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Outline

e Graphical models
— a framework for working with sets of random variables
— Modeling sequential data
— Estimating graphical models from data

e Examples
— Cyclone clustering

— Precipitation modeling with hidden Markov models

e Research problems, future directions
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Prediction and Uncertainty

Uncertainty is ever-present in climate science
— Model uncertainty
e which model is more likely given observed data?
— Forecasting and prediction
e Distributions over future outcomes
— Modeling unobserved phenomena
— Measurement error

Probability is the language of uncertainty

— Graphical models are a systematic framework for handling
large numbers of random variables



Preliminaries

e Variables
e Y =y : observed variable
e S = s : unobserved state variable

= PE=s]|Y=y) =P@ly)

e Joint probability densities or distributions

e e.g., p(S) = p(S,, S, ...... Sy
- If we know the joint density, we can compute any quantity of interest

— ... But working with the joint density is hard

e Examples
— S discrete: P(S) is a table containing O(KT™) numbers

— S continuous: P(S) is a function over a T-dimensional space
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Conditional Probabilities

e Many problems of interest involve computing conditional
probabilities, densities, or expectation

— Prediction
ELVrer | Y1oee-eoe Y.l

— State Estimation
arg max { P(Sq,-..... St Yioennns Y1) ¥

— Parameter Estimation
P(O | yqhe----. Y1)

e Note:
— Computing P(S;,, | S; =s) has time complexity O(KT)



Two Problems

e Problem 1: Computational Complexity
— computations scale as O(KN)

e Problem 2: Model Specification
— To specify p(U) we need a table of KN numbers
— Where do these numbers come from?



Two Key ldeas

e Problem 1: Computational Complexity
— ldea:

e Represent dependency structure as a graph and exploit
sparseness in computation

e Problem 2: Model Specification
— ldea:
e learn models from data using statistical learning principles



“...probability theory is more fundamentally
concerned with the structure of reasoning
and causation than with numbers.”

Glenn Shafer and Judea Pearl
Introduction to Readings in Uncertain Reasoning,
Morgan Kaufmann, 1990



Graphical Models

e Dependency structure encoded by an acyclic directed graph
— Node <-> random variable

— Edges encode dependencies Cf
e Absence of edge -> conditional independence
— Directed and undirected versions Cf
e Why is this useful? ©

— A language for communication
— A language for computation

e Origins:
— Wright 1920’s
— 1988
e Spiegelhalter and Lauritzen in statistics
e Pearl in computer science
— Aka Bayesian networks, belief networks, causal networks, etc



Examples of 3-way Graphical Models

@ @ Marginal Independence:
P(A,B,C) =p(A) p(B) p(C)



Examples of 3-way Graphical Models

Conditionally independent effects:
e P(A.B,C) = p(B|A)P(C|A)p(A)



Examples of 3-way Graphical Models

O,

\ Independent Causes:
e P(A,B,C) = p(C|A,B)p(A)p(B)



Examples of 3-way Graphical Models

®——> Markov dependence:
P(A,B,C) = p(C|B) p(B|A)p(A)



Directed Graphical Models

™)

P(A,B,C) = p(C|A.B)p(A)p(B) +——



Directed Graphical Models

™)

P(A,B,C) = p(C|A.B)p(A)p(B) +——

In general,
P(X1, Xo,....XN) = L1 p(X; | parents(X;) )



Directed Graphical Models

™)

P(A,B,C) = p(C|A.B)p(A)p(B) +——

In general,
P(X1, Xo,....XN) = L1 p(X; | parents(X;) )
* Probability model has simple factored form
e Directed edges => direct dependence

e Absence of an edge == conditional independence

e Also known as belief networks, Bayesian networks, causal networks



Example




Example

Say we want to compute p(a | c, g)



Example

Direct calculation: p(alc,g) = Zbdefp(a,b,d,e,f | c,0)

Complexity of the sum is O(K%)



Example

Reordering:

2.4 p(ab) 2q p(bld,c) 2 p(dle) Z¢ p(e,f g)



Example

Reordering:
2y, p(alb) 24 p(bld,c) 2q p(dle)



Example

Reordering:
2y, p(alb) 24 p(bld,c) e p(dle) p(elg)

p(d|g)



Example

Reordering:
2y, p(alb)2q p(bld.c) p(d|g)

p(blc.g)



Example

Reordering;
b P(alb) p(bic,9)

p(ajc,g) Complexity is O(K), compared to O(K#%)



Probability Calculations on Graphs

Structure of the graph -> reveals order in which
variables can be eliminated

Complexity is typically O(K max(number of parents) ")
— If single parents (e.qg., tree), -=> O(K)
— The sparser the graph the lower the complexity

Technique can be “automated”
— Ii.e., a fully general algorithm for arbitrary graphs
— For continuous variables:
e replace sum with integral
— For identification of most likely values
» Replace sum with max operator



Inference In Graphical Models

e “Inference” = calculating p(one variable | values of others)

e Assume the graph has no loops after arrows are “dropped”

e Message Passing (MP) Algorithm
— Pearl, 1988; Lauritzen and Spiegelhalter, 1988
— Declare 1 node (any node) to be a root
— Schedule two phases of message-passing
e nodes pass messages up to the root
e messages are distributed back to the leaves
— In time O(N), we can compute P(....)



Example




Sketch of the MP algorithm In action
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Sketch of the MP algorithm In action
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Sketch of the MP algorithm In action



Sketch of the MP algorithm In action
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Sketch of the MP algorithm In action
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Complexity of the MP Algorithm

e Efficient
— Complexity scales as O(N K ™)
e N = number of variables
e K = arity of variables
e M = maximum number of parents for any node

— Compare to O(KN) for brute-force method



Graphs with “loops”

Message passing algorithm does not work when
there are multiple paths between 2 nodes



Graphs with “loops”

General approach: “cluster” variables
together to convert graph to a tree



Junction Tree
(D
(B,E



Junction Tree
(D
(B,E

© ® ©

Good news: can perform MP algorithm on this tree

Bad news: complexity is now O(K2)



Additional Topics

e Continuous-valued variables
— Gaussian models
e Tractable closed-form updating equations
— Non-parametric models (kernel density)
e Efficient algorithms exist for sparse graphs

e Undirected graphs:
— Similar representation and semantics
— Special case: Markov random field (Ising model)
» Inference in general is intractable



Hidden Variable Models



Mixture Models
p(Y) = 2, p(Y | S=k) p(S=k)

‘ Hidden discrete variable

Observed variable(s)
Motivation:
1. models a true process (e.g., fish example)

2. approximate state-based representation
(e.g., regimes in climate data)



Component 1

Component 2

Mixture Model




Component 1

Component 2

Mixture Model




Component Models




Hidden Markov Model (HMM)
Observed

Hidden




Hidden Markov Model (HMM)
Observed

Hidden

Two key independence assumptions

P(S1s--- Sn s Y1o--- Yp) = L p(s; | sit) pCYi | S)

AN

_ Observation model
State dynamics



Comments on HMMs

Observed

Hidden

Motivation?
- S discrete:
-> can provide non-linear switching
-> can encode low-dim time-dependence for high-dim Y

- S is continuous, Gaussian dependencies, we have
a Kalman filter

Widely used in speech recognition, protein sequence modeling, ...



Probability Computation
Observed

Hidden

- Computing p(S,, | Yis ... V,)
- Recursively compute

- p(S: | yy)
- p(S, | Y, . S1) weighted by p(S; | Y1)

- and so on..
- This is the MP algorithm, with S; as the root node



Generalizing HMMs

Inputs | provide context to influence switching, e.g., downscaling
| = observed atmospheric measurements
S = “weather regimes”
Y = observed rainfall (Guttorp and Charles, 1994)

Model is still a tree -> inference is still linear



Generalizing HMMs

/r;; /I

Add direct dependence between Y’s to better model persistence

Can merge each S; and Y, to construct a junction tree



Generalizing HMMs

e

Two independent state variables,
e.d., two processes evolving at different time-scales




Comments on HMMs

e Non-Gaussian state-space models
— Non-linear dynamical model for p(s; | Si.1)
— Complicates probability calculations and estimation

e Integrating different measurements

— Yy variables can include, e.g., remote-sensing, station
data,

— Conditional independence for p(y; | s;)

e Handling missing data
— e.g., missing measurements y (station data)

— average over missing data, conditioned on observed
data — calculations are straightforward



Learning Model Parameters
from Data



Data and Plates

‘ Model parameters

Data = {yy,. Y}




Maximum Likelihood

Model parameters

Data = {y,,..y,}

Likelihood(0) = p(Data | 6) =11 p(y; ] 0)

Maximum Likelihood:
0, = arg max{ Likelihood(0) }



Bayesian Estimation

‘\“ Prior(0) = p(0|a)

Maximum A Posteriori:
Oyap = arg max{ Likelihood(8) x Prior(6) }

Fully Bayesian:
p( 0 | Data) = p(Data | 6 ) p(6) / p(Data)

Note: “learning” <-> inference in a graphical model



Example: Gaussian Model

® @

Note: priors and parameters are assumed independent here



Example: Bayesian Regression

Model: y,=f[x;;0] +e, e —~ N(O, ¢?)

ply; | x) = N (f[x;0] , o°)



Mixture Model

Likelihood(6) p(6) = p(Data | 6 ) p(6)
= p(0) 1L p(y; 1 6)

=p@®) I [ 2 plyi Isi=k, 0) p(s; = k) ]



Estimation with Missing Data

Dempster, Laird, Rubin, 1977

Guess at some initial parameters 6°

E-step
— For each case, and each unknown variable compute
p(S | known data, 69)

M-step:
— Maximize p(0 | data) using p(S | .....)
— This yields new parameter estimates 0!

This is the EM algorithm:
— converges to a (local) maximum of p(6 | data)



Estimation with Missing Data

Dempster, Laird, Rubin, 1977

Guess at some initial parameters 6°

E-step (Computation in a graph)
— For each case, and each unknown variable compute
p(S | known data, 6°)

M-step: (Multivariate optimization)
— Maximize p(0 | data) using p(S | .....)
— This yields new parameter estimates 0!

This is the EM algorithm:
— converges to a (local) maximum of p(6 | data)



E-Step




M-Step




E-Step




ANEMIA PATIENTS AND CONTROLS
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E-Step
Compute p(s | 0, y), linear time

-




M-Step
Find 6 that maximizes p(y|0)p(0) = Z p(y,s|0) p(6)

-




Example 1:

Simulating and Forecasting Seasonal
Rainfall Data

Joint work with:

Andy Robertson, International Research Institute for Climate Prediction
Sergey Kirshner, Department of Computer Science, UC Irvine

Robertson, Kirshner, Smyth, Hidden Markov models for modeling daily
rainfall occurrence over Brazil, Journal of Climate, 17(22):4407-4424,
November 2004.



Spatio-Temporal Rainfall Data

Northeast Brazil 1975-2002 2

90-day time series .
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N. Queensland Rainfall Station Oct-Apr Climatology
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Modeling Goals

e “Downscaling”

— From GCM output to daily local time-series for crop yield
models

e Prediction
— e.d., “hindcasting” of missing data

e Understanding
— Relation of precip interannual variability to climate change






Weather Generator

f\ S ‘
®@ K//\ L @@
) (c) S ()

2,) (2, S )

P(Ri:1)=P(R)] [P(Rt|Rt-1)= | ] (P(cl)HP(cqctl)j

t=2 cefA,..Z}

e Does not take spatial correlation into account



HMMs for Rainfall Modeling

e S = unobserved weather state
Y = spatial rainfall pattern (“outputs™)




HMMs for Rainfall Modeling
e S = unobserved weather state

Y = spatial rainfall pattern (“outputs”)
| = atmospheric variables (“inputs”)




Modeling and Estimation

e Model
— Transitions p(s; | s;.;) are now p(s; | Si.; » Ie.1)
— Parametrized by a logistic function

e Parameter estimation
— EM algorithm can be derived from general principles
— E-step:
e linear in length of sequence
— M-step:
e No closed form solution with logistic function
= Solve a numerical optimization problem at each M-step

e “Parsing”

— Given a model, can estimate most likely state sequence in
historical data

— Assigns each day to its most likely state



Year (FMA)
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Resulting Weather States

d) State 4 (340 d)

¢) State 3 (602 d)

561 d)

(

b) State 2

657 d)

(

2] State 1

States provide an interpretable “view” of spatio-temporal
relationships in the data
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a) State 1 (830 d)

Weather
States
for Kenya
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Annual Variability in Raniall Persistence (Station 5)
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HMM-Conditional-Independence

® SF
@ e P(Rt|St) = P(A,...,Zt|St)

— = H P(ct|St)
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— Spatial Chow-Liu Trees

- Spatial distribution given a
state is a tree structure

- Useful intermediate between
full pair-wise model and
conditional independence

- Topology learned from data

- Can use priors based on
distance, topography

- Tree-structure over time also




lllustration of CL-Tree Learning
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HMM-Chow-LIu

T:(Ry) Ty(Ry)
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Tree-Structured Weather States
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-32
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Evaluation

HMM models with tree structures learned from historical
precipitation data using EM
— Brazil, Kenya, Senegal, Australia, Western US, ...

Cross-validation to evaluate predictive power

— Train on N-K seasons, predict data from other K seasons
— Leave out single (1-day) station measurement and predict
— Repeat, and look at average prediction accuracy

Results

— First-order Markov chains capture no spatial dependence
— HMM with conditional-independence -> quite good

— HMMs with tree-structures are most accurate



Australia (predictive error)

013 T I
O
0.125
O
0.12 ©
L
v o
4 0115 %
1 ° g o
< 0.11
T
5 0.105
S
s 0.1
[
o
S 0.095
L
o
0.09
+ HMM-CL K=5
0.085 o HMM-Cl K=5
CCLF
008 | | | | | | |
0.09 0.1 0.11 0.12 0.13 0.14 0.15

Prediction error for various models



Example 2:

Clustering Cyclone Trajectories

Joint work with:

Suzana Camargo, Andy Robertson, International Research Institute for
Climate Prediction

Scott Gaffney, Department of Computer Science, UC Irvine



Storm Trajectories
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Graphical Models for Sets of Trajectories

Each curve: P(y; | t, 0 ) = product of Gaussians



Curve-Specific Transformations

Note: we can learn
function parameters
and shifts
simultaneously with EM

e.g.,yi=at? +bt+c+a, 0 ={a, b,c, ay,...0}



Clustering: Mixtures of Trajectories

Each set of trajectory points comes from 1 of K models
Model for group k is a Gaussian curve model
Marginal probability for a trajectory = mixture model



Cluster Shapes for Pacific Cyclones

Mean Regression Trajectories
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TROPICAL CYCLONES Western North Pacific 1983-2002

Cluster A Cluster B
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Topics not discussed....

Learning model structure from data
— Without hidden variables -> doable
— With hidden variables -> difficult

Non-Gaussian models for continuous data
— Relatively little work

Monte-Carlo sampling techniques
— for probability calculation and forecasting
— E.g., sequential importance sampling (“particle filtering”)

Prediction using model-averaging
— Bayesian approach:
 Estimate model-combining weights using Bayesian estimation methods

— Empirical approach:
- Estimate model-combining weights that lead to the best prediction



Looking to the future...

Integration of different data sources for climate modeling
— Temperature, precipitation, ground-cover, etc
— Integrating satellite data with traditional data

e e.g. MODIS data

e Leads to “large-scale structured stochastic models”

— Multiple temporal scales, spatial scales, diffferent variables
— Issues

e missing data

 data on different time-scales/spatial grids
- Variable selection, model selection....

e Parameter/model/forecast uncertainty

e Graphical models provide a useful framework for
— Thinking about model structure

— General-purpose algorithms for estimation and prediction
— Efficient computation

— General “language” for Bayesian modeling (e.g., BUGS)
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