Small scale formations in the incompressible porous media equation

Yao Yao Georgia Institute of Technology

joint work with Alexander Kiselev

IPAM workshop on Transport and Mixing in Complex and Turbulent Flows

Jan 12, 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● のへで

Incompressible Porous Media (IPM) equation

ρ(x, t): density of incompressible fluid in porous media. **u**(x, t): velocity field of fluid.

 $\begin{cases} \partial_t \rho + \nabla \cdot (\rho \boldsymbol{u}) = 0 \\ \nabla \cdot \boldsymbol{u} = 0 \end{cases} \quad \text{in } \mathbb{R}^2 \times [0, T) \text{ or } \mathbb{T}^2 \times [0, T). \end{cases}$

$$\boldsymbol{u} = \partial_{x_1} \nabla^{\perp} (-\Delta)^{-1} \rho.$$

Comparison with other active scalar equations

In all 3 equations below, the scalar $\rho(x, t)$ is transported by an incompressible u(x, t):

$$\partial_t \rho + \boldsymbol{u} \cdot \nabla \rho = 0.$$

	2D Euler	SQG	2D IPM
Biot-Savart law	$ abla^{\perp}(-\Delta)^{-1} ho$	$ abla^{\perp}(-\Delta)^{-1/2} ho$	$\partial_{x_1} abla^\perp (-\Delta)^{-1} ho$
Fourier symbol	i k ⊥ k ⁻²	$i oldsymbol{k}^{\perp} oldsymbol{k} ^{-1}$	$-oldsymbol{k_1}oldsymbol{k}^{\perp} oldsymbol{k} ^{-2}$
Local well-posed?	Yes (in <i>H⁵</i>)	Yes (in <i>H^s</i>)	Yes (in <i>H^s</i>)
Global well-posed?	Yes	Unknown	Unknown

- Córdoba–Gancedo–Orive '07: Local well-posedness in H^s, and various blow-up criteria (in terms of the geometry structure of the level sets and ∫₀^T ||Rρ||_{L∞} dt).
- Friedlander-Gancedo-Sun-Vicol '11: The more singular equation
 u = ∂_{x1}∇[⊥](-Δ)^{-1+β}ρ is ill-posed for 0 < β ≤ 1 in H^s, but patch solution is locally well-posed for 0 < β < 1/2.</p>

• Elgindi '17: The stratified steady state $\rho(x_1, x_2) = -x_2$ is asymptotically stable in H^s for large s.

• Castro-Córdoba-Lear '19: In a bounded strip $\mathbb{T} \times [-I, I]$, smooth initial data near the stratified solution $-x_2$ remain globally regular.

Numerics on IPM: small scale formation?

 Numerical simulations by Córdoba–Gancedo–Orive '07 suggest that ||∇ρ||_{L∞} is growing as t → ∞, although no evidence for finite-time blow-up.

• Goal: Assuming a global-in-time solution ρ in $\mathbb{T}^2 \times [0, \infty)$, want to rigorously prove the growth of $\nabla \rho$ as $t \to \infty$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Small scale formation of 2D Euler and SQG

- The following results shows that growth of $\|\nabla \omega\|_{L^{\infty}}$ can indeed happen for 2D Euler:
 - Yudovich '74: some infinite growth of $\|\nabla \omega\|_{L^{\infty}}$.
 - ▶ Nadirashvili '91: linear growth of $\|\nabla \omega\|_{L^{\infty}}$ in an annulus.
 - **Bahouri-Chemin** '94: steady state with "hyperbolic flow" in \mathbb{T}^2 :

- Denisov '09, '15: superlinear growth of ||∇ω||_{L∞} (for all t), and exponential growth (for arbitrarily long time) in T².
- ► Kiselev-Šverák '14: double-exponential growth in a disk.
- Zlatoš '15: exponential growth in \mathbb{T}^2 .
- For SQG equation, Kiselev–He '19 proved exponential growth of $\|\nabla \rho\|_{L^{\infty}}$, assuming the solution remain regular for all times.

Difficulties with extending to IPM

The hyperbolic flow scenario could not be adapted to IPM for the following reason:

• For IPM on \mathbb{T}^2 , there is no odd-odd symmetry; instead, odd-even symmetry is preserved for all time.

We take a completely different approach and prove the following result:

Theorem (Kiselev–Y., forthcoming)

There exists smooth initial data $\rho_0 \in C^{\infty}(\mathbb{T}^2)$ leading to a solution $\rho(x, t)$ such that, provided it remains smooth for all time, satisfies

$$\int_0^\infty \|\partial_{x_1}\rho(\cdot,t)\|_{\dot{H}^\beta}^{-\frac{2}{2\beta+1}}dt \le C(\beta,\rho_0) < \infty \quad \text{ for all } \beta > -\frac{1}{2}$$

In particular, it implies that for all $\beta > -\frac{1}{2}$,

$$\limsup_{t\to\infty}\frac{\|\rho(\cdot,t)\|_{\dot{H}^{\beta+1}}}{t^{\frac{2\beta+1}{2}}}\geq\limsup_{t\to\infty}\frac{\|\partial_{x_1}\rho(\cdot,t)\|_{\dot{H}^{\beta}}}{t^{\frac{2\beta+1}{2}}}=\infty,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ りへぐ

meaning that ρ has infinite-in-time growth in \dot{H}^{β} for $\beta > 1/2$.

Sketch of the proof: problem set-up

(Note that the even-odd symmetry is preserved for all times.)

• Main tool: monotonicity of the potential energy

$$E(t) := \int_{\mathbb{T}^2} \rho(x, t) x_2 \, dx.$$

• $\|
ho(t)\|_{L^{\infty}}$ invariant in time \implies as long as we have a smooth solution,

$$|E(t)| \leq 4\pi^3 \|\rho_0\|_{L^{\infty}}$$
 for all t .

< ロ > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Monotonicity of the potential energy

• A quick computation gives (using ρ is periodic in x_1 and odd in x_2)

$$E'(t) = \int_{\mathbb{T}^2} -\nabla \cdot (\rho \boldsymbol{u}) \, x_2 \, dx = \int_{\mathbb{T}^2} \rho \boldsymbol{u}_2 \, dx.$$

• Plug in $\boldsymbol{u} = \partial_{x_1} \nabla^{\perp} (-\Delta)^{-1} \rho$:

$$E'(t) = \int_{\mathbb{T}^2} \rho \, \partial_{x_1 x_1}^2 (-\Delta)^{-1} \rho \, dx = -\underbrace{\|\partial_{x_1} \rho\|_{\dot{H}^{-1}}^2}_{=:\delta(t)}.$$

• The uniform bound of E implies that $\delta(t)$ is integrable in time:

$$|E(t)| \leq 4\pi^3 \|\rho_0\|_{L^{\infty}} \Longrightarrow \int_0^\infty \delta(t) dt < C.$$

• Key observation: " $\delta \ll 1 \implies \|\partial_{x_1}\rho\|_{\dot{H}^s} \gg 1$ ".

Relating $\delta(t)$ with $\|\partial_{x_1}\rho\|_{\dot{H}^s}$

- Recall: $\delta(t) := \|\partial_{x_1}\rho\|_{\dot{H}^{-1}}^2$. Known: $\int_0^\infty \delta(t)dt < C$.
- Goal: " $\delta \ll 1 \Rightarrow \|\partial_{x_1}\rho\|_{\dot{H}^s} \gg 1$ ".
- Observation for the "bubble" solution:

• A slightly more sophisticated argument on the Fourier side yields

$$\|\partial_{x_1}\rho\|_{\dot{H}^{\beta}}\gtrsim \delta^{-(\beta+\frac{1}{2})}$$
 for all $\beta>-1/2$,

and combining it with $\int_0^\infty \delta(t) dt < C$ gives us the desired estimate.

From bubble to layers

• The above argument strongly depends on the "bubble" structure.

 Next we will show that it is also possible to have norm growth in "layered solutions".

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Growth for layered solution

- Assume ρ₀ ∈ T² is an odd-in-x₂ "layered" initial data. There exists a unique stratified steady state ρ_s(x) = g(x₂) that is odd-in-x₂ and reachable from ρ₀ by a measure-preserving diffeomorphism.
- Suppose $E[\rho_0] E[\rho_s] = -c < 0$. Then $E[\rho(t)] < E[\rho_s] c$ for all t, i.e. $\rho(t)$ can never get very close to ρ_s .

- So level sets of $\rho(t)$ can never be too close to horizontal lines a geometric argument gives $\int_{\mathbb{T}^2} |\partial_{x_1}\rho(x,t)| dx > c(\rho_0) > 0$ for all t.
- Using that $\|\partial_{x_1}\rho\|_{\dot{H}^{-1}}^2$ is integrable in time, this leads to infinite-in-time growth of $\|\partial_{x_1}\rho\|_{\dot{H}^1}^2$ and higher norms.

Thank you for your attention!