
Mixing Hot and Cold with Sound

Greg Chini
†

Jacques Abdul-Massih†

Guillaume Michel‡

Tom Dreeben§

†Program in Integrated Applied Mathematics and Department of Mechanical Engineering,
University of New Hampshire

‡Institut Jean Le Rond d’Alembert, Sorbonne Université, CNRS
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Introduction

Wave-Driven Mean Flows

Steady streaming refers to time-averaged Eulerian flows that arise in periodically
forced fluid systems, leading to: water-wave induced sediment transport; winds in
equatorial stratosphere; and even circulation of cerebro-spinal fluid in spinal canal!

Acoustic streaming is a technologically important form of steady streaming in
which oscillatory driving is provided by high-frequency sound waves

Eckart streaming: depends on viscous dissipation of waves in body of fluid

Rayleigh streaming: driven in Stokes boundary layers adjacent to solid walls
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Introduction

Role of Fluctuating Vorticity

Decomposing into time-mean (·) and a fluctuation (·)0, it can be shown
under fairly general circumstances1 that:

If fluctuating flow is irrotational (!0 ⌘ 0):

⇢̄u0 ·ru0 = r
⇣
⇢̄
2 |u02|

⌘

Induces (or modifies) mean pressure gradient, not streaming

1Eckart streaming is an exception!
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Classical Acoustic Streaming

Rayleigh Streaming (Lord Rayleigh, 1884)

(i) Small-amplitude standing acoustic
waves: ✏ ⌘ u⇤/(!�) ⌧ 1

(ii) Thin geometry h/� ⌧ 1

(iii) Reynolds stress divergence in viscous
boundary layer (BL) drives mean flow

(iv) Mean flow finite at edge of BL:

ū

u⇤
|y!0+ ⇠ �(3✏/4)u0@xu0 = O(✏)

Attributes of Rayleigh streaming:

Intensity: streaming flow outside BL is O(✏) relative to oscillating flow, implying
strictly one-way coupling (i.e. waves can be computed as if streaming absent)

Pattern: counter-rotating cells, stacked in the wall-normal direction, and at edge
of BL, streaming is directed toward velocity nodes of standing acoustic wave
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Classical Acoustic Streaming

Technological Applications of Acoustic Streaming

Microfluidic pumping,
mixing, particle capture

Disruption of dendrites
in lithium batteries

Activated irrigation in
medical procedures

Micro-g heat transfer

Control of high-intensity
discharge (HID) lamps

Eckart Streaming

Rayleigh Streaming
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Non-Classical Acoustic Streaming

Inapplicability of Classical Rayleigh Theory: Motivating Application–HID Lamps

Dreeben & Chini (2011)2 investigated acoustic streaming in high-intensity discharge
(HID) lamps, showing that classical Rayleigh streaming theory not relevant. . .

HID Streaming Rayleigh Theory
0.5 m/s 0.005 m/s

Away from velocity nodes Toward velocity nodes

2
Dreeben, T. D. & Chini, G. P. 2011. 2D streaming flows in high-intensity discharge lamps. Phys. Fluids 23, 056101.
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Non-Classical Acoustic Streaming

Profound E↵ect of Background Temperature Gradient

Lin & Farouk (2008)3 performed DNS of full compressible Navier–Stokes
equations to investigate impact of acoustic streaming on heat transfer in channels

3
Lin, Y. & Farouk, B. 2008. Heat transfer in a rectangular chamber with di↵erentially heated horizontal walls: E↵ects of a

vibrating sidewall. Int. J. Heat Mass Transfer 51, 3179–3189.
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Non-Classical Acoustic Streaming

Profound E↵ect of Background Temperature Gradient

Lin & Farouk (2008)4 performed DNS of full compressible Navier–Stokes
equations to investigate impact of acoustic streaming on heat transfer in channels

Their simulations confirm that character of Rayleigh streaming – both intensity
and pattern – is fundamentally altered by imposed (mean) temperature gradient

4
Lin, Y. & Farouk, B. 2008. Heat transfer in a rectangular chamber with di↵erentially heated horizontal walls: E↵ects of a

vibrating sidewall. Int. J. Heat Mass Transfer 51, 3179–3189.
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Non-Classical Acoustic Streaming

Baroclinic Acoustic Streaming

Fluctuating vorticity produced baroclinically rather than by viscous torques!

⇢̄@tu
0 ⇡ �rp0 ) @t

�
r⇥ u0� ⇡ r⇢̄⇥rp0

⇢̄2

Chini, Malecha & Dreeben (2014)5 demonstrated the potential for strong
baroclinically-driven acoustic streaming

5
Chini, G. P., Malecha, Z. & Dreeben, T. D. 2014. Large-amplitude acoustic streaming. J. Fluid Mech. 744, 329–351.
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Asymptotic Analysis

Problem Formulation

Streaming flow:

Acoustic wave :

x̃

ỹ

0

H�

2�/k�T̃ = T�

T̃ = T� + ���

BCs: u = V = ⇥ = 0

T = TB(Y ) +⇥(x ,Y , t)

where background temperature:

TB(Y ) = 1 + �Y

Note: Buoyancy forces neglected

Compressible NS Equations

⇢


@tu + (u ·r) u

�
= � 1

�
@x⇡ +

1
Rew


r2u +

1
3
@x (r · u)

�

⇢


@tV + (u ·r)V

�
= � 1

�2�
@Y⇡ +

1
Rew


r2V +

1
3�2

@Y (r · u)
�

@t⇢ + @x(⇢u) + @Y (⇢V ) = 0

@t⇥+ (u ·⇥) + V
dTB

dY
= (1� �)(TB +⇥)(r · u) +

�
⇢Pr Rew

r2⇥

1 + ⇡ = ⇢ (TB +⇥)

where u = (u, �V ) and r
�
·
�
= [@x (·) , 1

�@Y (·)]
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Asymptotic Analysis

Dimensionless Parameters, Distinguished Limit & Multiple Scale (WKBJ) Analysis

Parameter Definition Scaling
Wave Amplitude ✏ k⇤u⇤/!⇤ = u⇤/a⇤ ✏ ⌧ 1
Aspect Ratio � k⇤H⇤ � ⌘ ✏1/2h

Temperature Gradient � �⇥⇤/T⇤ � = O(1)
Reynolds Number Rew a⇤/k⇤⌫⇤ Rew ⌘ ✏�2R
Prandtl Number Pr ⌫⇤/⇤ Pr = O(1)
Specific Heat Ratio � cp/cv � = O(1)

WKBJ analysis to capture fast and slow evolution, using phase variable �(t) ⌘ �(T )/✏
and slow time scale T ⌘ ✏t, where the slowly-varying frequency ! = �@T�:

f (x ,Y , t; ✏) = f̄ (x ,Y ,T ; ✏) + f 0(x ,Y ,�;T , ✏)

Asymptotic expansions for various fields:

[u,V ,⇡] ⇠ ✏[ū1 + u0
1, V̄1 + V 0

1 ,⇡
0
1] + ✏2[ū2 + u0

2, V̄2 + V 0
2 , ⇡̄2 + ⇡0

2] + . . .

[⇥, ⇢] ⇠
⇥
⇥̄0, ⇢̄0

⇤
+ ✏

⇥
⇥̄1 +⇥0

1, ⇢̄1 + ⇢01
⇤
+ . . .

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 11 / 25



Asymptotic Analysis

Dimensionless Parameters, Distinguished Limit & Multiple Scale (WKBJ) Analysis

Parameter Definition Scaling
Wave Amplitude ✏ k⇤u⇤/!⇤ = u⇤/a⇤ ✏ ⌧ 1
Aspect Ratio � k⇤H⇤ � ⌘ ✏1/2h

Temperature Gradient � �⇥⇤/T⇤ � = O(1)
Reynolds Number Rew a⇤/k⇤⌫⇤ Rew ⌘ ✏�2R
Prandtl Number Pr ⌫⇤/⇤ Pr = O(1)
Specific Heat Ratio � cp/cv � = O(1)

WKBJ analysis to capture fast and slow evolution, using phase variable �(t) ⌘ �(T )/✏
and slow time scale T ⌘ ✏t, where the slowly-varying frequency ! = �@T�:

f (x ,Y , t; ✏) = f̄ (x ,Y ,T ; ✏) + f 0(x ,Y ,�;T , ✏)

Asymptotic expansions for various fields:

[u,V ,⇡] ⇠ ✏[ū1 + u0
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Asymptotic Analysis

Leading-Order, Quasilinear (QL) Wave/Mean-Flow System

Streaming Flow

⇢̄0
�
@T ū1 + ū1@x ū1 + V̄1@Y ū1

�
+

1
�
@x ⇡̄2 = �@x

⇣
⇢̄0u02

1

⌘
� @Y

⇣
⇢̄0u0

1V
0
1

⌘
+

1
Rh2

@2
Y ū1

@Y ⇡̄2 = 0

@x ū1 + @Y V̄1 =
1

PrRh2
@2
Y⇥

@T ⇥̄0 + ū1@x⇥̄0 + V̄1

✓
@Y ⇥̄0 +

dTB

dY

◆
= (1� �)(TB + ⇥̄0)(@x ū1 + @Y V̄1)

⇢̄0
�
TB + ⇥̄0

�
= 1 +

⇣ �
PrRh2

⌘ 1
⇢̄0

@2
Y ⇥̄0

Acoustic Waves

!0⇢̄0@�u
0
1 = � 1

�
@x⇡

0
1

@Y⇡
0
1 = 0

!0@�⇢
0
1 + @x

�
⇢̄0u

0
1

�
+ @Y

�
⇢̄0V

0
1

�
= 0

!0@�⇥
0
1 + u0

1@x⇥̄0 + V 0
1

✓
@Y ⇥̄0 +

dTB

dY

◆
= (1� �)(TB + ⇥̄0)(@xu

0
1 + @YV

0
1)

⇡0
1 = ⇢01(TB + ⇥̄0) + ⇢̄0⇥

0
1
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@x ū1 + @Y V̄1 =
1

PrRh2
@2
Y⇥
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�
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!0⇢̄0@�u
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1 = � 1

�
@x⇡

0
1

@Y⇡
0
1 = 0

!0@�⇢
0
1 + @x

�
⇢̄0u

0
1

�
+ @Y

�
⇢̄0V

0
1

�
= 0

!0@�⇥
0
1 + u0
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✓
@Y ⇥̄0 +

dTB

dY

◆
= (1� �)(TB + ⇥̄0)(@xu
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Asymptotic Analysis

Leading-Order, Quasilinear (QL) Wave/Mean-Flow System

Streaming Flow

⇢̄0
�
@T ū1 + ū1@x ū1 + V̄1@Y ū1

�
+

1
�
@x ⇡̄2 = �@x

⇣
⇢̄0u02

1

⌘
� @Y

⇣
⇢̄0u0

1V
0
1

⌘
+

1
Rh2

@2
Y ū1
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PrRh2
@2
Y⇥
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✓
@Y ⇥̄0 +

dTB

dY

◆
= (1� �)(TB + ⇥̄0)(@x ū1 + @Y V̄1)

⇢̄0
�
TB + ⇥̄0

�
= 1 +

⇣ �
PrRh2

⌘ 1
⇢̄0

@2
Y ⇥̄0

Acoustic Waves

@x

✓
1
⇢0

◆
@x⇡

0
1

�
+ @Y

✓
1
⇢0

◆
@Y⇡

0
1

�
= !2

0 @
2
�⇡

0
1

NOTE: Stokes layers are passive.
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Results

Elimination of Fast Acoustic Wave Dynamics. I. Mode Structure

Quasilinear (QL) structure of wave equations enables linear WKBJ ansatz, i.e.

f 01 (x ,Y ,�;T ) = A(T )
h
f̂1(x ,Y ; ⇢̄0)e

i� + c.c.
i

2D non-separable partial di↵erential eigenvalue problem for f̂1 can be simplified:

û1(x ,Y ; ⇢̄0) = � g 0(x ; ⇢̄0)
!2
0 ⇢̄0(x ,Y ,T )

v̂1(x ,Y ; ⇢̄0) = Yg(x ; ⇢̄0) + @x

✓
g 0(x ; ⇢̄0)

!2
0

Z
Y

0

dY
⇢̄0

◆

where g(x) and !0 = @T� satisfy the 1D e-value problem

g 00(x) +
↵0(x)
↵(x)

g 0(x) +
!2
0

↵(x)
g(x) = 0, where ↵(x) =

Z 1

0

dY
⇢̄0

and g 0(0) = g 0(2⇡) = 0

with normalization condition
R 2⇡
0

g 2(x ; ⇢̄0)dx = 1.
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Results

Elimination of Fast Acoustic Wave Dynamics. II. Modal Amplitude

Novel amplitude equation obtained by extending analysis of waves to higher order:

2

A!�1
0

d(A!�1
0 )

dT
= � i!0

Pesh2

Z
dxdY g@2

Y ⇥̂1 +
1

2!2
0

Z
dxdY g 02

⇣
ū1@x ⇢̄

�1
0 + v̄1@Y ⇢̄

�1
0

⌘

+

Z
dxdy(@x ū1 + @y v̄1)


(� + 1)g 2 + 2i!0⇥̂1g ⇢̄0 +

g 02

!2
0 ⇢̄0

✓
Pr � 1

2

◆�

May be interpreted as slow-time energy balance for acoustic wave, since

E 1 ⌘
1
2

Z 2⇡

0

dx

Z 1

0

dY ⇢̄0u02
1 =

✓
A(T )
2!0

◆2

) 2

A!�1
0

d(A!�1
0 )

dT
=

1

E 1

dE 1

dT

Derivation requires proper accounting of variation of eigenfunctions with slow time
owing to their functional dependence on ⇢̄0(x ,Y ,T )

Virtue of approach is that computations can be performed strictly on slow time scale of
streaming flow by time-advancing mean + amplitude equations and, each slow-time step,
solving eigenvalue problem for wave frequency and mode structure.

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 15 / 25



Results

Weak Streaming: 1-Way Coupling

Parameters corresponding to Lin & Farouk (2008) DNS. . .

✏ = 10�2, � = 1.4, Pr = 0.71, h = 2.3, � = 0.2, R = 5.7, A ⇡ 6

Acoustic Wave Velocity Field

Streaming Velocity and Temperature Fields
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Results

Weak Streaming: Quantitative Comparison w/Lin & Farouk (2008)

No fitting parameters. . .

✏ = 10�2, � = 1.4, Pr = 0.71, h = 2.3, � = 0.2, R = 5.7, A ⇡ 6

DNS of full (2D) compressible NS equations by Lin & Farouk (2008):

Included additional physics (e.g. temperature-dependent di↵usivities)

Computationally-expensive. . . computed only 1 eddy-turnover time!
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Results

Finite-Amplitude Streaming: 2-Way Coupling

Slow-flow system solved
using Dedalus code with
constant power P injection:

1

E 1

dE 1

dT
= . . . +

P
E 1

Using parameters:

✏ = 10�2, � = 1.4, Pr = 1,
h = 4, � = 1, R = 4
P = 0.004
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Discussion

Summary: Rayleigh vs. Baroclinic Acoustic Streaming

Property Rayleigh Streaming Baroclinic Streaming
Relative magnitude ū/u⇤ = O(✏) ū/u⇤ = O(1)

Pattern Stacked cells Cells span channel
Wave/mean-flow coupling 1-way 2-way

Heat transport 6Nu � 1 / ✏2A4R2h2 Nu � 1 / A4R4h8

However, prefactors in (Nu � 1)–Ra relationship are rather small (at least in one-way
coupling limit for which scaling result easily derived). . .

Increasing Nu by increasing aspect-ratio � is feasible for baroclinic acoustic streaming.

6
Vainshtein, P. Fichman, M. & Gutfinger, G. 1995 Acoustic streaming enhancement of heat transfer between two parallel

plates. Int. J. Heat. Mass Transfer. 38, 1893–1899.
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Discussion

Ongoing Work: Impact of Aspect Ratio, BCs, Control Parameters on Heat Transfer

What is aspect-ratio dependence of heat transport?

For finite aspect-ratio [� = O(1)] case, must repeatedly solve non-separable 2D
partial di↵erential eigenvalue problem for wave field:

@x

h
⇢�1
0 @x ⇡̂1

i
+ ��2@y

h
⇢�1
0 @y ⇡̂1

i
= � !2

0 ⇡̂1, where: ⇢0 = ⇢0(x , y ,T )

Will streaming intensity (and, hence, cooling) be reduced when interior
temperature/density field is well mixed? What if at least one boundary
satisfies a fixed heat flux rather than fixed temperature condition?
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h
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Will streaming intensity (and, hence, cooling) be reduced when interior
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HEAT SINK   (Fixed Temperature)

HEAT SOURCE   (Fixed Power)
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Discussion

Finite Aspect-Ratio Baroclinic Acoustic Streaming: Turbulent Transport

Relaxing small aspect-ratio constraint: � ⌘ k⇤H⇤ = ✏1/2h ) � ⌘ k⇤H⇤ = 1
Other Parameters: ✏ = 10�2, � = 1.4, Pr = 0.7, � = 1, R = 5, A = 5
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Discussion

Finite Aspect-Ratio Baroclinic Acoustic Streaming: Turbulent Transport

Streaming Temperature Field: TB + ⇥̄0 (Nu ' 8)

Wave forcing concentrates in streaming thermal boundary layers!

Streaming Velocity Field: (ū0, V̄0)

UNH Integrated Applied Mathematics math.unh.edu/graduate/iam 22 / 25



Conclusion

Summary Points and Open Questions

Baroclinic acoustic streaming flows7 8:

Arise in presence of ambient/imposed transverse temperature/density gradients

Characterized by velocities that are comparable to acoustic wave motions

Generically involve two-way coupling between waves and mean flows

Unless temperature di↵erences very small, cannot simply couple Rayleigh streaming
predictions to appropriate (e.g. heat) transport equation, as in Richardson (1967),
Davidson (1973), Vainshtein et al. (1995). . .

Derived a novel amplitude equation that properly incorporates slow changes in
eigenfunctions owing to mean-field evolution [cf. Karlsen et al. (2016, 2017)]

Open mathematical questions:

(i) well-posedness of reduced system?

(ii) rigorous bounds on heat transport as function of control parameters?

(iii) e�cient algorithms for 2D eigenvalue problem?

7
Michel, G. & Chini, G. P. Strong wave–mean-flow coupling in baroclinic acoustic streaming. 2019.
J. Fluid Mech. 858, 536–564.
8
Nama, N. Mixing hot and cold with sound. 2019. J. Fluid Mech. Focus on Fluids 866, 1–4.
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