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The Filtering Problem

A state vector x; € RP evolves via

Xt+1 :Ft(xt7nt)a t= O>17°"7T (1)

F; : RPXxR" — RP and n; € R" is a random
noise vector. Initial conditions xg are chosen
randomly from Py(x).

Measurements are taken

yt = he(x¢) + €, (2)

for a subset of t, where hy : RP — RY and ¢; €
RY are random observation errors. Generally,

1l g yp.

We assume that ¢ is an N(0,R;) random g-
vector, i.e. normal with mean 0 and covari-
ance matrix R¢, and that hy(x) = Hix + d; is
affine, for a g-vector d; and g x p matrix H;.




Problems in Geophysical Estimation

(1) Dynamics are nonlinear and statistics may
be highly non-Gaussian

(2) States of very low a priori probability be-
fore measurements can become very probable
afterward

(2) State spaces of the dynamics are often
very high-dimensional and only small ensem-
bles of solutions may be generated.

An example can help to illustrate some of
these difficulties....




2D Thermohaline Convection
McWilliams & Thual (1991) considered, for
0< 2z2<d,—¥¢ <y<¥, the equations
0V 2Y+J (¢, V) = g(ardyT—agdyS)+vViyp
OT 4+ J(,T) = vy V2T
0:8 4 J(,8) = kgV29
with free-slip b.c. for stream function
Y =0, 82 =0
and» boundary conditions
T(y,d) = AT -0(y), 0:S(y,d) = AS-F(y)/d
0:T(y,0) =0, 0:5(y,0) =0

for temperature and salinity.




Surface Forcing

McWilliams & Thual took

0(y) = F(y) = cosy

Instead, we’ll consider

6(y) = cosy
but

F(y,t) = F(y) + F(y,t)

F(y) is the systematic salinity flux, specified
later, and F'(y, ) is random salinity flux, taken
to be zero-mean Gaussian white-noise with
covariance

(F(y, ) F(y/,t)) = 5§ - 6(y — y)s(t — t)




Small Aspect-Ratio Limit

Cessi & Young (1992) considered
d

ce=— K 1.
¢
Nondimensionalize as
> 2
y d —~ KT ~
(y,Z):d<—,Z>, t:_ta ¢:_
€ KT €
I/K,T ~ I/K)T =~
T = S _ ———
gapd3e2”’ gagd3e? ’

Indomain 0<z2<1, <y <m,
P70 + J(¥, )] = 0yT — 0yS + (87 + €207)¢
OT + J (¥, T) = (87 + “0,)T
L3S + J (4, $)] = (87 + €29)S

with zonal vorticity
¢ = (87 + €0y
and Prandtl and Lewis numbers

P=v/kp, L=kKg/kp.




The surface b.c. for T, S are now

T(y,1) = ab(y), 0.5(y,1) = bF(y)
with thermal and saline Rayleigh numbers
_ garATd3e? b gagASd3e?

VKT - VKT ’
Another dimensionless group also appears
. gago(ed)d/?
T 1/2 ’

~ l/I{T

a

for the magnitude of the stochastic flux term.

For a nontrivial limit, one must take

a=c¢€ay, b= €3b3, c= 6262

and expand

(?/)7 T? S’) — 6(7/)17 T17 S’l) + 62(1/)27 T27 qu) + vt

At third-order, one obtains a solvability con-
dition for salinity o(y,7) = a{lsl, T = e’ Lt:

Br0 — 12 8y[8yo (Byo —8y0)?] = rF+820 —~20, 0.




Amplitude Equation

With meridional thermal and salinity gradients

77(?/) = 8y9<y)7 X(y> T) = 3y0(y, 7_)7

the solvability equation becomes

0rx = 82[u?x(x —m)? — rf(y) + x — v?x]
+ 8yf(y7 T)
| (1)

with
Fw)=—[" F@ag
and

(Fly, F 7)) = 0§ 6@y —y)o(r —7")
with og = Ll/QCQ/CL]_.
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Order Parameter

The salinity field is
Yy _
o(y,7) = 0(0) + /O dy x(¥, ),

where the value of the equatorial salinity ¢(0)
may be freely defined, e.g. ¢(0) = 0.

The salinity of the north polar water

on(r) =o(m,7)
acts as an “order parameter” to distinguish

in which of the stable equilibria the system
resides at time r.

We also consider salinity of the south polar
water

US(T) — U(_Wa T)
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Model Measurements

At each observation time 7, we shall measure
salinity field o(y, ) at various latitudes y;,

Ve = (Y, T) + e (2)

where ¢, is an N(0, R;) random measurement
error for k=1,...,q.

In previous notations, this corresponds to the
affine measurement function h[y, 7] given by

Ye _ -
hk‘[XvT] — 0 dy X(yaT)a k= 17"'>q'

and error covariance matrix

Ry O
0O Ro

O OO

R(r) =

0 0 ... Ry




O%J /

In our example we take ¢ = 2, with
Y1 =7T/2 or 45° N

y> = m or 90° N

and Ry = Ro = 102, corresponding to 10%
accuracy in the measurements.

Remark: We have also performed experiments
with measurements on many other quantities,
such as:

Temperature change:

Ay, z,7) = —n(y) [x(y,7) — n(y]U(z)
Meridional flow velocity:

w(y, z, 7) = Oylx(y, 7) — (W] W(z)
Vertical flow velocity:

v(y, z;7) = —[x(y, 7) — n(YIW'(2)

All of these gave similar results.
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Outline of‘Maximum-Entropy Filter

Samples x§">, n =1,..., N evolve between mea-
surements under the dynamics (1). At mea-
surement times (2), there are three steps:

(i) Matching: A parametric model P(x; A,-)
is determined by matching to some mo-

ments of the ensemble xgﬁ’), n=1,..,N.

(ii) Updating: Bayes theorem is now applied
to update P(x; A=) to P(x; A4).

(iii) Resampling: A new N-sample ensemble
ng), n =1,...,N is created, by sampling

from the model posterior P(x; A.+).

The ensemble x,§”), n =1,..., N represents the
filter distribution P(x,t).




H-Theorem for Relative Entropy

Let Q(x,t) be the prior distribution in the ab-
sence of any measurements. For example, if
Po(x) = P«(x), the invariant measure of the
dynamics (1), then Q(x,t) = P«(x).

For any nondegenerate Markov process the
relative entropy or Kullback-Leibler distance,

B P(x,t)
H(P(1)|Q(t)) = /dX P(x,t)In (Q(X,t))

IS non-increasing in time between measure-
ments and vanishes only when P(t) = Q(t).

At long times between measurements P(x,t)
“loses information” and converges back to-
ward its prior Q(x,t).




Maximum-Entropy Distributions

The moments of the measured variable,
N = (hy),—, Ho = (hyh/),,

represent the measurement forecast at the

time ¢, both the mean n,- and the covariance
ix CH — T

matrix CZ = H,- —n,-n,_.

We take as our model of P(x,t™) the maximum-
entropy (minimum-information) distribution con-
sistent with the measurement forecast. It be-
longs to an exponential family:

P(x,t;\,A) =

exp[A-hy(x) + SAthe(x)h] (x)]
Q(x,1)
Zt(AaA)
with g-vector A and ¢ x g symmetric matrix
A as Lagrange multipliers and denominator
Ziy(X, A) a normalization factor.




Matching Algorithm

Define convex cumulant-generating function

Ft(A7 A) — IOg Zt(Aa A)

— log { / dx MG FFABCIRT () ok 1] |

The moments (n,H) are obtained as:

OF, oF;
m = v Hij = 75—
o\; (9/\@'

The parameters (A, A) corresponding to given
(n,H) are determined as optimizers:

1
Ht(na H) — SUD{TPA + —H:A — Ft()\7 A)}
A A 2

Y

which gives the relative entropy for the model
density. This involves the minimization of a
convex function of q(qzj variables (A, A). The
computational cost is reduced when ¢ < p




Mixture Models for Priors

We use a Gaussian mixture model

M
Qu(x,t) = 3 wm(B)N(X; pr (t), Cin(t)).

m=1

The weights of the components satisfy
M

> wm(t) =1,

m=1
and N(x; p, C) is the multivariate normal den-
sity with mean p and covariance matrix C.

If there is one Gaussian component (M = 1)
if we match all the moments (x), (xx') and if
h;(x) = H;x+ d; is affine, then our method is
equivalent to Ensemble Kalman Filter.

To construct wm(t), p,,,(t), Cm(t) we will use
conditional sampling of a solution of (1).



PDF of Salinity
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Mixture Model for Cessi-Young

With og = 0.08 we perform conditional sam-
pling on the two events

E_ ={ony < —0.45} weak circulation

E, = {on > —0.45} strong circulation

From this we obtain:
e Weights: wt+ = P(E4)

e Conditional mean profiles x+(yg),
k=1,.. 150

e Conditional covariance matrices C+(yg, v;),
kl=1,.. 150

e Conditional EOF variance spectra w(ia),
a=1,..150

e Conditional EOF’s 8{*),a = 1,...,150
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Conditional EOF variance spectra
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Generalized Representer Algorithm

Approximating @ = s, the model distribu-
tion with parameters (A, A) is also a mixture:

PM(X; A, A) =

M

m=1

To determine wm (A, A), (A, A), Cin(A):

*Define g-vectors uy, = Hu,, +d and g x g
matrices CH = HC,yH ", TH = [CH]-1

*Determine the Cholesky decomposition of
'l — A, m = 1,..,M. These matrices must
be positive-definite for the model density to
be statistically realizable with the given A.

* Using the Cholesky factorizations, solve the
linear equation

@THE - A) np(NA) =THull + X

and calculate the inverse [T — A]~1 and de-
terminant Det (T2 —A), m=1,..., M.



Finally, for m =1, ..., M, set

Det I‘g y
Det (T2 — A)

Zm(A\,A) = \l

1 1
exp | —=(uin) ' Trapt + - (Chapizn + A) '0,0 (X, A)|

Zm(\,A)

wm (AN, A) = wm ZOuA)

(A, A) = 1, + CH ' TE - [0,,,(A, A) — pi]

Cm(A) = Cim + CnH ' THITH — A]7'AHC oy,

and

M
ZOAMA) = 3 wnZm(A,A)

m=1

FOAA) = InZ(\,A).




OF <
M) = 3 wn(X A)nm (A, A)

m=1
OF M B
i = 2 wnA AT = A) i
(¥ m=1

We use these to determine

(A= Ay-) =

1
argsupy A{n—-A+ EHr:A — Fy(A\A)}

by conjugate-gradient minimization with a fea-
sible Armijo line-search. We can monitor if
trials (Ar,Ar) in the CG iteration remain in
the domain of Fi(A,A) by existence of the
Cholesky factorizations of TH A, m =1,..., M.




Updating the Model Distribution

Bayes theorem is now applied, which, for nor-
mal error statistics_,

yt = hi(x¢) + €

€t NV N(O: Rf)

yields another maximum-entropy distribution
with parameters (A4, A, 1) given by

A+ = A + Ry,

—1

Updating the model distribution is trivial!




Resampling the Model Distribution

With (A, A) = (A+, A1), resample
Pr(x; A A) =

M
Z wm(Aa A)N(X; “‘m()‘a A)) Cm(A))

m=1

by repeating the following steps forn =1, ..., N:

(1) Choose a component my, with probability
wm(A\,A), m=1,... M

(2) Sample an element x, from the distribu-
tion Ny, (A, A), Cm,,(A)) using its Karhunen-
Loeve representation:

X1 = . (A, A) + z &V (A) 85 (A).

Here ’ym>(A) fn)(A) are the elgenvalues and
eigenvectors of C,,(A) and gn ) are i.i.d. nor-
mal random variables, a=1,..,p,n=1,.... N




Calculating %(r?)(A), éf,(ﬁ)(A) for every new value
of A is expensive!

To avoid this, sample N(u,,(A, A),Cmn(A)) by
the Metropolis-Hastings algorithm with the
Gaussian N(u,,,(A, A), Cp,) as the proposal dis-
tribution. Thus, proposed updates have the
form

x' = pm (X A) + Zfa\/iaﬁa’

a=1
where 2 .,e% are the eigenvalues and eigen-
vectors of C,,. (Note that C,, does not de-
pend on A!) These are the conditional EOF's.

These updates are accepted with probability
min{1,e~2E} to replace a current state vector
x, where AFE = E(x') — E(x) and

E(x) =

——21—[h(x) — Ny (A, )] TA[h(x) — 7 (A, A)]




Costs of the Algorithm

Matching: Calculation of F; and its gradi-
ents at one value of (A, A) requires O(Mq3)
multiplications. The total cost of the mini-
mization by conjugate-gradient is O(n,,Mg3),
where n,, is the number of CG iterations.

Resampling: To calculate EOF's of Cy,, m =
1,..., M at the outset is a single-time cost of
O(Mp3). If a number np of trials is made
in each Metropolis step, then resampling re-
quires Npnp random numbers and O(Np2ny)
multiplications at each measurement time.

To simplify, truncate K-L expansion to a max-
imum number of EOF's pmax < p. Finding the
pmax leading eigenvalues and eigenvectors of
Cm, m=1,..., M requires O(Mp?pmax) opera-
tions, e.g. by iterative Arnoldi methods. Like-
wise, Metropolis sampling from the truncated
K-L expansion uses Npmaxny random num-
bers and O(Nppmaxn) multiplications. These
are smaller by a factor of pmax/p < 1.




Mean-Field Filter

Matching: Minimize H(P|Q:) subject to the
single constraint (hg),— = n,—. This gives

1
Z:N explA - hy(x)] - Q(x,t)

with g-vector A = A, yielding the supremum

Hi(n) = sip{n A = F(A)}

P(x,t;\) =

for n = n,-. Here Fiy(X) = log Z;(\).

- Updating:

N+ = arg,;nf{Ht(nInt—)

1 _
+ 207 -yl TRy ' - vil |
where

Hi(nn-) = Hi(n) — Hy(ny-) — (0 — =) A—.

Resampling: Essentially the same as before.




Interpretation of Mean-Field Update

Suppose samples ng), n=1,...,N are drawn
independently from the distribution P(x,t; A;—).

Also take an i.i.d. set {€™, n=1,.. N} of
N(0,R;) random variables and define the en-
semble of measured values

(n)_h(x )-|-€(n), n=1,...,N,

Then:

1,4 is the most probable value of £ >N _1h (x(”))
for the ensemb/e conditioned upon the event

LNy = in the limit as N — oo.




Computational Costs

The cost to calculate n,,,(A), Zm(A) for m =
1,...,M and F(X) and its derivatives is O(Mq?).
Hence, the total cost of the matching step is
O(nyMgq?). This is smaller by 1/q than for
MEF and smaller by O(n..M(q/p)?/q) than
the cost of the Kalman gain matrix in EnKF.

The resampling step in the mean-field MEF
uses O(Mpqg) multiplications to calculate the
means pu,,(A), m=1,..., M. As in MEF, there
is a single-time expense of O(Mp3) to cal-
culate EOF’s of the component covariances
Cm, m = 1,...,. M. Also, Np random num-
bers and O(Np?) multiplications are needed
to generate new samples.

Thus, resampling in MFF is cheaper than in
full MEF by a factor of 1/np and more expen-
sive than in EnKF by a factor of p/q. However,
if a truncated K-L expansion is used with only
pmax terms, then this factor is pmax/q and the
cost will be similar as for EnKF if pmax =~ gq. .




Filter Mean +,- stde. deviation versus Time
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: Filter Mean Profiles at Transition
WRF N=100
1.5 v - T 1.5

0.75 0.75¢

-0.75¢ -0.75}

-1.5 . : * . -1.5~ N ’ " .
-pi -pil2 0 pi/2 pi -pi -pi/2 0 pi/2 pi

MEF MFF
15 ; - - 1.5 ' -

0.75 0.75}
0 of
-0.75 L S —0.75} N4
\ O N
~ .7
~1 -15

-pi -pi/2 0 pi/2 pi -pi -pi/2 0 pi/2 pi




Filter Mean, +,- stde deviation versus Time
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Filter Mean Profiles at Transiton
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Entropy

MEF and MFF yield as by-products estimates
of the relative entropy H(P:|Q+), i.e. Hi(n,H)
and H¢(n). These can be calculated at any
time desired by matching to the particle en-
semble moments 7, H;.

EnKF also gives an estimate, if one assumes
a pair of normal densities P = N(u;, Ct), Q =
N (v, Ge): |

1
H(P|Qr) = E(Nt—Vt)TGt_l(Mt—Vt)

1 1 (Det
+5Tr [CtGgl—I]—Eln( © Ct).

Det G¢
However, it is very expensive to calculate the

determinant DetC; at each desired time ¢,
needing O(p3) multiplications.
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Log-Likelihood & Parameter Estimation

All filtering schemes yield the log-likelihood
in the innovation form Ay = Y} 1 In Ay where
the sum is over measurement times and N; is
the normalization in Bayes theorem.

MEF: With AF; = Fy(A 4, A4) — Fr(A—, Ap-)

1 1
INN; = AF; — EytTRt—l)’t ~5 log[(27)9Det Ry]

MFF: InN; = —H,* (yi|n,~) with

HY (y|n,-) = min {He(nin, )
1 _
+5n - yl"R; 1 n — y]}

EnKF: With pu) = pull CY =C{ +Ry.
1 _
NNt =~ (e = =) T (CL) T e — 1)

_% log[(27)7Det (C{_)]
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Figure 1: Evolution of salinity at the north pole with o = 0.115.




Maxcimunn - Lilerli he e

65\'\‘/‘1«-\15
a b
300— " T 300 -
250 ] 250
200 ] 200
150— : - 150— : .
0.095 0.115 0.135 0.095 0.115 0.135
c d
300— T T 100 v
90
250t
80
70
200
60
150— : - 50— . -
0.095 0.115 0.135 0.095 0.115 0.135

Figure 2: MLE. (a) WRF, (b) EnKF, (c) MEF, (d) MFF




01151
Holelete fefe s Sy

»*—u»*»*‘<-»»~'rﬂtl'ttﬁtﬁ!ﬁitl'tkﬂtntttﬁ!tﬁltwt1'ttﬁﬁlt!ttﬁ!lﬁﬂtﬁllﬁttﬂ!tt'w't

| I L

0

1 L L i
10 20 30 40y 50 60 70 80

)

01151

------------------- KoxgAgkeRekokoltahoh KoxotioXokty kokotg Xk RaWetad ok koot ot RN

T I T I I I

B TR R
ikt Yok Aotk :
jaalaaal i | i i i I i

70 80

20 30 40, 50 60

0.115

------ n--<vﬁﬁﬁ*vvtﬁiﬁttat'wtay'tt*tt-tttt'tﬁt'vtﬁ:"'tt'vtt

1 T T I { T T

X | 1 ] | ] | ] |

4y 50 60 70 80

0.115

0 10 20 30 40
Figure 3: Change of MLE. (a) WRF (b) EnKF (c) MEF (d) MFF.




Conclusions

We have developed a maximum-entropy method
for particle filtering, or Maximum-Entropy Fil-
ter. When prior distributions are represented
by Gaussian mixture models, this method gen-
eralizes the Ensemble Kalman Filter to bet-
ter handle non-normal statistics. The method
gives excellent results in a test problem with
highly non-Gaussian distributions with as few
as N = 100 samples. This method is very
economical when p > g and q is not too large.

When also ¢ > 1, then a practical alterna-
tive uses a mean-field conditioning rather than
a full Bayes update, the Mean-Field Filter.
This method is much cheaper than MEF, but,
like MEF, is well-converged with as few as
N = 100 samples. MFF gives good results
for the filter means, but less good results for
variances and entropy.




