$$

$$T = \frac{\nu \kappa_T}{g \alpha_T d^3 \epsilon^2} \hat{T}, \quad S = \frac{\nu \kappa_T}{g \alpha_S d^3 \epsilon^2} \hat{S},$$

In domain $0 \le z \le 1, -\pi < y < \pi$,

$$P^{-1}[\partial_t \zeta + J(\psi, \zeta)] = \partial_y T - \partial_y S + (\partial_z^2 + \epsilon^2 \partial_y^2) \zeta$$

$$\partial_t T + J(\psi, T) = (\partial_z^2 + \epsilon^2 \partial_y^2) T$$

$$L^{-1}[\partial_t S + J(\psi, S)] = (\partial_z^2 + \epsilon^2 \partial_y^2) S$$

with zonal vorticity

$$\zeta = (\partial_z^2 + \epsilon^2 \partial_y^2) \psi$$

and Prandtl and Lewis numbers

$$P = \nu/\kappa_T, \ L = \kappa_S/\kappa_T.$$

The surface b.c. for T, S are now

$$T(y,1) = a\theta(y), \quad \partial_z S(y,1) = bF(y)$$

with thermal and saline Rayleigh numbers

$$a = \frac{g\alpha_T \Delta T d^3 \epsilon^2}{\nu \kappa_T} \quad b = \frac{g\alpha_S \Delta S d^3 \epsilon^2}{\nu \kappa_T}.$$

Another dimensionless group also appears

$$c = \frac{g\alpha_S \Sigma_0(\epsilon d)^{5/2}}{\nu \kappa_T^{1/2}},$$

for the magnitude of the stochastic flux term.

For a nontrivial limit, one must take

$$a = \epsilon a_1, b = \epsilon^3 b_3, c = \epsilon^2 c_2$$

and expand

$$(\psi, T, S) = \epsilon(\psi_1, T_1, S_1) + \epsilon^2(\psi_2, T_2, S_2) + \cdots$$

At third-order, one obtains a solvability condition for salinity $\sigma(y,\tau)=a_1^{-1}S_1,\ \tau=\epsilon^2 Lt$:

$$\partial_{\tau}\sigma - \mu^2 \partial_y [\partial_y \sigma (\partial_y \sigma - \partial_y \theta)^2] = rF + \partial_y^2 \sigma - \gamma^2 \partial_y^4 \sigma.$$

Amplitude Equation

With meridional thermal and salinity gradients

$$\eta(y) \equiv \partial_y \theta(y), \quad \chi(y,\tau) \equiv \partial_y \sigma(y,\tau),$$

the solvability equation becomes

$$\partial_{\tau} \chi = \partial_{y}^{2} [\mu^{2} \chi (\chi - \eta)^{2} - r \overline{f}(y) + \chi - \gamma^{2} \partial_{y}^{2} \chi] + \partial_{y} \widetilde{f}(y, \tau)$$
(1)

with

$$\bar{f}(y) = -\int_{-\pi}^{y} \bar{F}(\bar{y}) d\bar{y}$$

and

$$\langle \widetilde{f}(y,\tau)\widetilde{f}(y',\tau')\rangle = \sigma_0^2 \cdot \delta(y-y')\delta(\tau-\tau')$$
 with $\sigma_0=L^{1/2}c_2/a_1$.

Order Parameter

The salinity field is

$$\sigma(y,\tau) = \sigma(0) + \int_0^y d\bar{y} \ \chi(\bar{y},\tau),$$

where the value of the equatorial salinity $\sigma(0)$ may be freely defined, e.g. $\sigma(0) = 0$.

The salinity of the north polar water

$$\sigma_N(\tau) = \sigma(\pi, \tau)$$

acts as an "order parameter" to distinguish in which of the stable equilibria the system resides at time τ .

We also consider salinity of the south polar water

$$\sigma_S(\tau) = \sigma(-\pi, \tau)$$

Model Measurements

At each observation time τ , we shall measure salinity field $\sigma(y,\tau)$ at various latitudes y_k ,

$$\gamma_k = \sigma(y_k, \tau) + \epsilon_k \quad (2)$$

where ϵ_k is an $N(0, R_k)$ random measurement error for k = 1, ..., q.

In previous notations, this corresponds to the affine measurement function $\mathbf{h}[\chi,\tau]$ given by

$$h_k[\chi;\tau] = \int_0^{y_k} d\bar{y} \ \chi(\bar{y},\tau), \quad k = 1, ..., q.$$

and error covariance matrix

$$\mathbf{R}(\tau) = \begin{bmatrix} R_1 & 0 & \cdots & 0 \\ 0 & R_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & R_q \end{bmatrix}$$

In our example we take q = 2, with

$$y_1=\pi/2$$
 or 45° N

$$y_2 = \pi \text{ or } 90^{\circ} \text{ N}$$

and $R_1 = R_2 = 10^{-2}$, corresponding to 10% accuracy in the measurements.

Remark: We have also performed experiments with measurements on many other quantities, such as:

Temperature change:

$$\Delta\theta(y,z;\tau) = -\eta(y)[\chi(y,\tau) - \eta(y)]U(z)$$

Meridional flow velocity:
$$w(y,z;\tau) = \partial_y [\chi(y,\tau) - \eta(y)] \, W(z)$$
 Vertical flow velocity:

$$v(y,z;\tau) = -[\chi(y,\tau) - \eta(y)]W'(z)$$

All of these gave similar results.

Outline of Maximum-Entropy Filter

Samples $\mathbf{x}_t^{(n)}$, n=1,...,N evolve between measurements under the dynamics (1). At measurement times (2), there are three steps:

- (i) Matching: A parametric model $P(\mathbf{x}; \boldsymbol{\lambda}_{t^-})$ is determined by matching to some moments of the ensemble $\mathbf{x}_{t^-}^{(n)}, \ n=1,...,N.$
- (ii) Updating: Bayes theorem is now applied to update $P(\mathbf{x}; \boldsymbol{\lambda}_{t-})$ to $P(\mathbf{x}; \boldsymbol{\lambda}_{t+})$.
- (iii) Resampling: A new N-sample ensemble $\mathbf{x}_{t+}^{(n)}, \ n=1,...,N$ is created, by sampling from the model posterior $P(\mathbf{x}; \boldsymbol{\lambda}_{t+})$.

The ensemble $\mathbf{x}_t^{(n)}$, n = 1, ..., N represents the filter distribution $P(\mathbf{x}, t)$.

H-Theorem for Relative Entropy

Let $Q(\mathbf{x},t)$ be the *prior distribution* in the absence of any measurements. For example, if $P_0(\mathbf{x}) = P_*(\mathbf{x})$, the invariant measure of the dynamics (1), then $Q(\mathbf{x},t) = P_*(\mathbf{x})$.

For any nondegenerate Markov process the relative entropy or Kullback-Leibler distance,

$$H(P(t)|Q(t)) = \int d\mathbf{x} \ P(\mathbf{x}, t) \ln \left(\frac{P(\mathbf{x}, t)}{Q(\mathbf{x}, t)} \right)$$

is non-increasing in time between measurements and vanishes only when P(t) = Q(t).

At long times between measurements $P(\mathbf{x},t)$ "loses information" and converges back toward its prior $Q(\mathbf{x},t)$.

Maximum-Entropy Distributions

The moments of the measured variable,

$$\boldsymbol{\eta}_{t^{-}} = \langle \mathbf{h}_{t} \rangle_{t^{-}}, \ \mathbf{H}_{t^{-}} = \langle \mathbf{h}_{t} \mathbf{h}_{t}^{\top} \rangle_{t^{-}},$$

represent the measurement forecast at the time t, both the mean η_{t^-} and the covariance matrix $\mathbf{C}^H_{t^-} = \mathbf{H}_{t^-} - \eta_{t^-} \eta_{t^-}^\top$.

We take as our model of $P(\mathbf{x}, t^-)$ the maximumentropy (minimum-information) distribution consistent with the measurement forecast. It belongs to an exponential family:

$$P(\mathbf{x},t;\boldsymbol{\lambda},\boldsymbol{\Lambda}) =$$

$$\frac{\exp[\boldsymbol{\lambda} \cdot \mathbf{h}_t(\mathbf{x}) + \frac{1}{2}\boldsymbol{\Lambda} \cdot \mathbf{h}_t(\mathbf{x}) \mathbf{h}_t^{\top}(\mathbf{x})]}{Z_t(\boldsymbol{\lambda}, \boldsymbol{\Lambda})} Q(\mathbf{x}, t)$$

with q-vector λ and $q \times q$ symmetric matrix Λ as Lagrange multipliers and denominator $Z_t(\lambda, \Lambda)$ a normalization factor.

Matching Algorithm

Define convex cumulant-generating function

$$F_t(\lambda, \Lambda) = \log Z_t(\lambda, \Lambda)$$

$$= \log \left[\int d\mathbf{x} \ e^{\mathbf{\lambda} \cdot \mathbf{h}_{l}(\mathbf{x}) + \frac{1}{2} \mathbf{\Lambda} \cdot \mathbf{h}_{l}(\mathbf{x}) \mathbf{h}_{t}^{\top}(\mathbf{x})} Q(\mathbf{x}, t) \right].$$

The moments (η, H) are obtained as:

$$\eta_i = \frac{\partial F_t}{\partial \lambda_i}, \ H_{ij} = \frac{\partial F_t}{\partial \Lambda_{ij}}.$$

The parameters (λ, Λ) corresponding to given (η, H) are determined as optimizers:

$$H_t(\eta, \mathbf{H}) = \sup_{\lambda, \Lambda} \{ \eta \cdot \lambda + \frac{1}{2} \mathbf{H} : \Lambda - F_t(\lambda, \Lambda) \}$$

which gives the relative entropy for the model density. This involves the minimization of a convex function of $\frac{q(q+3)}{2}$ variables (λ, Λ) . The computational cost is reduced when $q \ll p$

Mixture Models for Priors

We use a Gaussian mixture model

$$Q_M(\mathbf{x},t) = \sum_{m=1}^{M} w_m(t) N(\mathbf{x}; \boldsymbol{\mu}_m(t), \mathbf{C}_m(t)).$$

The weights of the components satisfy

$$\sum_{m=1}^{M} w_m(t) = 1,$$

and $N(\mathbf{x}; \boldsymbol{\mu}, \mathbf{C})$ is the multivariate normal density with mean $\boldsymbol{\mu}$ and covariance matrix \mathbf{C} .

If there is one Gaussian component (M = 1) if we match all the moments $\langle \mathbf{x} \rangle$, $\langle \mathbf{x} \mathbf{x}^{\top} \rangle$ and if $\mathbf{h}_t(\mathbf{x}) = \mathcal{H}_t \mathbf{x} + \mathbf{d}_t$ is affine, then our method is equivalent to Ensemble Kalman Filter.

To construct $w_m(t)$, $\mu_m(t)$, $C_m(t)$ we will use conditional sampling of a solution of (1).

Mixture Model for Cessi-Young

With $\sigma_0 = 0.08$ we perform conditional sampling on the two events

$$E_{-}=\{\sigma_{N}<-0.45\}$$
 weak circulation $E_{+}=\{\sigma_{N}>-0.45\}$ strong circulation

From this we obtain:

- Weights: $w_{\pm} = P(E_{\pm})$
- Conditional mean profiles $\bar{\chi}_{\pm}(y_k)$, k=1,...,150
- Conditional covariance matrices $C_{\pm}(y_k, y_l)$, k, l = 1, ..., 150
- Conditional EOF variance spectra $\gamma_{\pm}^{(a)}$, a=1,...,150
- Conditional EOF's $\hat{\mathbf{e}}_{\pm}^{(a)}, a = 1, ..., 150$

Generalized Representer Algorithm

Approximating $Q \approx Q_M$, the model distribution with parameters (λ, Λ) is also a mixture:

$$P_M(\mathbf{x}; \boldsymbol{\lambda}, \boldsymbol{\Lambda}) =$$

$$\sum_{m=1}^{M} w_m(\boldsymbol{\lambda}, \boldsymbol{\Lambda}) N(\mathbf{x}; \boldsymbol{\mu}_m(\boldsymbol{\lambda}, \boldsymbol{\Lambda}), \mathbf{C}_m(\boldsymbol{\Lambda})).$$

To determine $w_m(\lambda, \Lambda), \mu_m(\lambda, \Lambda), C_m(\Lambda)$:

*Define q-vectors $\boldsymbol{\mu}_m^H = \mathcal{H}\boldsymbol{\mu}_m + \mathbf{d}$ and $q \times q$ matrices $\mathbf{C}_m^H = \mathcal{H}\mathbf{C}_m\mathcal{H}^\top$, $\boldsymbol{\Gamma}_m^H = [\mathbf{C}_m^H]^{-1}$

*Determine the Cholesky decomposition of $\Gamma_m^H - \Lambda$, m=1,...,M. These matrices must be positive-definite for the model density to be statistically realizable with the given Λ .

* Using the Cholesky factorizations, solve the linear equation

$$(\Gamma_m^H - \Lambda) \cdot oldsymbol{\eta}_m(oldsymbol{\lambda}, \Lambda) = \Gamma_m^H oldsymbol{\mu}_m^H + oldsymbol{\lambda}$$

and calculate the inverse $[\Gamma_m^H - \Lambda]^{-1}$ and determinant Det $(\Gamma_m^H - \Lambda), m = 1, ..., M$.

Finally, for m = 1, ..., M, set

$$Z_m(\lambda, \Lambda) = \sqrt{\frac{\operatorname{Det} \Gamma_m^H}{\operatorname{Det} (\Gamma_m^H - \Lambda)}} \times$$

$$\exp \left[-\frac{1}{2} (\mu_m^H)^\top \Gamma_m^H \mu_m^H + \frac{1}{2} (\Gamma_m^H \mu_m^H + \lambda)^\top \eta_m(\lambda, \Lambda) \right].$$

$$w_m(\lambda, \Lambda) = w_m \frac{Z_m(\lambda, \Lambda)}{Z(\lambda, \Lambda)}$$

$$\mu_m(\lambda, \Lambda) = \mu_m + C_m \mathcal{H}^\top \Gamma_m^H \cdot [\eta_m(\lambda, \Lambda) - \mu_m^H]$$

$$C_m(\Lambda) = C_m + C_m \mathcal{H}^\top \Gamma_m^H [\Gamma_m^H - \Lambda]^{-1} \Lambda \mathcal{H} C_m,$$

and

$$Z(\lambda, \Lambda) = \sum_{m=1}^{M} w_m Z_m(\lambda, \Lambda)$$
 $F(\lambda, \Lambda) = \ln Z(\lambda, \Lambda).$

$$\frac{\partial F}{\partial \lambda}(\lambda, \Lambda) = \sum_{m=1}^{M} w_m(\lambda, \Lambda) \eta_m(\lambda, \Lambda)$$

$$\frac{\partial F}{\partial \Lambda_{ij}} = \sum_{m=1}^{M} w_m(\lambda, \Lambda) \{ [(\Gamma_m^H - \Lambda)^{-1}]_{ij} + [\eta_m(\lambda, \Lambda)]_i [\eta_m(\lambda, \Lambda)]_i \}$$

We use these to determine

$$(\lambda_{t^-}, \Lambda_{t^-}) =$$

$$\mathrm{argsup}_{\pmb{\lambda},\pmb{\Lambda}}\{\pmb{\eta}_{t^-}\pmb{\cdot}\pmb{\lambda}+\frac{1}{2}\mathbf{H}_{t^-}\pmb{\cdot}\pmb{\Lambda}-F_t(\pmb{\lambda},\pmb{\Lambda})\}$$

by conjugate-gradient minimization with a feasible Armijo line-search. We can monitor if trials (λ_k, Λ_k) in the CG iteration remain in the domain of $F_t(\lambda, \Lambda)$ by existence of the Cholesky factorizations of $\Gamma_m^H - \Lambda$, m = 1, ..., M.

Updating the Model Distribution

Bayes theorem is now applied, which, for normal error statistics,

$$\mathbf{y}_t = \mathbf{h}_t(\mathbf{x}_t) + \boldsymbol{\epsilon}_t$$

$$\epsilon_t \sim N(\mathbf{0}, \mathbf{R}_t)$$

yields another maximum-entropy distribution with parameters $(\lambda_{t+}, \Lambda_{t+})$ given by

$$\boldsymbol{\lambda}_{t^+} = \boldsymbol{\lambda}_{t^-} + \mathbf{R}_t^{-1} \mathbf{y}_t,$$

$$\Lambda_{t^+} = \Lambda_{t^-} - \mathbf{R}_t^{-1}.$$

Updating the model distribution is trivial!

Resampling the Model Distribution

With $(\lambda, \Lambda) = (\lambda_{t+}, \Lambda_{t+})$, resample

$$P_M(\mathbf{x}; \boldsymbol{\lambda}, \boldsymbol{\Lambda}) =$$

$$\sum_{m=1}^{M} w_m(\boldsymbol{\lambda}, \boldsymbol{\Lambda}) N(\mathbf{x}; \boldsymbol{\mu}_m(\boldsymbol{\lambda}, \boldsymbol{\Lambda}), \mathbf{C}_m(\boldsymbol{\Lambda})).$$

by repeating the following steps for n = 1, ..., N:

- (1) Choose a component m_n with probability $w_m(\lambda, \Lambda), m = 1, ..., M$
- (2) Sample an element \mathbf{x}_n from the distribution $N(\boldsymbol{\mu}_{m_n}(\boldsymbol{\lambda}, \boldsymbol{\Lambda}), \mathbf{C}_{m_n}(\boldsymbol{\Lambda}))$ using its Karhunen-Loève representation:

$$\mathbf{x}_n = \boldsymbol{\mu}_{m_n}(\boldsymbol{\lambda}, \boldsymbol{\Lambda}) + \sum_{a=1}^p \xi_n^{(a)} \sqrt{\gamma_{m_n}^{(a)}(\boldsymbol{\Lambda})} \ \hat{\mathbf{e}}_{m_n}^{(a)}(\boldsymbol{\Lambda}).$$

Here $\gamma_m^{(a)}(\Lambda), \hat{\mathbf{e}}_m^{(a)}(\Lambda)$ are the eigenvalues and eigenvectors of $\mathbf{C}_m(\Lambda)$ and $\xi_n^{(a)}$ are i.i.d. normal random variables, $a=1,...,p,\,n=1,...,N$

Calculating $\gamma_m^{(a)}(\Lambda)$, $\hat{\mathbf{e}}_m^{(a)}(\Lambda)$ for every new value of Λ is expensive!

To avoid this, sample $N(\mu_m(\lambda, \Lambda), \mathbf{C}_m(\Lambda))$ by the Metropolis-Hastings algorithm with the Gaussian $N(\mu_m(\lambda, \Lambda), \mathbf{C}_m)$ as the proposal distribution. Thus, proposed updates have the form

$$\mathbf{x}' = \boldsymbol{\mu}_m(\boldsymbol{\lambda}, \boldsymbol{\Lambda}) + \sum_{a=1}^p \xi_a \sqrt{\gamma_m^a} \; \hat{\mathbf{e}}_m^a,$$

where γ_m^a , $\hat{\mathbf{e}}_m^a$ are the eigenvalues and eigenvectors of \mathbf{C}_m . (Note that \mathbf{C}_m does not depend on Λ !) These are the *conditional EOF's*.

These updates are accepted with probability $\min\{1, e^{-\Delta E}\}$ to replace a current state vector \mathbf{x} , where $\Delta E = E(\mathbf{x'}) - E(\mathbf{x})$ and

$$E(\mathbf{x}) =$$

$$-\frac{1}{2}[\mathbf{h}(\mathbf{x}) - \boldsymbol{\eta}_m(\boldsymbol{\lambda}, \boldsymbol{\Lambda})]^{\top} \boldsymbol{\Lambda}[\mathbf{h}(\mathbf{x}) - \boldsymbol{\eta}_m(\boldsymbol{\lambda}, \boldsymbol{\Lambda})]$$

Costs of the Algorithm

Matching: Calculation of F_t and its gradients at one value of (λ, Λ) requires $O(Mq^3)$ multiplications. The total cost of the minimization by conjugate-gradient is $O(n_{CG}Mq^3)$, where n_{CG} is the number of CG iterations.

Resampling: To calculate EOF's of C_m , m=1,...,M at the outset is a single-time cost of $O(Mp^3)$. If a number n_T of trials is made in each Metropolis step, then resampling requires Npn_T random numbers and $O(Np^2n_T)$ multiplications at each measurement time.

To simplify, truncate K-L expansion to a maximum number of EOF's $p_{\text{max}} \ll p$. Finding the p_{max} leading eigenvalues and eigenvectors of C_m , m=1,...,M requires $O(Mp^2p_{\text{max}})$ operations, e.g. by iterative Arnoldi methods. Likewise, Metropolis sampling from the truncated K-L expansion uses $Np_{\text{max}}n_T$ random numbers and $O(Npp_{\text{max}}n_T)$ multiplications. These are smaller by a factor of $p_{\text{max}}/p \ll 1$.

Mean-Field Filter

Matching: Minimize $H(P_t|Q_t)$ subject to the single constraint $\langle \mathbf{h}_t \rangle_{t-} = \eta_{t-}$. This gives

$$P(\mathbf{x}, t; \lambda) = \frac{1}{Z_t(\lambda)} \exp[\lambda \cdot \mathbf{h}_t(\mathbf{x})] \cdot Q(\mathbf{x}, t)$$

with q-vector $\pmb{\lambda} = \pmb{\lambda}_{t^-}$ yielding the supremum

$$H_t(\eta) = \sup_{\lambda} \{ \eta \cdot \lambda - F_t(\lambda) \}$$

for $\eta = \eta_{t^-}$. Here $F_t(\lambda) = \log Z_t(\lambda)$.

Updating:

$$egin{aligned} oldsymbol{\eta}_{t^+} &= \mathop{\mathsf{arginf}} \{H_t(oldsymbol{\eta} | oldsymbol{\eta}_{t^-}) \ &+ rac{1}{2} [oldsymbol{\eta} - \mathbf{y}_t]^{ op} \mathbf{R}_t^{-1} [oldsymbol{\eta} - \mathbf{y}_t] \Big\} \end{aligned}$$

where

$$H_t(\boldsymbol{\eta}|\boldsymbol{\eta}_{t-}) = H_t(\boldsymbol{\eta}) - H_t(\boldsymbol{\eta}_{t-}) - (\boldsymbol{\eta} - \boldsymbol{\eta}_{t-}) \cdot \boldsymbol{\lambda}_{t-}.$$

Resampling: Essentially the same as before.

Interpretation of Mean-Field Update

Suppose samples $\mathbf{x}_{t-}^{(n)}$, n=1,...,N are drawn independently from the distribution $P(\mathbf{x},t;\boldsymbol{\lambda}_{t-})$.

Also take an i.i.d. set $\{\epsilon_t^{(n)}, n = 1,...,N\}$ of $N(\mathbf{0},\mathbf{R}_t)$ random variables and define the ensemble of measured values

$$\mathbf{y}_{t}^{(n)} = \mathbf{h}_{t}(\mathbf{x}_{t-}^{(n)}) + \boldsymbol{\epsilon}_{t}^{(n)}, \ n = 1, ..., N,$$

Then:

 η_{t+} is the most probable value of $\frac{1}{N}\sum_{n=1}^{N}\mathbf{h}_{t}(\mathbf{x}_{t-}^{(n)})$ for the ensemble conditioned upon the event $\frac{1}{N}\sum_{n=1}^{N}\mathbf{y}_{t}^{(n)}=\mathbf{y}$, in the limit as $N\to\infty$.

Computational Costs

The cost to calculate $\eta_m(\lambda), Z_m(\lambda)$ for m=1,...,M and $F(\lambda)$ and its derivatives is $O(Mq^2)$. Hence, the total cost of the matching step is $O(n_{CG}Mq^2)$. This is smaller by 1/q than for MEF and smaller by $O(n_{CG}M(q/p)^2/q)$ than the cost of the Kalman gain matrix in EnKF.

The resampling step in the mean-field MEF uses O(Mpq) multiplications to calculate the means $\mu_m(\lambda)$, m=1,...,M. As in MEF, there is a single-time expense of $O(Mp^3)$ to calculate EOF's of the component covariances C_m , m=1,...,M. Also, Np random numbers and $O(Np^2)$ multiplications are needed to generate new samples.

Thus, resampling in MFF is cheaper than in full MEF by a factor of $1/n_T$ and more expensive than in EnKF by a factor of p/q. However, if a truncated K-L expansion is used with only p_{max} terms, then this factor is p_{max}/q and the cost will be similar as for EnKF if $p_{\text{max}} \approx q$.

Entropy

MEF and MFF yield as by-products estimates of the relative entropy $H(P_t|Q_t)$, i.e. $H_t(\eta, \mathbf{H})$ and $H_t(\eta)$. These can be calculated at any time desired by matching to the particle ensemble moments η_t, \mathbf{H}_t .

EnKF also gives an estimate, if one assumes a pair of normal densities $P = N(\mu_t, \mathbf{C}_t), Q = N(\nu_t, \mathbf{G}_t)$:

$$H(P_t|Q_t) = \frac{1}{2} (\boldsymbol{\mu}_t - \boldsymbol{\nu}_t)^{\top} \mathbf{G}_t^{-1} (\boldsymbol{\mu}_t - \boldsymbol{\nu}_t)$$
$$+ \frac{1}{2} \text{Tr} \left[\mathbf{C}_t \mathbf{G}_t^{-1} - \mathbf{I} \right] - \frac{1}{2} \ln \left(\frac{\text{Det } \mathbf{C}_t}{\text{Det } \mathbf{G}_t} \right).$$

However, it is very expensive to calculate the determinant $\operatorname{Det} \mathbf{C}_t$ at each desired time t, needing $O(p^3)$ multiplications.

Log-Likelihood & Parameter Estimation

All filtering schemes yield the log-likelihood in the innovation form $\Lambda_T = \sum_{t=1}^T \ln \mathcal{N}_t$ where the sum is over measurement times and \mathcal{N}_t is the normalization in Bayes theorem.

MEF: With
$$\Delta F_t = F_t(\lambda_{t+}, \Lambda_{t+}) - F_t(\lambda_{t-}, \Lambda_{t-})$$

$$\ln \mathcal{N}_t = \Delta F_t - \frac{1}{2} \mathbf{y}_t^{\top} \mathbf{R}_t^{-1} \mathbf{y}_t - \frac{1}{2} \log[(2\pi)^q \mathsf{Det} \, \mathbf{R}_t]$$

MFF:
$$\ln \mathcal{N}_t = -H_t^Y(\mathbf{y}_t|\boldsymbol{\eta}_{t^-})$$
 with

$$H_t^Y(\mathbf{y}|oldsymbol{\eta}_{t^-}) = \min_{oldsymbol{\eta}} \left\{ H_t(oldsymbol{\eta}|oldsymbol{\eta}_{t^-})
ight.$$

$$+\frac{1}{2}[\boldsymbol{\eta} - \mathbf{y}]^{\top}\mathbf{R}_t^{-1}[\boldsymbol{\eta} - \mathbf{y}]$$

EnKF: With
$$\mu_{t-}^Y = \mu_{t-}^{II}$$
, $\mathbf{C}_{t-}^Y = \mathbf{C}_{t-}^H + \mathbf{R}_t$.

$$\begin{split} \ln \mathcal{N}_t &= -\frac{1}{2} (\mathbf{y}_t - \boldsymbol{\mu}_{t^-}^Y)^\top (\mathbf{C}_{t-}^Y)^{-1} (\mathbf{y}_t - \boldsymbol{\mu}_{t^-}^Y) \\ &- \frac{1}{2} \log[(2\pi)^q \mathrm{Det} \, (\mathbf{C}_{t-}^Y)] \end{split}$$

Figure 1: Evolution of salinity at the north pole with $\sigma=0.115.$

Maximum - Likelihood Estimates

Figure 2: MLE. (a) WRF, (b) EnKF, (c) MEF, (d) MFF

Figure 3: Change of MLE. (a) WRF (b) EnKF (c) MEF (d) MFF.

Conclusions

We have developed a maximum-entropy method for particle filtering, or Maximum-Entropy Fil-ter. When prior distributions are represented by Gaussian mixture models, this method generalizes the Ensemble Kalman Filter to better handle non-normal statistics. The method gives excellent results in a test problem with highly non-Gaussian distributions with as few as N=100 samples. This method is very economical when $p\gg q$ and q is not too large.

When also $q \gg 1$, then a practical alternative uses a mean-field conditioning rather than a full Bayes update, the *Mean-Field Filter*. This method is much cheaper than MEF, but, like MEF, is well-converged with as few as N = 100 samples. MFF gives good results for the filter means, but less good results for variances and entropy.