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Seismic Inverse Scattering

• sample of seismic waves, acquired at Earth’s surface, encodes Earth structure

• inverse scattering problem: decode it! [inverse problem = data assimilation /
parameter estimation]

• primary subsurface exploration technique for petroleum industry, also used in
civil & env. engineering, academic Earth Science

• dynamics of seismic waves arelinear, but relation between data, dynamical pa-
rameters isnonlinear- so inverse problem isnonlinear

• key concepts underlying inversion methods in widespread use: linearization,
adjoint state, ray theory, separation of scales

• critical need: better integration of nonlinearity

• primary industry variant uses active source; 95%+ of industry data acquired at
sea
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1. The Seismic Experiment

Marine reflection seismology, as practiced by the petroleumindustry
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Marine Reflection Seismology

Ship towssource(compressed air gun) andreceivers(hydrophone streamer). Typi-
cally records 100’s of channels - recently 1000’s. [thanks:Schlumberger]
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Marine Reflection Seismology

Typical distances: streamer length = 3 - 8 km, source spacing' hydrophone spac-
ing = 10 - 25 m, parallelsail linesspaced 25 - 150 m apart.
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Marine Reflection Seismology

Data acquisition - 24× 7, source repetition every' 10 s. Typical modern survey
covers 10 km× 10 km, produces data volume' 1 Tbyte,

6



Typical Marine Record
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Shot record, Gulf of Mexico, Mississippi Canyon ca. 1985 (thanks: Exxon)
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2. Length and Time Scales

Both seismic wavefield (dynamic state of system, sampled) and Earth structure (sys-
tem control, to be estimated) arebroadband- features at many scales - but the Earth
is broader band!
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Length/time Scales of Wavefield

Typical bandwidth of recorded data: 5 - 50 Hz' 3 octaves - limited by (1) response
characteristics of recording equipment on both high and lowend, (2) feasibility
of energy input at low end, (3) absorption of high frequency components during
propagation.

Recent improvements in acquisition equipment have pushed the limits, but funda-
mental physics⇒ a few octaves.

Periods of recorded waves: 20-200 ms. Typical velocities ofwaves in sedimentary
rocks' 0.5 m/s (very near surface) - 5 m/ms (very hard sediments suchas salts,
anhydrites). So wavelenth range' 10 - 1000 m.

Typical wavelength of (compressional) wave in sands, shales' 100 m.
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Mechanical Characteristics of Sedimentary Rock

• to good approximation, sedimentary rocks interactelasticallywith seismic waves,
and interaction islinear (amplitudes are small)

• to less good approximation, elasticity tensor isisotropic

• natural physical parameters of linear isotropic elastodynamics:densityρ, com-
pressional wave speedvp, andshear wave speedvs (functions of positionx)

• (more or less) direct measurement of these quantities in boreholes: well logging
- produces 1D cross section
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Mechanical Characteristics of Sedimentary Rock

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
500

1000

1500

2000

2500

3000

3500

4000

4500

depth (m)

Well logs from North Sea borehole. Top:vp (m/s); middle:ρ (kg/m3); bottom: vs

(m/s). (thanks: Mobil R&D, Viking Graben). Original sampling: 0.25 m; subjected
to 30 m moving average.
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Mechanical Characteristics of Sedimentary Rock

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000
500

1000

1500

2000

2500

3000

3500

4000

4500

depth (m)

Note (1) large variance at long (km’s) and short (10’s of m) scales (also at shorter
scales, in original data); (2) relatively small variance ofdensity
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Scale Interactions

Interaction of seismic waves at various wavelengths with fluctuations in Earth me-
chanical properties at various scales, asymptotic simplifications:

• wavelength' correlation length:scattering, reflection, resonant regime inter-
action - no simple description except in limit of small amplitude fluctuations
(single or “Born” scattering);

• wavelength<< correlation length:refraction, asymptotics = geometric optics,
ray theory

• wavelength>> correlation length:averaging, asymptotics = homogenization,
effective medium theory (eff. models tend to be same, with eff. params⇒
ignore!)

Critical observation:data lacks long scales (km’s) governing refraction
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Constant Density Acoustic Model

Notation for Data parameters: timet, source locationxs, and receiver locationxr,
(vector)half offseth = xr−xs

2
, scalar half offseth = |h|. Experiment =shot, single

experiment data =shot record.

acoustic potentialu(x, t), sound velocityc(x) related to pressurep and particle
velocityv by

p =
∂u

∂t
, v =

1

ρ
∇u

Second order wave equation for potential
(

1

c(x)2
∂2

∂t2
−∇2

)

u(x, t) = w(t)δ(x − xs)

plus initial, boundary conditions. RHS models localized energy source.Source
waveletw(t) determines frequency content of solution.
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Inverse Scattering as Least Squares

Forward map:F [c] ≡ p|Y , whereY = {(t,xr,xs) : 0 ≤ t ≤ T, ...} is acquisition
manifold.

Inverse problem: givend ∈ L2(Y ) find c ∈ C s. t.F [c] ' d.

Least squares formulation:

minc∈C ‖F [c] − d‖2

An interesting question: What is a good choice of C? Would (1)honor actual com-
plexity of Earth structure, (2) permit mathematically precise expression of physical
insights on cross-scale interaction.

⇒ Research challenge!
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Cross-scale Interaction and Regularity ofF

• (Stolk, 2000): withC = open set inL∞, F differentiable with loss of one
derivative, i.e. if w ∈ Hs

loc
then F [c](xs,xr, ·) ∈ Hs

loc
(3D) but generally

DF [c]δc(xs,xr, ·) ∈ Hs−1

loc
(sharp)

• Geom. Optics:δc smooth⇒ h.f. phases inF [c + δc] shiftedrel F [c].

• Recall: data isoscillatoryon km scale, lacks low frequencies

• Thereforeδc is smooth⇒ F [c] andF [c + δc] tend to benearly orthogonaleven
whenδc is small
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Consequences for LS Inversion

• least squares function tends tosaturate, i.e. remain near max, except whenc is
“right at long scales”;

• fluctuations in angle betweenF [c], F [c+ δc] asδc varies⇒ stationary points far
from global min,even when data is free of noise(d = F [c])!!!

• Problems are so large that iterative methods (variants of Newton) are only feasi-
ble approach (3D: millions of unknowns, billions of equations)⇒ can only find
stationary points.

Upshot: LS has hadlittle practical impact.
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3. State of the Art: Asymptotic Scale Separation

and Partial Linearization

• Linearization (single scattering model) simplifies description of intrascale inter-
action - often can either ignore deviation from single scattering, or fake the data

• Scale separation: long scales in reference Earth model, short scales in perturba-
tion⇒

– minimizes linearization error

– simplifies solution of LS formulation for short scales
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(Partly) linearized inverse scattering

Formally,c = v[1 + r], F [v(1 + r)] ' F [v] + F [v]r whereF [v]r “=” DF [v](rv) is
linearized forward mapdefined by

(

1

v(x)2
∂2

∂t2
−∇2

)

δu(xs,x, t) = 2
r(x)

v2(x)

∂2u

∂t2
(xs,x, t), F [v]r =

∂δu

∂t

∣

∣

∣

∣

Y

• linearization errorF [v(1 + r)] − F [v] − F [v]r appears to besmallestwhen
(1) v includes all long-scale features in model, (2)r contains only short-scale
(oscillatory) features.

• “physical” reason for this: geom optics suggests no perturbation of long-scale
velocity components⇒ no phase shift of short-scale wavefield components [no
rigorous mathematical distillation of this observation currently known - research
opportunity!]

• linearizedinverse problem - givend, v, find r so thatF [v]r ' d
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Linearized inverse scattering

Study based on modern geom. optics (“microlocal analysis”)by Beylkin 1985,
Rakesh 1988, Nolan 1997, ten Kroode et al. 1998, Stolk 2000, others:

• At a stationary pointr∗, F [v]∗F [v]r∗ = F [v]∗(d −F [v])

• Critical player: normal operatorF [v]∗F [v] is pseudodifferential(generically)
andmicrolocally elliptic

• Pseudodifferential operators do not move short scale components

• ⇒ r∗ has samelocations of short scale components, i.e. structure, asmigration
of dataF [v]∗d

• ⇒ for image of structure, don’t need inversion (stat. point), migration = applica-
tion of adjoint will do! [“convergence” of gradient optimization in one iteration!]
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Linearized inverse scattering

• Computation ofF [v]∗ (“migration operator”): adjoint state method (“wave equa-
tion migration”), usually coupled with one-way approximation, or direct use of
asymptotic Green’s function (“Kirchhhoff migration”).

• F [v]∗F [v] is microlocally elliptic⇒ oscillatory integral formulae approximating
pseudoinverse forF [v] (“asymptotic inversion”)

• with Gaussian noise model,r∗ = (F [v]∗C−1

d F [v] + C−1
m )−1F [v]∗C−1

d (d − F [v])
- if data, model stats are iid, then once againr∗ has short scale components
(structure) in same place asF [v]∗d - so nothing aboutstructureis gained unless
nontrivial long-range correlations built into stats.

• Image structure = location of large short scale components =nonlinear func-
tional of model - to some extent independent of (unknown) noise models.

• Amplitudes (actual values ofr∗) strongly depend on noise model, but even more
strongly on neglected physics (nonlinearity, anelasticity,...)!
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minr ‖F [v]r − (d −F [v])‖2, given“good” v
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Approximate linear least squares solution après Beylkin (“GRT inversion”), Mis-
sissippi Canyon, Gulf of Mexico, 2D survey (750 MB, 500 shots). Thanks: Exxon.
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4. The Nonlinear Bit

Estimating the reference (long scale) velocityv is the nonlinear part of the partially
linearized inverse scattering problem.

How it’s done:Extended Modeling
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Estimatingv - Extended Models

Extensionof F [v] (akaextended model): manifoldX̄ and mapsχ : E ′(X) → E ′(X̄),
F̄ [v] : E ′(X̄) → D′(Y ) so that

F̄ [v]
E ′(X̄) → D′(Y )

χ ↑ ↑ id
E ′(X) → D′(Y )

F [v]

commutes, i.e.

F̄ [v]χr = F [v]r

Extension is “invertible” iffF̄ [v] has aright parametrixḠ[v], i.e. I − F̄ [v]Ḡ[v]is
smoothing, or more generally if̄F [v]Ḡ[v] is pseudodifferential (“inverse except for
wrong amplitudes”). Also require existence of a left inverseη for χ: ηχ = id.

NB: The trivial extension -X̄ = X, F̄ = F - is virtually never invertible.
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Grand Example

The linearized model, rewritten with the aid of a Green’s function g = g[v] (and
w = δ for simplicity):

F [v]r(xr,xs, t) =
∂2

∂t2

∫

dx

∫

dτ g(x,xr, t − τ )g(x,xs, τ )
r(x)

v2(x)

The Standard Extended Model:̄X = X × H, H = offset range.

F̄ [v]r̄(xr,xs, t) =
∂2

∂t2

∫

dx

∫

dτ g(x,xr, t − τ )g(x,xs, τ )
2r̄(x, (xr − xs)/2)

v2(x)

χr(x,h) = r(x), ηr̄(x) = 1

|H|

∫

H dh r̄(x,h) (“stack”).

r̄ ∈ range ofχ ⇔ plots of r̄(·, ·, z,h) (“(prestack) image gathers”) appearflat.
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Reformulation of inverse problem

Givend, find v so thatḠ[v]d ∈ the range ofχ.

Claim: if v is so chosen, then[v, r] solves partially linearized inverse problem with
r = ηḠ[v]d.

Proof: Hypothesis means

Ḡ[v]d = χr

for somer (whence necessarilyr = ηḠ[v]d), so

d ' F̄ [v]Ḡ[v]d = F̄ [v]χr = F [v]r

Q. E. D.
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Application: Migration Velocity Analysis

Membership in range ofχ is visually evident

For the Standard Extended Model,Ḡ[v]d ∈ R(χ) ⇔ independent ofh.

⇒ industrial practice: adjust parameters ofv by hand(!) until Ḡ[v]d exhibits visual
characteristics ofR(χ) - “flatten the image gathers”.

Practically: insist only that̄F [v]Ḡ[v] be pseudodifferential, so adjustv until Ḡ[v]d

is “smooth” inh.
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Left: shot record (d) from North Sea survey (thanks: Shell Research), lightly pre-
processed.
Right: restriction ofḠ[v]dobs to x, y = const (function of depth, offset): shows
relative smoothness inh (offset) for properly chosenv.
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5. Beyond Linearization

Frontier of the subject:

(1) Objectifying velocity analysis

(2) Integrating nonlinear physics with velocity analysis
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An Optimization Problem forv

Goal: an objectiveJ [v, d] extremized by “correct”v

Well-defined for finite energyd ⇒ J [v, d] = 〈d,W [v]d〉+ ... with W [v] bounded on
L2, v ∈ V .

Problem huge and data noisy⇒ v, d 7→ J [v, d] differentiable - must be able to use
Newton!!!

Theorem (Stolk & WWS, 2003):v, d 7→ J [v, d] smooth⇔ W [v] =
−F [v]R0[v]∂2

hR0[v]∗F [v]∗ with R0[v] pseudodifferential order -1
(“differential semblance”).

Some theory, many successful numerical tests of differential semblance using syn-
thetic and field data: WWS et al., Chauris & Noble 2001, Mulder& tenKroode
2002. Brandsberg-Dahl & De Hoop 2004, Foss et al. 2004.
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Ditch Partial Linearization!

Multiply scattered waves frequently evident in field data (phases, apparent veloc-
ity) ⇒ single scattering (linearization) not an adequate description of seismic wave
propagation/reflection.

Two possible resolutions:

(1) process data to remove deviations from single scattering - conventional ap-
proach, but ultimately nonphysical

(2) incorporate multiple scattering in inversion, via use of the full nonlinear model.

Current work: extension of differential semblance inversion beyond single scatter-
ing via nonlinear extended models.
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Six Things to Remember

• The seismic inverse scattering problem is a parameter estimation problem.

• Both data and Earth models are broadband, but Earth model contains long scales
missing in data. Cross-scale interaction provides both obstacles and opportuni-
ties.

• Cross-scale obstacle: connection between long Earth modelscales and data h.
f. phases⇒ straightforward LS inversion (seismic version of 4DVar) generally
unsuccessful.

• Linearized problem about long scale reference model quite tractable,positions
of short scale components largely independent of noise models.

• Cross-scale opportunity: redundancy of data, extended models⇒ consistency
based estimates of long scale model components missing fromdata.

• Frontier of this subject: reintroduction of fully nonlinear physics into inversion,
avoiding pitfalls of naive LS.
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