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Internal Weather of the Sea

T. Dickey, JMS (2003)
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Classic example:
Ocean p >~ O(1000)
Atmos. p>~ O(10-100)



Physical and Multidisciplinary Observations
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Error Subspace Statistical Estimation (ESSE)

• Uncertainty forecasts (with dynamic error subspace, error learning)
• Ensemble-based (with nonlinear and stochastic primitive eq. model (HOPS)
• Multivariate, non-homogeneous and non-isotropic Data Assimilation (DA)
• Consistent DA and adaptive sampling schemes
• Software: not tied to any model, but specifics currently tailored to HOPS



• Strait of Sicily (AIS96-RR96), Summer 1996

• Ionian Sea (RR97), Fall 1997

• Gulf of Cadiz (RR98), Spring 1998

• Massachusetts Bay (LOOPS), Fall 1998

• Georges Bank (AFMIS), Spring 2000

• Massachusetts Bay (ASCOT-01), Spring 2001

• Monterey Bay (AOSN-2), Summer 2003

Ocean Regions and Experiments/Operations
for which ESSE has been utilized in real-time

For publications, email me or see http://www.deas.harvard.edu/~pierrel 



Data Assimilation via ESSE

o Linked to POD/Polynomial Chaos, but with 
time-varying error Karhunen-Loeve basis:
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STOCHASTIC FORCING MODEL:
Sub-grid-scales





Stochastic 
Primitive Equation
Model

are here

The diagonal of time-decorrelations:

The diagonal of noise variances are chosen
function of z only,  of amplitude set to:
“ε * geostrophy”



Data-Forecast Melding:
Minimum Error Variance within Error Subspace



Lermusiaux, DAO (1999)



REGIONAL FEATURES of Monterey Bay and California Current System 
and Real-time Modeling Domains (AOSN2, 4 Aug. – 3 Sep., 2003)

REGIONAL FEATURES
• Upwelling centers at Pt AN/ Pt Sur:….………Upwelled water advected equatorward and seaward
• Coastal current, eddies, squirts, filam., etc:….Upwelling-induced jets and high (sub)-mesoscale var. in CTZ
• California Undercurrent (CUC):…….………..Poleward flow/jet, 10-100km offshore, 50-300m depth
• California Current (CC):………………………Broad southward flow, 100-1350km offshore, 0-500m depth

HOPS –Nested Domains

CC

CUC
AN

PS

SST on August 11, 2003

Coastal C.

AN

PS



Real-time ESSE : AOSN-II Accomplishments
• 10 sets of ESSE nowcasts and forecasts of temperature, salinity and 

velocity, and their uncertainties, issued from 4 Aug. to 3 Sep.
- Total of 4323 ensemble members: 270 – 500 members per day (7 105  state var.)

- ESSE fields included: central forecasts, ensemble means, a priori (forecast) errors, a 
posteriori errors, dominant singular vectors and covariance fields

- 104 data points quality controlled and assimilated per day: ship (Pt. Sur, Martin, Pt. 
Lobos), glider (WHOI and Scripps) and aircraft SST data

• Ensemble of stochastic PE model predictions (HOPS)
- Deterministic atmospheric forcing: 3km and hourly COAMPS flux predictions

- Stochastic oceanic/atmos. forcings for: sub-mesoscale eddies, BCs and atmos. fluxes

• ESSE fields formed the basis for daily adaptive sampling recommendations

• Adaptive ocean modeling: BCs and model parameters for transfer of atmos. 
fluxes calibrated and modified in real-time to adapt to evolving conditions

• ESSE results described and posted on the Web daily

• Real-time research: stochastic error models, coupled physics-biology, tides



ESSE Surface Temperature Error Standard Deviation Forecasts

Aug 12 Aug 13

Aug 27Aug 24

Aug 14

Aug 28

End of Relaxation Second Upwelling period

First Upwelling periodStart of Upwelling



Foci - Optimal ocean science (Physics, Acoustics and/or Biology)
- Demonstration of adaptive sampling value, etc.

Objective 
Fields

i. Maintain synoptic accuracy (e.g. upwelling, BL or CUC/CCS coverage)
ii. Minimize uncertainties (e.g. uncertain ocean estimates), or 
iii. Maximize the sampling of expected events (e.g. start of upwelling/ relaxation, 

dynamics of upwelling filament, small scales/model errors) 
Multidisciplinary or not
Local, regional or global, etc.

Time and 
Space 
Scales

i. Tactical scales (e.g. minutes-to-hours adaptation by each glider)
ii. Strategic scales (e.g. hours-to-days adaptation for glider group/cluster)
iii. Experiment scales

Assumptions
- Fixed or variable environment (w.r.t. asset speeds)
- Objective field depends on the predicted data values or not
- Operational, time and cost constraints, or not, etc.

Methods Bayesian-based, Nonlinear programming, (Mixed)-integer programming, Simulated 
Annealing, Genetic algorithms, Neural networks, Fuzzy logics

II. Multiple Facets of Oceanic Adaptive Sampling

For each of the 5 categories, there are multiple choices (only a few listed here)
Choices set the type of adaptive sampling research 



II.a Adaptive sampling via ESSE
• Objective: Minimize predicted trace of full error covariance (T,S,U,V error std Dev). 
• Scales: Strategic/Experiment (not tactical yet). Day to week.
• Assumptions: Small number of pre-selected tracks/regions (based on quick look on error 

forecast and constrained by operation)
• Problem solved: e.g. Compute today, the tracks/regions to sample tomorrow, that will most 

reduce uncertainties the day after tomorrow.
- Objective field changes during computation and is affected by data to-be-collected
- Model errors Q can account for coverage term

Dynamics: dx =M(x)dt+ dη η ~ N(0, Q)
Measurement: y = H(x) + ε ε ~ N(0, R)

Non-lin. Err. Cov.:
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Which sampling on Aug 26 optimally reduces uncertainties on Aug 27?

4 candidate tracks, overlaid on surface T fct for Aug 26

ESSE fcts after DA 
of each track

Aug 24 Aug 26 Aug 27

2-day ESSE fct

ESSE for Track 4

ESSE for Track 3

ESSE for Track 2

ESSE for Track 1DA 1

DA 2

DA 3

DA 4

IC(nowcast) DA

Best predicted relative error reduction: track 1

• Based on nonlinear error covariance evolution 
• For every choice of adaptive strategy, an 

ensemble is computed



II.b Optimal Paths Generation for a “fixed” objective field

- Objective: Minimize error standard deviation of temperature field
- Scales: Strategic/Tactical
- Assumptions

- Speed of platforms >> time-rate of change of environment
- Objective field fixed during the computation of the path and is not affected by new data
- Problem solved: assuming the error is like that now and will remain so for the next few 

hours, where do I send my gliders/AUVs?

- Methods (global optimization) vary with type of cost function/problem size:
- Combinatorial problems: 

- Objective function is linear or nonlinear, defined over large but finite set of possible 
solutions (networking, scheduling problems, etc). 

- If cost function piecewise linear, solved exactly by Mixed-Integer Programming (MIP)
- General unconstrained problems: 

- Nonlinear function over real numbers with no/simple bounds
- Partitioning strategies for exact solution, brute force for approx. (simul. annealing, etc)

- General constrained problems:

- Nonlinear function over real numbers with complex bounds/constraints



Generation of Paths that minimize ESSE uncertainties using MIP 
(Namik K. Yilmaz, P. Lermusiaux and N. Patrikalakis)

- MIP method is often used to solve modified ``traveling salesman’’ problems. Here, 
towns to be visited are hot-spots in discretized fields and salesmen are the gliders

- Represent ESSE error stand. dev. field as a piecewise-linear cost function

- Possible paths defined on discrete grid: set of possible path is thus finite (but large)

- Constraints on displacements dx, dy, dz:

- No-Return constraints for single vehicle    e.g. ⇒

- No-Vicinity constraints for multiple vehicles

- Both can be set by dominant ocean length-scale

- Optimization carried-out by commercial optimization tool Xpress-MP from dash 
optimization



Example for Two and Three Vehicles, 2D objective field

Two Vehicles

Starting Coordinates: 
Vehicle#1:x=37;y=8 Range1: 19 km
Vehicle#2:x=20;y=10 Range2: 19 km

Total reward: 1185

Vicinity constraint such that two vehicles are 
away from each other by at least 7 units (11 km).

Three Vehicles
Starting Coordinates: 
Vehicle #1 : x=5, y=12        Range=17 km
Vehicle #2 : x=15, y=15      Range=19 km
Vehicle #3 : x=28, y=21      Range=17 km

Legend
Grey dots: starting points 
White dots: MIP optimal termination points



Example for One Vehicle and 3D objective field

Starting Coordinates: 
x=12;y=21

Range: 10 km



Complete Formulation for 3D Case



II.c Lagrangian Coherent Structures (LCS):
Defined by extrema in direct Lyapunov exponent 

(scalar field)

Objectives:
• Extend LCS capabilities to 3D
• Relate to biological and geophysical features 

(temperature fronts, plankton plumes)
• Use LCS for optimal path-planning of 

underwater gliders (single and groups—
deployment and transit)

• Optimization tools for Princeton error metric

Approach:
• Compute LCS from Observational and 

Model Predicted oceanographic flow data
• New theory and flux estimates shows 

precisely how LCS act as barriers
• Use Mangen or GAIO for LCS computations 

and NTG or DMOC for optimization. 

Principal Investigator:
Prof. Jerrold E. Marsden
Dept. of Control and Dynamical Systems
California Institute of Technology

Optimal path 
lies on an LCS

LCS are barriers 
in many flows

3D capabilities
being developed

Optimize group
deployment 




II.d Vehicle Networks for Adaptive Sampling inII.d Vehicle Networks for Adaptive Sampling in AOSNAOSN--IIII

Coordinated 3-Glider Experiment

Aug 7, 2003 

Three WHOI gliders were 
coordinated to form an 
equilateral triangle with side 
length 3 km and variable 
orientation angle.



II.e Objective Fields: Flux Balances and/or Term-by-term Balances

North 
Section

West
Section

South
Section

Temp. Lev 1
North side South side

West side Surface

Heat Flux Balances: 4 fluxes normal to each side



Central 
Section
(Pt AN)

Mean Term-by-Term
Temp. balances

Mean Rate of change ≈ (Cross-shore +Alongshore +Vertical) Advection

Offshore

Onshore

Upwelling/
Cooling



II.f Objective Field: Multi-Scale Energy and Vorticity Analysis
Two-scale window decomposition in space and time of energy eqns: 11-27 August 2003

Transfer of APE from
large-scale to meso-scale

Transfer of KE from
large-scale to meso-scale

• Center west of Pt. Sur: winds destabilize the ocean directly.
• Center near the Bay: winds enter the balance on the large-scale window and release energy to the 

meso-scale window during relaxation. X. San Liang



III.a Forecast Error Analyses and Optimal (Multi) Model Estimates

• Forecast Error Analyses: Learn individual model forecast errors in an on-
line fashion from model-data misfits based on Maximum-Likelihood

• Model Fusion: Combine models via Maximum-Likelihood based on the 
current estimates of their forecast errors

3-steps strategy, using model-data misfits and error parameter estimation

1. Select appropriate/convenient forecast error parameterization
- Approximate forecast error covariances and biases models as efficient parametric family:

- Limit number of free parameters  α and  β (for now: error length scale and variance)

2. Adaptively determine forecast error parameters from model-data misfits 
based on the Maximum-Likelihood principle:

3. Combine model forecasts via Maximum-Likelihood based on the current 
estimates of error parameters          O. Logoutov

y is the data,  Θ the vector of α’s and β’s of each model



Forecast Error Analyses and Optimal (Multi) Model Estimates

Forecast Error Parameterization

Limited validation data motivates use of few free parameters

• Approximate forecast error covariances and biases as some 
parametric family, e.g. homogeneous covariance model:

– Choice of covariance and bias models                  should be sensible and 
efficient in terms of                     and storage
∗ functional forms (positive semi-definite), e.g. isotropic

• facilitates use of Recursive Filters and Toeplitz inversion
∗ feature model based

• sensible with few parameters. Needs more research.
∗ based on dominant error subspaces

• needs ensemble suite



Forecast Error Analyses and Optimal (Multi) Model Estimates

Error Parameter Tuning

Learn error parameters in an on-line fashion from model-data 
misfits based on Maximum-Likelihood

• We estimate error parameters via Maximum-Likelihood by 
solving the problem:

(1)

Where                                  is the observational data,                   
are the forecast error covariance parameters of the M models

• (1) implies finding parameter values that maximize the probability 
of observing the data that was, in fact, observed

• By employing a randomized algorithm, we solve (1) relatively 
efficiently



Forecast Error Analyses and Optimal (Multi) Model Estimates
Log-Likelihood functions for error parameters

HOPS

HOPS

ROMS

ROMS

Length
Scale

Variance



Forecast Error Analyses and Optimal (Multi) Model Estimates

Model Fusion

combine based on relative model forecast uncertainties

• Model Fusion: once error parameters          are available, combine 
forecasts          based on their relative uncertainties as:



Forecast Error Analyses and Optimal (Multi) Model Estimates
Two-Model Forecasting Example

Combined SST 
forecast

Left – with a priori
error parameters
Right – with 
Maximum-
Likelihood error 
parameters

HOPS and ROMS 
SST forecast

Left – HOPS
(re-analysis)

Right – ROMS
(re-analysis)



III.b Oceanic Adaptive Modeling: Motivations and Concepts

• Physical and biogeochemical ocean dynamics can be intermittent and highly 
variable, and can involve interactions on multiple scales

• In general, oceanic fields and interactions that matter vary in time and space
• Model uncertainties can be (very) large, especially for biogeochemical processes

• For efficient forecasting, model structures and parameters should evolve and 
respond dynamically to new data injected into the executing prediction system

• Correction of model biases 
• Comparison of competing models and better scientific understanding
• Multi-model data assimilation 
• Automated evolution of model structures as a function of model-data misfits

• A model quantity (parameters, structures, state-variables) is said to be adaptive if 
its formulation, classically assumed constant, is made a function of data values 

• Physical regime transition (e.g., well-mixed to stratified) and evolving/unknown 
turbulent mixing parameterizations

• Variations of biological assemblages with time and space (e.g., variable zooplankton 
dynamics, summer to fall phytoplankton populations, etc) and evolving 
biogeochemical rates and ratios



Towards Real-time Physical Adaptive Models

• Different Types of Adaptation:

• Physical model with multiple parameterizations in parallel (hypothesis testing) 

• Physical model with a single adaptive parameterization (adaptive evolution)

• Model selection based on quantitative dynamical/statistical study of data-model misfits

Physical
Model

Biological
Model

Biological
Model

Biological
Model

...[communicates to]

...

Parameterization 1

Parameterization 2

Parameterization n



Quasi-Automated Real-time 
Physical Calibration during AOSN2

Prior to AOSN2, ocean models calibrated to 
historical conditions judged to be similar to these 
expected in August 2003.

Ten days in the experiment: 
• Parameterization of the transfer of atmos. fluxes to 
upper layers (SBL mixing) adapted to new 2003 data 

• 20 sets of parameter values and 2 mixing models 
tested

• Configuration with smallest RMSE/higher PCC
improved upper-layer T and S fields, and currents

SST Prior 
Adaptation

SST After
Adaptation



Towards Real-time Adaptive Coupled Models
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Biological
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• Different Types of Adaptive Couplings:
• Adaptive physical model drives multiple biological models (biology hypothesis testing)
• Adaptive physical model and adaptive biological model proceed in parallel, with some 

independent adaptation
• Ongoing and Future Numerical Implementation

• For performance and scientific reasons, both modes are being implemented using 
message passing for parallel execution

• Mixed language programming (using C function pointers and wrappers for functional 
choices)



Generalized Adaptable Biological Model



A Priori Biological Model



Example: Use P data to select parameterizations of Z grazing

Table 1. Parameterization of grazing on multiple types of prey with passive
selection (gmax: maximum grazing rate; K: Half-saturation constant (but
saturation constant in Eq. 1); P0 threshold below which grazing is zero; pi:
preference coefficient; ? , a, ? : constant).
Function References

(1) Rectilinear
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(2) Ivlev function for each prey type:
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i egg α−−= Leonard et al., 1999

(3) Ivlev function with interference between
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Table 2. Parameterization of grazing on multiple types of prey with active
switching selection (gmax: maximum grazing rate; K: Half-saturation
constant; P0 threshold below which grazing is zero; pi: preference
coefficient; α, a, τ: constant).

Function References

(1) Switching MM predation:
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Towards automated quantitative model aggregation and simplification

Chl of 
Total P (mg/m3)

Chl of 
Large P

A priori configuration of generalized model on Aug 11 during an upwelling event

NPZ configuration of generalized model on Aug 11 during same upwelling event

Nitrate 
(umoles/l)

Chl of 
Small P

Chl 
(mg/m3)

Zoo 
(umoles/l)

Dr. Rucheng Tian



Environmental-Acoustical Uncertainty Estimation and Transfers,
Coupled Acoustical-Physical DA and End-to-End Systems

in a Shelfbreak Environment





Shelfbreak-PRIMER Acoustic paths considered, overlaid on bathymetry.
Path 1: 

• Source: at 300m, 400 Hz
• Receiver: VLA at about 40 km range, from 0-80m depths



Coupled Physical-Acoustical Data Assimilation of real TL data



Data Acquisition for Parameter estimation:
Bottom inference via optimal adaptive ocean-acoustic sampling

The correlation/covariance fields below are computed using ESSE and CS’s code. 
For a 400Hz source at 300m depth, they show where one should measure TL and take an 
ocean profile to best estimate the bottom attenuation coefficient



Predicted 
PDF of 

broadband 
TL 



After 
Assimilation 

PDF of 
broadband 

TL 



CONCLUSIONS
• ESSE useful nonlinear scheme for interdisciplinary 

estimation of oceanic state variables and error fields 
via multivariate physical-biogeochemical-ecosystem-
acoustical data assimilation

• New era of fully interdisciplinary oceanic system science, 
combining models and data, with (math) opportunities for:
• Adaptive modeling/system identification (parameters, 

structures, state-variables, errors)
• Adaptive sampling
• Adaptive model reductions and simplifications
• Dynamical balances and quantitative process studies

•AOSN-II: Real-time Consistent Error Forecasting, 
Data Assimilation and Quantitative Adaptive 
Sampling in Monterey Bay for 1 month (first time)

• PRIMER: Environmental-acoustical uncertainty estimated 
and transferred, and Acoustical-physical DA carried-out. 
Leads End-to-end (physical-geological-acoustical-sonar-
noise) system for advanced sonar performance prediction

Physical
Model

Biological
Model

Biological
Model

Biological
Model

...[communicates to]

...
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