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OVERVIEW

Warning

u is time!

t is algorithmic time
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LAGRANGIAN DATA ASSIMILATION

The Real Problem

We are given Lagrangian particle tracers y; subject to molecular
diffusion:

du Vigiu) +o du

We want to find information about V (y,u). For example to find
(k)

the Fourier co-efficients «; ’(u) in an expression

Viy,u) =Y {sin(y)z{" (u) + cos(y)zy” (u)}.
k
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LAGRANGIAN DATA ASSIMILATION

A Model Problem

We are given the 20 paths of particle tracers y; solving

dy; . dB;
dg; = x1 + sin(y)z2 + cos(y) o

We want to find the distribution of z1, x5 which we assume solve

% = —O0T + \/XdW1,

dt

dfl?g o dW2
E = aAT9 + \/_ dt ,
d d
% = —azz + VA—"> W3

In demo we have 0 = 0.4, A\ = 0.5, = 0.2.

lathematics Institute Warwick UniverSity Centre for Scientific Computing



Background

Y

: : QL
N, "‘\ W“ Ny
. W’\' hW » Y

"

The twenty particles tracers y;(u).
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LAGRANGIAN DATA ASSIMILATION

Abstraction

To sample from paths {z(u)},c[0,1], conditional on some observations

e This is an infinite dimensional sampling problem.

e Metropolis adjusted Langevin algorithms are known to be good
sampling methods in high dimensions. [Roberts et al 1990s].

e We seek to generalize this methodology.
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SAMPLING AND THE LANGEVIN METHOD

The Langevin SDE

Assume that we know ¢ : RY — R where p(z) = Cq(z), and p(z) is
a pdf from which we wish to sample. The basic idea of the
Langevin algorithm is to generate paths of the SDE

dx aw
o= Vlog q(x) + \/iﬂ

Provided the SDE is ergodic (a condition on the tails of ¢):

/ o(x(t))dt — gb()()d:c as T — oo.
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SAMPLING AND THE LANGEVIN METHOD

The Langevin MCMC Method
The SDE is the basis for an MCMC method in which, given z,,, the

proposal move is

z* =z + AtVlog q(z™) + /{2AtIN (0, I)

(or some other discretization of the SDE) and then

* *

1 " w.p. P

€T =
w.p. 1—p

n *

XL

and p* is the Metropolis-Hastings acceptance probability.

We generalize these ideas to situations where the distribution to be

sampled is infinite dimensional.

lathematics Institute Warwick UniverSity Centre for Scientific Computing



SAMPLING AND THE LANGEVIN METHOD

Infinite Dimensional Applications

We study sampling of paths of SDEs, conditional on observations.

Applications include:
e Signal Processing;
e Data Assimilation;
e Transition Path Sampling;

e Interpolating Discrete Time Data by SDEs (for model

identification);
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INFINITE DIMENSIONAL SAMPLING & SPDEs

Bridge Path Sampling

In some applications (econometrics, transition path sampling) it is
important to be able to generate paths of

dx dB
> _VUF i
du VE(@) +7 du

subject to
r(0)=X" & =z(1)=XT.

Note that x(u; {W}) and that the observation of z(1; {W})
conditions the random variable W, and hence z.
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INFINITE DIMENSIONAL SAMPLING & SPDEs

Bridge Path Sampling

By generalizing the Langevin method we obtain the following
SPDE for z(u,t) :

Ox 1 0%z ow
ot = 3 g ~ VT @ V2
r=X", u=0,

r=X", u=1,

r=ux9, t=0.

Here

1 2 72
F(w) = 5|VFP - -AF(x)

and %—Vf is space time white noise. [Stuart, Voss and Wiberg,
2004, Reznikoff and Vanden-Eijnden, 2005].
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INFINITE DIMENSIONAL SAMPLING & SPDEs

Nonlinear Filter/Smoother

In some applications (signal processing, data assimilation) it is
important to be able to generate paths of

— = —-VF —, X(0) ~
o= ~VE(@)+y——=, X(0) ~N(a,5)
subject to observation of y solving
dy o dBQ .

That is, to sample from the distribution of
z(u)[{y(s)to<s<r, 0<u<T.

Note that x(u;w,{B1}) and y(u;w,{B1}, {B2}) and that
observation of y conditions the random variable (w,{B;1}), and

hence z.
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INFINITE DIMENSIONAL SAMPLING & SPDEs

Nonlinear Filter/Smoother

From the Langevin method we obtain the following SPDE (after

time-rescaling) for z(u,t):

0z _ .2 T4y Jorz W
i {8u2 VF(x)}+ A {du Az} + V20 5
Oz 2

%——VF(:U) 52(:1:—0,) u =0,

Ox

%——VF() U—].,

r=ux9, s=0.

d@W

Here € = o /7, F as for bridge sampling an is space-time white

noise.
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THEORETICAL BACKGROUND

The SPDEs as SDEs in Hilbert Space

In the Gaussian case (quadratic F') the SPDEs for sampling can be
written as Hilbert space H valued SDEs of the form

dx dw
== h+ V2 1
gy Lz +h+ V2 o (1)
and nonlinear problems (non-quadratic F') can be written as
dx , daW
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THEORETICAL BACKGROUND

Ergodicity and Invariant Measures

e For Gaussian processes we need only check that m(u) = —£L1h
is the mean and that the covariance function C'(u,v) is the
Green’s function for —L£. [Hairer, Stuart, Voss and Wiberg

2005].

e The Gaussian process (1) is then ergodic and has invariant
measure M (dx) in H.

e Under conditions on U(x), equation (2) is ergodic with
invariant measure m(dx) = exp{—U(z)}M (dzx). [Zabcyk
(1988)].

e This can be used to verify the sampling properties for nonlinear
bridges [Reznikoff and Vanden Eijnden 2005], [Hairer,
Stuart and Voss 2005]. and for nonlinear filters, [Hairer,
Stuart and Voss 2005].
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SIMULATIONS

Bridge Path Sampling

o f(z)=—F'(z)

° F(x) — (a:;2——|_11)2

o y=1 T =102

e X =-1, X*T=1.

Red is sample, green is mean (through time-averaging), blue is
variance (through time-averaging).
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SIMULATIONS

Nonlinear Filter/Smoother

e f(z) = —F'(a)

° F(x) — (:Ex22_+11)2

o y=0=1, T =107
o X" =-1,(a=-1,60=0)

Red is sample, blue is time average (mean), green is (unobserved)
actual path.
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OPTIMAL ALGORITHMS

Preconditioning

Recall equation (2):

dv , AW

The invariant measure of is this equation is unchanged by

introducing compact postive operator G : H — H and considering

X GLa+ Ght GU'(w) + VG (3)

This leads to some interesting new evolution equations. Optimizing
the choice of G can lead to greater efficiency when Metropolizing.

Based on finite dimensional considerations, it is natural in the
context of Metropolizing to choose G to be a Green’s operator
proportional to —£~!. We illustrate this for bridge paths.
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OPTIMAL ALGORITHMS

Preconditioning for Bridge Paths

ox 1 oW
ot~ ElT bV
32y

gz~ VT @)

y=X, u=0,
y=XT, wu=100,

r=xg, t=
e fla)=—F'(x)
° F(ZB) _ (33;2_—'_11)2
e vy=1,X"=-1, X*t=1.

Red is sample, green is mean, blue is variance.
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CONCLUSIONS

Future Directions
These include:

e continuing to develop a rigorous theory for the sampling
properties and ergodicity of the SPDEs described here, and

generalizations;

e optimizing pre-conditioning and choice of time-step to improve
efficiency in the context of Metropoloizing;

e analysis of the rate of convergence of the SPDEs derived here;

e applications in signal processing, data assimilation and

econometrics;

e evaluation of methods introduced here in comparison with

other recently introduced methods.
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