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Monte Carlo simulations: The practical reality



Relative Entropy

Discrete Form:

D(p ‖ q) ≡
∑

x∈H

p(x) ln

(

p(x)

q(x)

)

where H is some partitioning of our state space Rn.

Differential Form:

D(f‖g) ≡
∫

all Rn
f(−→z ) ln

(

f(−→z )

g(−→z )

)

d−→z

The differential form can be considered as the limit of the

discrete form (unlike absolute entropy).



Relative Entropy Properties

Non-negativity

D(p(t), q(t)) ≥ 0 ∀t

Equality holds only when p(t) = q(t)

Temporal Monotonicity

D(p(t1), q(t1)) ≥ D(p(t2), q(t2)) t2 > t1

Holds for a discrete temporal process when the forward tem-

poral conditional probability

p(−→x (t + 1)|−→x (t)) is time invariant where −→x is the full

state vector.

Invariance

The relative entropy is invariant under general non-linear

transformations G of state vector variables G : −→x → −→y

providing the corresponding Jacobian does not vanish.



Coarse Graining and Monte Carlo simulations

Information Content Tradeoff:

Coarser partitions imply less knowledge and so
lower information content

Finer partitions imply uncertainty over partition
probability (sampling error) hence lost information 

Related to Boltzmann’s paradox and irreversibility.

This can be all made precise mathematically.



Ensembles and PDFs

• Partitioning of state space enables an ensemble

to define a sample estimate p̂i for the (true/population)

probability pi of a particular partition element i.

• A particular partition sample probability esti-

mate has a a (meta) probability associated with

it P (p̂i) which can be calculated using Bayes

theorem.

• The information loss in assuming p̂i when pi

holds is the relative entropy D( ˆp, p).The total

expected information loss can then be obtained

using P (p) and this relative entropy.

• Bottom line: Coarse partition implies tight P (p)

and so small expected information loss. How-

ever it also reveals less about state space and

hence has a smaller information content.



• Cautionary tale: Assuming a Gaussian distribu-

tion can be shown to give a higher apparent

information content than that obtained by par-

titioning. However, what is the uncertainty as-

sociated with assuming this Gaussian distribu-

tion?? There must be considerable “sampling”

information loss associated with the assumed

Gaussian model which cannot be easily quan-

tified.



Marginal Entropies and State Space Partitions

Suppose we have a state-space of dimension N which we

denote by {xi}. Suppose further we calculate the relative

entropy on such a space with respect to a particular parti-

tion Γ. Denote this by DΓ(x1, . . . , xN). Consider now a

general marginal distribution p(xj1, . . . , xjK
). Define the

following heirarchy of“marginal relative entropies”:

D
(1)
Γ (−→x ) ≡ 1

N

∑N
i=1 DΓ(xi)

D
(2)
Γ (−→x ) ≡ 1

CN
2

∑N
i,j=1 DΓ(xi, xj)

... ... ...

D
(N)
Γ (−→x ) ≡ DΓ(x1, . . . , xN)

We call these the univariate, bivariate, trivariate etc relative

entropies. Using the chainrule of relative entropy one can

show that

D
(1)
Γ (−→x ) ≤ D

(2)
Γ (−→x ) ≤ . . . ≤ D

(N)
Γ (−→x ) = DΓ

showing that information increases for a particular partition

as we consider greater multivariate behaviour.



HOWEVER one can also prove

D
(i)
Γ (−→x ) ≤ D

(i)
Λ (−→x ) for Λ v Γ

and finer partitionings are possible without significant sam-

pling information loss for lower order D
(i)
Γ (−→x )

This paradoxical fact simply reflects the fact that there is an

instrinsically FINITE amount of information in an ensemble

and this is often well short of that in the full pdf.



Atmospheric Predictability Experiments

• T42 global dynamical core. 5 vertical levels (Puma

model from U. Hamburg).

• Physics replaced by Rayleigh friction at surface and New-

tonian cooling for radiation and convection.

• Model produces realistic mid-latitude synoptic variabil-

ity. Northern winter hemisphere analyzed.

• Ensembles of initial conditions produced assuming a Gaus-

sian distribution with uniform decorrelation of around

1000km. Point variances in prognostic variables (tem-

perature, divergence, vorticity and surface pressure) of

roughly one order of magnitude less than climatology

assumed.



Ensemble Design

• 9,600 member ensemble constructed with 90 day inte-

gration each.

• Initial condition means drawn from an extended clima-

tological integration (1200 years) which was also used

to obtain a 9,600 member climatological ensemble.

• Predictability examined in the North American-Atlantic

Sector (90W-0W and 20N-65N).

• Multivariate/Marginal relative entropy calculated using

first ten stream function EOFs which explain more than

90% of variance.

• Number of partitions used per variate: Univariate 1024.

Bivariate 32. Trivariate 10. Quadravariate 6 and Quint-

variate 4. This implies that there were a total of 1024,

1024, 1000, 1296 and 1024 partitions respectively.



• Partitions were chosen so there were equal numbers of

prediction ensemble members within each seperate EOF

partitioning.

• All possible combinations of the ten EOFs were consid-

ered in multivariate calculations and the result shown is

the average per combination.
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Information Flow

Undeveloped area still requiring considerable theoretical

development. A complete formalism analogous to fluid flow

would be desirable.

Two possible measures suggested in the literature:

Time Delayed Mutual Information

I(x(t), y(t0))

I(A, B) = H(A) − H(A|B)

Transfer Entropy

T (y → x, t, t0) ≡

∑

y(t0)

p(y(t0))D(p(x(t)|x(t0), y(t0)), p(x(t)|x(t0)))





Conclusions

• The degree of“difference”between the prediction and climatological
distributions/ensembles can be viewed as measuring the usefulness
of a prediction. It can be quantified in a universal manner using
information theory.

• In a realistic atmospheric model, experiments with large ensembles
show that the overall mid-latitude predictability declines more or less
linearly to be close to zero around 40-50 days. This result is reason-
ably robust to the definition of predictability. There is evidence of
significant useful predictibility in the 10-20 day range but this may
be resolution dependent.

• Predictability of individual EOFs or gridpoints does not show this
approximately linear decline. This is due to the phenomenon of in-
formation flow.

• Information flow measures suggested in the physics literature were

examined. One can interpret these as measuring the usefulness of

earlier observations to prediction. Results show that information

flows to particular locations from quite well defined upstream lo-

cations suggesting that this methodology could be used to improve

the observational network.


