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Incompressible Porous Media (IPM) equation

⇢(x , t): density of incompressible fluid in porous media.

u(x , t): velocity field of fluid.

(
@t⇢+r · (⇢u) = 0

r · u = 0
in R2 ⇥ [0,T ) or T2 ⇥ [0,T ).

Darcy’s law for flow in porous medium:

µ


u = �rp �

✓
0
g⇢

◆
.

In R2 or T2, setting µ =  = g = 1, the Biot-Savart law becomes

u = @x1r?(��)�1⇢.



Comparison with other active scalar equations

In all 3 equations below, the scalar ⇢(x , t) is transported by an
incompressible u(x , t):

@t⇢+ u ·r⇢ = 0.

2D Euler SQG 2D IPM

Biot-Savart law r?(��)�1⇢ r?(��)�1/2⇢ @x1r?(��)�1⇢

Fourier symbol ik?|k |�2
ik?|k |�1 �k1k?|k |�2

Local well-posed? Yes (in H
s) Yes (in H

s) Yes (in H
s)

Global well-posed? Yes Unknown Unknown



On well-posedness of IPM

Córdoba–Gancedo–Orive ’07: Local well-posedness in H
s , and various

blow-up criteria (in terms of the geometry structure of the level sets

and
´
T

0 kR⇢kL1dt).

Friedlander–Gancedo–Sun–Vicol ’11: The more singular equation
u = @x1r?(��)�1+�⇢ is ill-posed for 0 < �  1 in H

s , but patch
solution is locally well-posed for 0 < � < 1/2.

Elgindi ’17: The stratified steady state ⇢(x1, x2) = �x2 is
asymptotically stable in H

s for large s.

Castro–Córdoba–Lear ’19: In a bounded strip T⇥ [�l , l ], smooth
initial data near the stratified solution �x2 remain globally regular.



Numerics on IPM: small scale formation?

Numerical simulations by Córdoba–Gancedo–Orive ’07 suggest that
kr⇢kL1 is growing as t ! 1, although no evidence for finite-time
blow-up.

Goal: Assuming a global-in-time solution ⇢ in T2 ⇥ [0,1), want to
rigorously prove the growth of r⇢ as t ! 1.



Small scale formation of 2D Euler and SQG

The following results shows that growth of kr!kL1 can indeed
happen for 2D Euler:

I Yudovich ’74: some infinite growth of kr!kL1 .

I Nadirashvili ’91: linear growth of kr!kL1 in an annulus.

I Bahouri-Chemin ’94: steady state with “hyperbolic flow” in T2:

I Denisov ’09, ’15: superlinear growth of kr!kL1 (for all t),
and exponential growth (for arbitrarily long time) in T2.

I Kiselev-Šverák ’14: double-exponential growth in a disk.

I Zlatoš ’15: exponential growth in T2.

For SQG equation, Kiselev–He ’19 proved exponential growth of
kr⇢kL1 , assuming the solution remain regular for all times.



Di�culties with extending to IPM

The hyperbolic flow scenario could not be adapted to IPM for the
following reason:

For IPM on T2, there is no odd-odd symmetry; instead, odd-even
symmetry is preserved for all time.

There are no nontrivial steady states – all steady states of IPM are
stratified (i.e. constant in x1), where u ⌘ 0.



Small scale formation of IPM

We take a completely di↵erent approach and prove the following result:

Theorem (Kiselev–Y., forthcoming)

There exists smooth initial data ⇢0 2 C
1(T2) leading to a solution ⇢(x , t)

such that, provided it remains smooth for all time, satisfies

ˆ 1

0
k@x1⇢(·, t)k

� 2
2�+1

Ḣ� dt  C (�, ⇢0) < 1 for all � > �1

2
.

In particular, it implies that for all � > �1
2 ,

lim sup
t!1

k⇢(·, t)k
Ḣ�+1

t
2�+1

2

� lim sup
t!1

k@x1⇢(·, t)kḢ�

t
2�+1

2

= 1,

meaning that ⇢ has infinite-in-time growth in Ḣ
� for � > 1/2.



Sketch of the proof: problem set-up

Set up of initial data:

(Note that the even-odd symmetry is preserved for all times.)

Main tool: monotonicity of the potential energy

E (t) :=

ˆ
T
⇢(x , t)x2 dx .

k⇢(t)kL1 invariant in time =) as long as we have a smooth solution,

|E (t)|  4⇡3k⇢0kL1 for all t.



Monotonicity of the potential energy

A quick computation gives (using ⇢ is periodic in x1 and odd in x2)

E
0(t) =

ˆ
T2

�r · (⇢u) x2 dx =

ˆ
T2

⇢u2 dx .

Plug in u = @x1r?(��)�1⇢:

E
0(t) =

ˆ
T2

⇢ @2
x1x1

(��)�1⇢ dx = �k@x1⇢k2Ḣ�1| {z }
=:�(t)

.

The uniform bound of E implies that �(t) is integrable in time:

|E (t)|  4⇡3k⇢0kL1 =)
ˆ 1

0
�(t)dt < C .

Key observation: “� ⌧ 1 =) k@x1⇢kḢs � 1”.



Relating �(t) with k@x1⇢kḢs

Recall: �(t) := k@x1⇢k2Ḣ�1 . Known:
´1
0 �(t)dt < C .

Goal: “� ⌧ 1 ) k@x1⇢kḢs � 1”.

Observation for the “bubble” solution:

A slightly more sophisticated argument on the Fourier side yields

k@x1⇢kḢ� & ��(�+1
2 ) for all � > �1/2,

and combining it with
´1
0 �(t)dt < C gives us the desired estimate.



From bubble to layers

The above argument strongly depends on the “bubble” structure.

Next we will show that it is also possible to have norm growth in
“layered solutions”.



Growth for layered solution

Assume ⇢0 2 T2 is an odd-in-x2 “layered” initial data. There exists a
unique stratified steady state ⇢s(x) = g(x2) that is odd-in-x2 and
reachable from ⇢0 by a measure-preserving di↵eomorphism.

Suppose E [⇢0]� E [⇢s ] = �c < 0. Then E [⇢(t)] < E [⇢s ]� c for all t,
i.e. ⇢(t) can never get very close to ⇢s .

So level sets of ⇢(t) can never be too close to horizontal lines - a
geometric argument gives

´
T2 |@x1⇢(x , t)|dx > c(⇢0) > 0 for all t.

Using that k@x1⇢k2Ḣ�1 is integrable in time, this leads to

infinite-in-time growth of k@x1⇢k2Ḣ1 and higher norms.



Thank you for your attention!


