Graphical Models for Sequential Data Modeling and Forecasting

Padhraic Smyth
Information and Computer Science
University of California, Irvine
www.datalab.uci.edu

Collaborators

- UC Irvine, computer science
 - Scott Gaffney, Sergey Kirshner
- Atmospheric science
 - Andy Robertson, Suzana Camargo, Michael Ghil

Outline

- Graphical models
 - a framework for working with sets of random variables
 - Modeling sequential data
 - Estimating graphical models from data
- Examples
 - Cyclone clustering
 - Precipitation modeling with hidden Markov models
- Research problems, future directions

India 1973-03 NCDC GSOD Rainfall Stations

Prediction and Uncertainty

- Uncertainty is ever-present in climate science
 - Model uncertainty
 - which model is more likely given observed data?
 - Forecasting and prediction
 - Distributions over future outcomes
 - Modeling unobserved phenomena
 - Measurement error
- Probability is the language of uncertainty
 - Graphical models are a systematic framework for handling large numbers of random variables

Preliminaries

- Variables
 - Y = y: observed variable
 - S = s : unobserved state variable
 - P(S = S | Y = y) = P(S|y)
- Joint probability densities or distributions
 - e.g., $p(S) = p(S_1, S_2, S_T)$
 - If we know the joint density, we can compute any quantity of interest
 - But working with the joint density is hard
- Examples
 - S discrete: P(S) is a table containing O(K^T) numbers
 - S continuous: P(S) is a function over a T-dimensional space

Observed Measurements

Observed Measurements

Hidden State

S₂

S_T

?

Conditional Probabilities

- Many problems of interest involve computing conditional probabilities, densities, or expectation
 - Prediction

$$E[y_{T+1} | y_T, y_1]$$

State Estimation

arg max {
$$P(s_1, ..., s_T | y_1, ..., y_T)$$
 }

Parameter Estimation

$$P(\theta \mid y_1, \ldots, y_T)$$

- Note:
 - Computing $P(S_{T+1} | S_1 = s)$ has time complexity $O(K^T)$

Two Problems

- Problem 1: Computational Complexity
 - computations scale as O(K^N)

- Problem 2: Model Specification
 - To specify p(U) we need a table of $K^{\mbox{\scriptsize N}}$ numbers
 - Where do these numbers come from?

Two Key Ideas

- Problem 1: Computational Complexity
 - Idea:
 - Represent dependency structure as a graph and exploit sparseness in computation
- Problem 2: Model Specification
 - Idea:
 - learn models from data using statistical learning principles

"...probability theory is more fundamentally concerned with the <u>structure</u> of reasoning and causation than with numbers."

Glenn Shafer and Judea Pearl *Introduction to Readings in Uncertain Reasoning*, Morgan Kaufmann, 1990

Graphical Models

- Dependency structure encoded by an acyclic directed graph
 - Node <-> random variable
 - Edges encode dependencies
 - Absence of edge -> conditional independence
 - Directed and undirected versions

- A language for communication
- A language for computation
- Origins:
 - Wright 1920's
 - 1988
 - Spiegelhalter and Lauritzen in statistics
 - Pearl in computer science
 - Aka Bayesian networks, belief networks, causal networks, etc

Marginal Independence: p(A,B,C) = p(A) p(B) p(C)

Conditionally independent effects: p(A,B,C) = p(B|A)p(C|A)p(A)

Independent Causes: p(A,B,C) = p(C|A,B)p(A)p(B)

Markov dependence: p(A,B,C) = p(C|B) p(B|A)p(A)

Directed Graphical Models

Directed Graphical Models

In general,

$$p(X_1, X_2,..., X_N) = \prod p(X_i \mid parents(X_i))$$

Directed Graphical Models

In general,

$$p(X_1, X_2,..., X_N) = \prod p(X_i \mid parents(X_i))$$

- Probability model has simple factored form
- Directed edges => direct dependence
- Absence of an edge => conditional independence
- Also known as belief networks, Bayesian networks, causal networks

Say we want to compute p(a | c, g)

Direct calculation: $p(a|c,g) = \sum_{bdef} p(a,b,d,e,f \mid c,g)$

Complexity of the sum is $O(K^4)$

Reordering:

$$\Sigma_{\rm d}$$
 p(a|b) $\Sigma_{\rm d}$ p(b|d,c) $\Sigma_{\rm e}$ p(d|e) $\Sigma_{\rm f}$ p(e,f|g)

Complexity is O(K), compared to $O(K^4)$

Probability Calculations on Graphs

- Structure of the graph -> reveals order in which variables can be eliminated
- Complexity is typically O(K max(number of parents))
 - If single parents (e.g., tree), -> O(K)
 - The sparser the graph the lower the complexity
- Technique can be "automated"
 - i.e., a fully general algorithm for arbitrary graphs
 - For continuous variables:
 - replace sum with integral
 - For identification of most likely values
 - Replace sum with max operator

Inference in Graphical Models

- "Inference" = calculating p(one variable | values of others)
- Assume the graph has no loops after arrows are "dropped"
- Message Passing (MP) Algorithm
 - Pearl, 1988; Lauritzen and Spiegelhalter, 1988
 - Declare 1 node (any node) to be a root
 - Schedule two phases of message-passing
 - nodes pass messages up to the root
 - messages are distributed back to the leaves
 - In time O(N), we can compute P(....)

Sketch of the MP algorithm in action

Sketch of the MP algorithm in action

Sketch of the MP algorithm in action

Sketch of the MP algorithm in action

Sketch of the MP algorithm in action

Complexity of the MP Algorithm

- Efficient
 - Complexity scales as O(N K ^m)
 - N = number of variables
 - K = arity of variables
 - m = maximum number of parents for any node
 - Compare to O(KN) for brute-force method

Graphs with "loops"

Message passing algorithm does not work when there are multiple paths between 2 nodes

Graphs with "loops"

General approach: "cluster" variables together to convert graph to a tree

Junction Tree

Junction Tree

Good news: can perform MP algorithm on this tree

Bad news: complexity is now $O(K^2)$

Additional Topics

- Continuous-valued variables
 - Gaussian models
 - Tractable closed-form updating equations
 - Non-parametric models (kernel density)
 - Efficient algorithms exist for sparse graphs
- Undirected graphs:
 - Similar representation and semantics
 - Special case: Markov random field (Ising model)
 - Inference in general is intractable

Hidden Variable Models

Mixture Models

$$p(Y) = \sum_{k} p(Y \mid S=k) p(S=k)$$

Motivation:

- 1. models a true process (e.g., fish example)
- 2. approximate state-based representation (e.g., regimes in climate data)

Hidden Markov Model (HMM)

Hidden Markov Model (HMM)

Two key independence assumptions

$$P(s_1, \dots s_n \ , \ y_1, \dots \ y_n) = \prod p(s_t \mid s_{t-1}) \ p(y_i \mid s_i)$$
 Observation model State dynamics

Comments on HMMs

Motivation?

- S discrete:
 - -> can provide non-linear switching
 - -> can encode low-dim time-dependence for high-dim Y
- S is continuous, Gaussian dependencies, we have a Kalman filter

Widely used in speech recognition, protein sequence modeling, ...

Probability Computation

- Computing $p(S_n | y_1, ..., y_n)$
 - Recursively compute
 - $p(S_1 | y_1)$
 - $p(S_2 \mid y_2, S_1)$ weighted by $p(S_1 \mid y_1)$
 - and so on..
 - This is the MP algorithm, with S₁ as the root node

Generalizing HMMs

Inputs I provide context to influence switching, e.g., downscaling

I = observed atmospheric measurements

S = "weather regimes"

Y = observed rainfall

(Guttorp and Charles, 1994)

Model is still a tree -> inference is still linear

Generalizing HMMs

Add direct dependence between Y's to better model persistence Can merge each S_t and Y_t to construct a junction tree

Generalizing HMMs

Two independent state variables, e.g., two processes evolving at different time-scales

Comments on HMMs

- Non-Gaussian state-space models
 - Non-linear dynamical model for $p(s_t | s_{t-1})$
 - Complicates probability calculations and estimation
- Integrating different measurements
 - y variables can include, e.g., remote-sensing, station data,
 - Conditional independence for $p(y_i | s_i)$
- Handling missing data
 - e.g., missing measurements y (station data)
 - average over missing data, conditioned on observed data – calculations are straightforward

Learning Model Parameters from Data

Data and Plates

Model parameters

$$Data = \{y_1, ... y_n\}$$

Maximum Likelihood

Model parameters

Data =
$$\{y_1, ..., y_n\}$$

Likelihood(
$$\theta$$
) = p(Data | θ) = Π p(y_i | θ)

Maximum Likelihood:

$$\theta_{ML} = arg max\{ Likelihood(\theta) \}$$

Bayesian Estimation

Maximum A Posteriori:

$$\theta_{MAP} = arg max\{ Likelihood(\theta) x Prior(\theta) \}$$

Fully Bayesian:

$$p(\theta \mid Data) = p(Data \mid \theta) p(\theta) / p(Data)$$

Note: "learning" <-> inference in a graphical model

Example: Gaussian Model

Note: priors and parameters are assumed independent here

Example: Bayesian Regression

Model:
$$y_i = f[x_i; \theta] + e_i$$
 $e \sim N(0, \sigma^2)$

$$p(y_i \mid x_i) = N(f[x_i; \theta], \sigma^2)$$

Mixture Model

Likelihood(
$$\theta$$
) p(θ) = p(Data | θ) p(θ)
$$= p(\theta) \; \Pi_i \; p(y_i \mid \theta \;)$$

$$= p(\theta) \; \Pi_i \; [\; \Sigma_k \; p(y_i \mid s_i = k \; , \; \theta \;) \; p(s_i = k) \;]$$

Estimation with Missing Data

Dempster, Laird, Rubin, 1977

- Guess at some initial parameters $heta^0$
- E-step
 - For each case, and each unknown variable compute $p(S \mid known data, \theta^0)$
- M-step:
 - Maximize $p(\theta \mid data)$ using $p(S \mid)$
 - This yields new parameter estimates θ^1
- This is the EM algorithm:
 - converges to a (local) maximum of $p(\theta \mid data)$

Estimation with Missing Data

Dempster, Laird, Rubin, 1977

- Guess at some initial parameters θ⁰
- E-step (Computation in a graph)
 - For each case, and each unknown variable compute $p(S \mid known data, \theta^0)$
- M-step: (Multivariate optimization)
 - Maximize $p(\theta \mid data)$ using $p(S \mid)$
 - This yields new parameter estimates θ^1
- This is the EM algorithm:
 - converges to a (local) maximum of $p(\theta \mid data)$

E-Step

M-Step

E-Step

HMMs

E-Step Compute $p(\mathbf{s} \mid \theta, \mathbf{y})$, linear time

M-Step Find θ that maximizes $p(\mathbf{y}|\theta)p(\theta) = \sum p(\mathbf{y},\mathbf{s}|\theta) p(\theta)$

Example 1:

Simulating and Forecasting Seasonal Rainfall Data

Joint work with:

Andy Robertson, International Research Institute for Climate Prediction Sergey Kirshner, Department of Computer Science, UC Irvine

Robertson, Kirshner, Smyth, Hidden Markov models for modeling daily rainfall occurrence over Brazil, *Journal of Climate*, 17(22):4407-4424, November 2004.

Spatio-Temporal Rainfall Data

Northeast Brazil 1975-2002

90-day time series24 years10 stations

N. Queensland Rainfall Station Oct-Apr Climatology

Modeling Goals

- "Downscaling"
 - From GCM output to daily local time-series for crop yield models
- Prediction
 - e.g., "hindcasting" of missing data
- Understanding
 - Relation of precip interannual variability to climate change

DATA FOR ONE RAIN-STATION

Weather Generator

$$P(\mathbf{R}_{1:T}) = P(\mathbf{R}_{1}) \prod_{t=2}^{T} P(\mathbf{R}_{t} | \mathbf{R}_{t-1}) = \prod_{c \in \{A,..,Z\}} \left(P(c_{1}) \prod_{t=2}^{T} P(c_{t} | c_{t-1}) \right)$$

Does not take spatial correlation into account

HMMs for Rainfall Modeling

S = unobserved weather state
 Y = spatial rainfall pattern ("outputs")

HMMs for Rainfall Modeling

• S = unobserved weather state

Y = spatial rainfall pattern ("outputs")

I = atmospheric variables ("inputs")

Modeling and Estimation

- Model
 - Transitions $p(s_t \mid s_{t-1})$ are now $p(s_t \mid s_{t-1}, i_{t-1})$
 - Parametrized by a logistic function
- Parameter estimation
 - EM algorithm can be derived from general principles
 - E-step:
 - linear in length of sequence
 - M-step:
 - No closed form solution with logistic function
 - Solve a numerical optimization problem at each M-step
- "Parsing"
 - Given a model, can estimate most likely state sequence in historical data
 - Assigns each day to its most likely state

Resulting Weather States

States provide an interpretable "view" of spatio-temporal relationships in the data

Weather States for Kenya

HMM-Conditional-Independence

Spatial Chow-Liu Trees

- Spatial distribution given a state is a tree structure
- Useful intermediate between full pair-wise model and conditional independence
- Topology learned from data
- Can use priors based on distance, topography
- Tree-structure over time also

Illustration of CL-Tree Learning

AB	(0.56, 0.11, 0.02, 0.31)	0.3126
AC	(0.51, 0.17, 0.17, 0.15)	0.0229
AD	(0.53, 0.15, 0.19, 0.13)	0.0172
BC	(0.44, 0.14, 0.23, 0.19)	0.0230
BD	(0.46, 0.12, 0.26, 0.16)	0.0183
CD	(0.64, 0.04, 0.08, 0.24)	0.2603

HMM-Chow-Liu

Tree-Structured Weather States

Evaluation

- HMM models with tree structures learned from historical precipitation data using EM
 - Brazil, Kenya, Senegal, Australia, Western US, ...
- Cross-validation to evaluate predictive power
 - Train on N-K seasons, predict data from other K seasons
 - Leave out single (1-day) station measurement and predict
 - Repeat, and look at average prediction accuracy

Results

- First-order Markov chains capture no spatial dependence
- HMM with conditional-independence -> quite good
- HMMs with tree-structures are most accurate

Australia (predictive error)

Example 2:

Clustering Cyclone Trajectories

Joint work with:

Suzana Camargo, Andy Robertson, International Research Institute for Climate Prediction

Scott Gaffney, Department of Computer Science, UC Irvine

Storm Trajectories

Graphical Models for Sets of Trajectories

Each curve: $P(\mathbf{y}_i | \mathbf{t}_i, \theta) = \text{product of Gaussians}$

Curve-Specific Transformations

e.g.,
$$y_i = at^2 + bt + c + \alpha_i$$
, $\theta = \{a, b, c, \alpha_1, ..., \alpha_N\}$

Clustering: Mixtures of Trajectories

Each set of trajectory points comes from 1 of K models Model for group k is a Gaussian curve model Marginal probability for a trajectory = mixture model

Cluster Shapes for Pacific Cyclones

TROPICAL CYCLONES Western North Pacific 1983-2002

Topics not discussed....

- Learning model structure from data
 - Without hidden variables -> doable
 - With hidden variables -> difficult
- Non-Gaussian models for continuous data
 - Relatively little work
- Monte-Carlo sampling techniques
 - for probability calculation and forecasting
 - E.g., sequential importance sampling ("particle filtering")
- Prediction using model-averaging
 - Bayesian approach:
 - Estimate model-combining weights using Bayesian estimation methods
 - Empirical approach:
 - Estimate model-combining weights that lead to the best prediction

Looking to the future...

- Integration of different data sources for climate modeling
 - Temperature, precipitation, ground-cover, etc
 - Integrating satellite data with traditional data
 - e.g. MODIS data
- Leads to "large-scale structured stochastic models"
 - Multiple temporal scales, spatial scales, diffferent variables
 - Issues
 - missing data
 - data on different time-scales/spatial grids
 - Variable selection, model selection....
 - Parameter/model/forecast uncertainty
- Graphical models provide a useful framework for
 - Thinking about model structure
 - General-purpose algorithms for estimation and prediction
 - Efficient computation
 - General "language" for Bayesian modeling (e.g., BUGS)

References

- Papers from my Web page:
 - Rainfall modeling with HMMs
 - Robertson, Kirshner, Smyth, Hidden Markov models for modeling daily rainfall occurrence over Brazil, *Journal of Climate*, 17(22):4407-4424, November 2004.
 - Graphical models and HMMs
 - Smyth, Heckerman, Jordan, 1997, Neural Computation
- Other sources
 - Kevin Murphy:
 - Dynamic Bayesian Networks: Representation, Inference, and Learning, Phd thesis, EECS Department, UC Berkeley, 2002
 - Dynamic Bayesian Networks, draft book chapter.