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Isoperimetric inequality and
Bonnesen’s inequality



Classical Isoperimetric inequality

The isoperimetric inequality in the plane states that if Ω ⊂ R2 is
a (reasonable) domain, then

4πA(Ω) ≤ L(∂Ω)2.

with equality only when Ω = Br (p) is a disk. Here A(Ω) is the
area of Ω and L(∂Ω) the length of its boundary.

This generalizes to higher dimensions as

cnVol(Ω) ≤
(
Hn(∂Ω)

) n+1
n

where Ω ⊂ Rn+1, cn is an appropriate dimensional constant and
one has equality only on balls.
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Bonnesen’s Inequality

Given a sharp inequality it is natural to study its stability.

A classical example is Bonnesen’s inequality:

If Ω ⊂ R2 is a domain, then

π2(Rout − Rin)2 ≤ L(∂Ω)2 − 4πA(Ω).

Here,

• Rout is the radius of the smallest disk containing Ω;
• Rin is the radius of the largest disk contained in Ω.

When the RHS, the isoperimetric defect, is small then Ω is
close, as a set, to a disk and this holds in a quantitative fashion.

Osserman surveyed a number of such results which he called
“Bonnesen-style” inequalities.
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What about higher dimensions?

It’s not hard to see that a direct analog of Bonnesen’s inequality
can’t hold in higher dimensions.

Indeed, a ball with a long “spike” will have arbitrarily small
isoperimetric defect while not being close to a ball as a set.

Instead, one can study other notions of stability.

E.G., work of Fuglede, Hall and Fusco-Maggi-Pratelli.
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Colding-Minicozzi Entropy



Colding-Minicozzi Entropy

Inspired by Huisken’s monotonicity formula for mean curvature
flow, Colding-Minicozzi introduced a notion of entropy
associated to a hypersurface Σ ⊂ Rn+1.

One starts with the Gaussian surface area of Σ ⊂ Rn+1:

F [Σ] = (4π)−n/2
∫

Σ
e−

|x|2
4 dHn.

The (Colding-Minicozzi) entropy of Σ is then:

λ[Σ] = sup
y∈Rn+1,ρ>0

F [ρΣ + y].

That is, λ[Σ] is the Gaussian surface area of all translations and
dilations of Σ.

NB: This functional shares certain formal similarities with the
Willmore energy.
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Basic properties of CM entropy

We list here some basic properties of this functional:

• λ is invariant under rigid motions and dilations;

• λ[Σ] ≥ 1 for any Σ with equality for a hyperplane;

• If Sn ⊂ Rn+1 is the unit sphere, then a computation of
Stone yields:

λ[S1] ≈ 1.52 > λ[S2] ≈ 1.47 > λ[S3] > · · · ↓
√

2,

I.E., the entropy of Sn is decreases as the dimension
increases;

• If Σ× Rk ⊂ Rn+k+1 is the cylinder over Σ ⊂ Rn+1, then
λ[Σ] = λ[Σ× Rk ].
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Some not so basic properties

Some more sophisticated properties:

• λ[Σt ] is non-increasing along a mean curvature flow {Σt};
• If Σ is a self-shrinker – i.e., HΣ = −x⊥

2 , then λ[Σ] = F [Σ];

• If Σ is a non-flat self-shrinker, then λ[Σ] > 1. In fact, there
is a dimensional constant εn > 1 so λ[Σ] ≥ εn.

• If Σ is closed (compact and w/o boundary), then λ[Σ] ≥ εn.

A natural question is to determine the sharp choice of εn.

As entropy is supposed to measure complexity, it is natural to
guess the minimum is achieved on round spheres.

NB: Hyperplanes are now known to be the only hypersurfaces
with entropy one (due to L. Chen).
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Conjecture of Colding-Ilmanen-Minicozzi-White

Colding-Ilmanen-Minicozzi-White conjectured:

Conjecture (CIMW)

Suppose Σ ⊂ Rn+1 is a closed hypersurface, then

λ[Σ] ≥ λ[Sn]

with equality only if Σ = ρSn + y.

• Properties of the mean curvature flow imply the conjecture
when n = 2 or Σ convex (or even mean convex);
• CIMW showed it for self-shrinkers;
• B.-L. Wang showed it in full generality when 2 ≤ n ≤ 6;
• Zhu extend this to n ≥ 7.
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Bonnesen-like inequality

There are several natural ways to study the stability of the
CIMW conjecture.

One of these is inspired by the classical Bonnesen inequality:

Theorem (B.-L. Wang)

Given ε > 0, there exists a δ > 0 so that if Σ ⊂ R3 is closed
and λ[Σ] ≤ λ[S2] + δ, then

1 ≤ Rout

Rin
< 1 + ε.

Where Rout and Rin are as in the Bonnesen inequality.

NB: In our paper we stated this result in terms of Hausdorff
distance to an appropriate S2.
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Idea of proof

The idea of the proof is that the CM entropy looks at all scales
and so if there is a small “spike,” then it contributes a non-trivial
amount of entropy as the spike looks cylindrical.

To make this precise we use the fact that we were able to
completely classify a low-entropy self-shrinkers in R3. They
must be either:

2S2,
√

2S1 × R, or R2,

the shrinking sphere, the shrinking round cylinder or the static
plane (which is not a singularity model).

As λ[S1 × R] > λ[S2], a low entropy closed surface must flow
under mean curvature smoothly until it disappears in a round
point. Moreover, the speed is bounded in a scale invariant way
that controls the change of in and out radius.
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Quantitative Bonnesen-like inequality

In fact, using a more careful analysis we were able to show the
following quantitative version of the stability result:

Theorem (B.-L. Wang)

There is a constant K ≥ 1, so that if Σ ⊂ R3 is closed, then
there is a ρ > and x ∈ R3 so:

ρ−1distH(Σ, ρS2 + x) ≤ K (λ[Σ]− λ[S2])1/8.

Here distH is the Hausdorff distance between closed sets.

REM: The exponent 1/8 is likely not sharp.
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Extension to higher dimension

The proof given by L. Wang and myself depended on having a
complete classification of self-shrinkers and this is not known in
higher dimensions.

Nevertheless, my student S. Wang was able to extend the
stability result to all dimensions:

Theorem (S. Wang)

Given ε > 0, there is a δ > 0 so that if Σ ⊂ Rn+1 is closed and
has λ[Σ] ≤ λ[Sn] + δ, then

1 ≤ Rout

Rin
< 1 + ε.

Where here Rout is the radius of the smallest ball containing Σ

and Rin is the radius of the largest ball inside of Σ.
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Thinness estimate

We end by observing an (unpublished) uniform lower bound on
how thin a low entropy closed surface can be relative to it’s
diameter. The proof of this follows same lines as the stability
result.

For Σ ⊂ Rn+1, let the thinness of Σ, Th(Σ), be the width of the
smallest slab containing Σ.

Theorem (B.-L. Wang)

Let Σ ⊂ R3 be closed. For every ε > 0, there is a C(ε) > 1
2 so

that if λ[Σ] ≤ λ[S1 × R]− ε, then

1
2
≤ Rout

Th(Σ)
≤ C(ε).
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Higher dimensions

The analogous result in higher dimensions is harder as S.
Wang’s most general argument only works for hypersurfaces
whose entropy is very close to that of the round sphere.

We do have the following:

Theorem (S. Wang, B.-S. Wang, B.-L. Wang)

Let Σ ⊂ R4 be closed. For every ε > 0, there is a C(ε) > 1
2 so

that if λ[Σ] ≤ λ[S2 × R]− ε, then

1
2
≤ Rout

Th(Σ)
≤ C(ε).

This is likely true in all dimensions.
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