Bounds on mean vertical heat transport in convection driven by internal heating

Giovanni Fantuzzi Imperial College London giovanni.fantuzzi10@imperial.ac.uk

Ali Arslan

Andrew Wynn

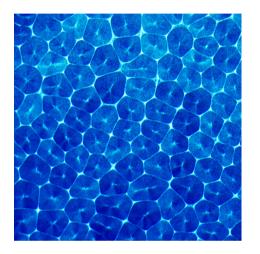
Joint work with

John Craske

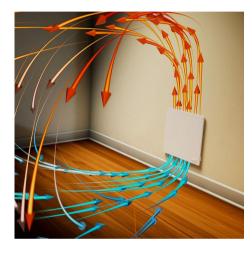
IPAM Worskshop "Transport and Mixing in Complex and Turbulent Flows" 11 January 2021

Convection is important!

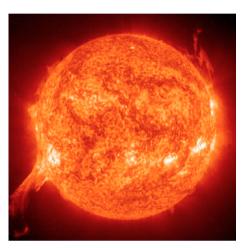
Drying paint



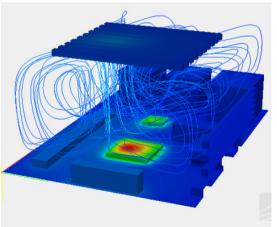
Central heating



Stars

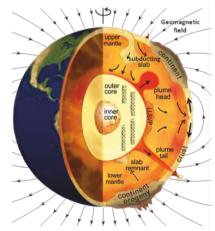


Chip cooling

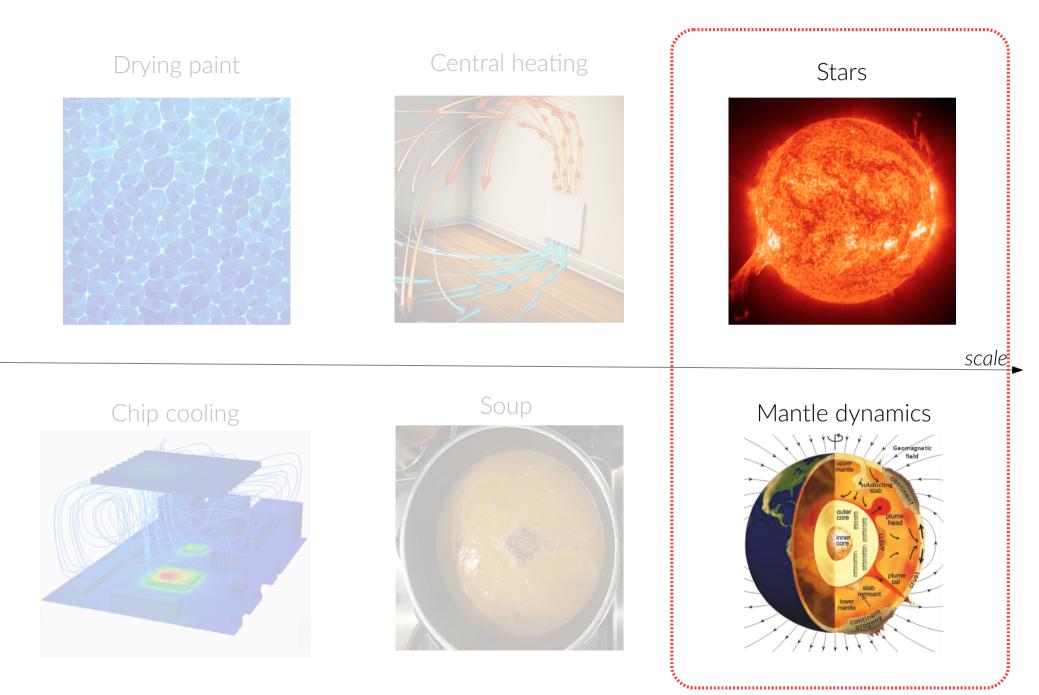


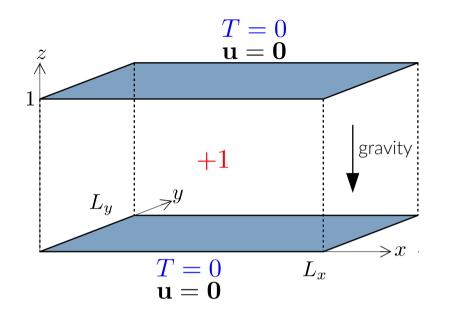
Mantle dynamics

scale

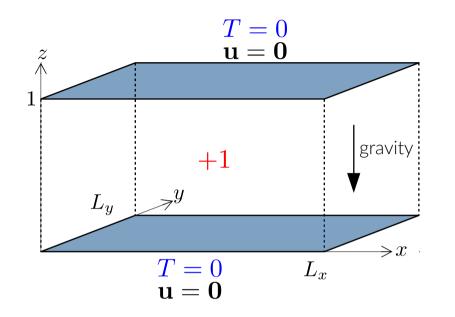


Convection is important!

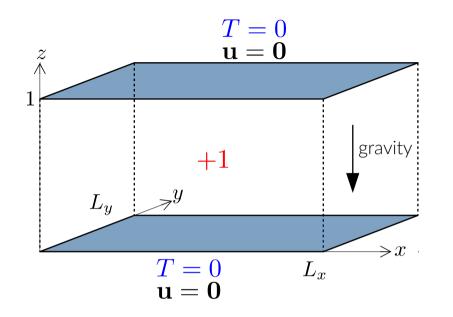




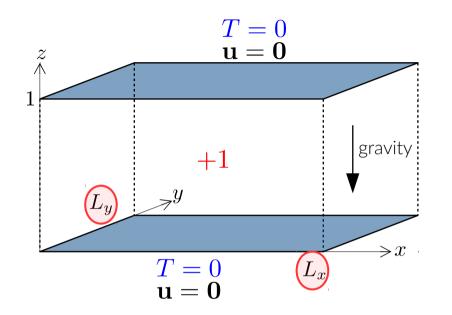
$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = Pr(\nabla^2 \mathbf{u} + RT\hat{z})$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\partial_t T + \mathbf{u} \cdot \nabla T = \nabla^2 T + 1$$



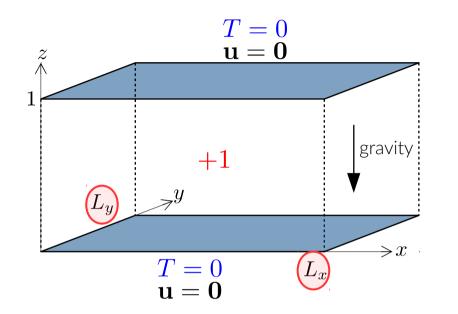
$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = Pr(\nabla^2 \mathbf{u} + \mathbf{RT}\hat{z})$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\partial_t T + \mathbf{u} \cdot \nabla T = \nabla^2 T + 1$$



$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \Pr(\nabla^2 \mathbf{u} + \Pr\hat{z})$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\partial_t T + \mathbf{u} \cdot \nabla T = \nabla^2 T + 1$$



$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \Pr(\nabla^2 \mathbf{u} + \Pr\hat{z})$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\partial_t T + \mathbf{u} \cdot \nabla T = \nabla^2 T + 1$$



$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} + \nabla p = \Pr(\nabla^2 \mathbf{u} + \Pr\hat{z})$$
$$\nabla \cdot \mathbf{u} = 0$$
$$\partial_t T + \mathbf{u} \cdot \nabla T = \nabla^2 T + 1$$

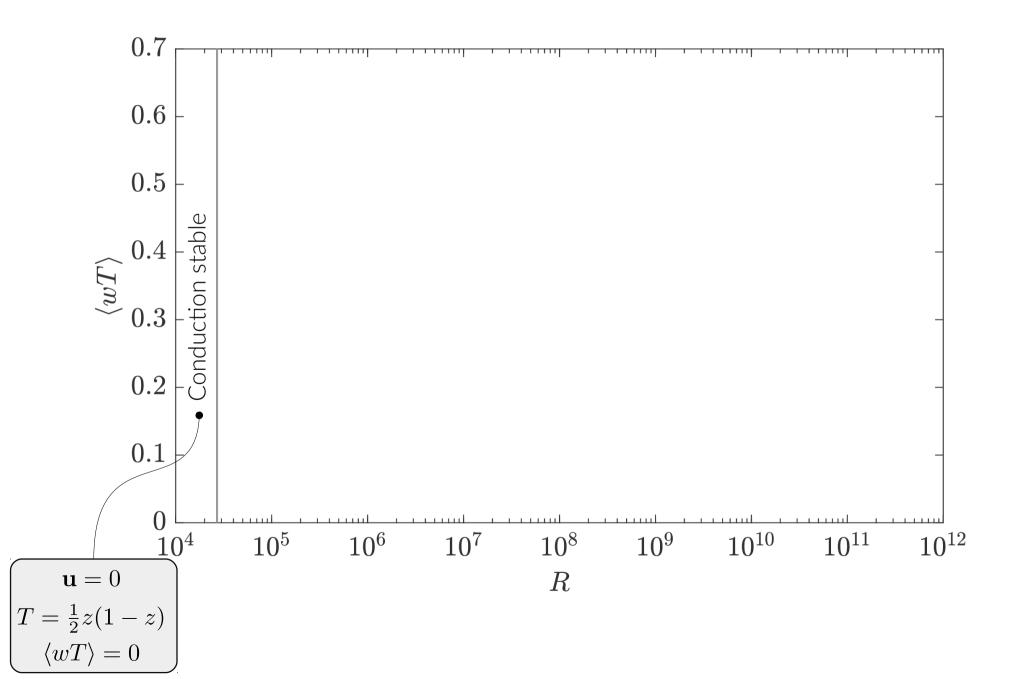
Mean vertical heat flux:

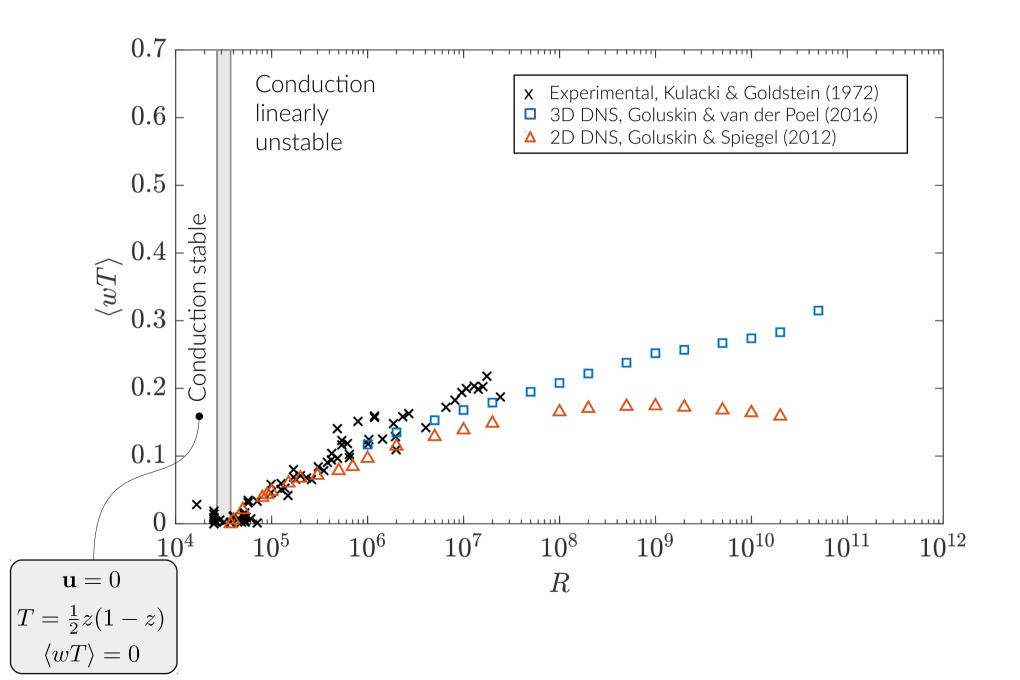
$$\langle wT \rangle = \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \oint_\Omega wT \mathrm{d}\mathbf{x} \mathrm{d}t$$

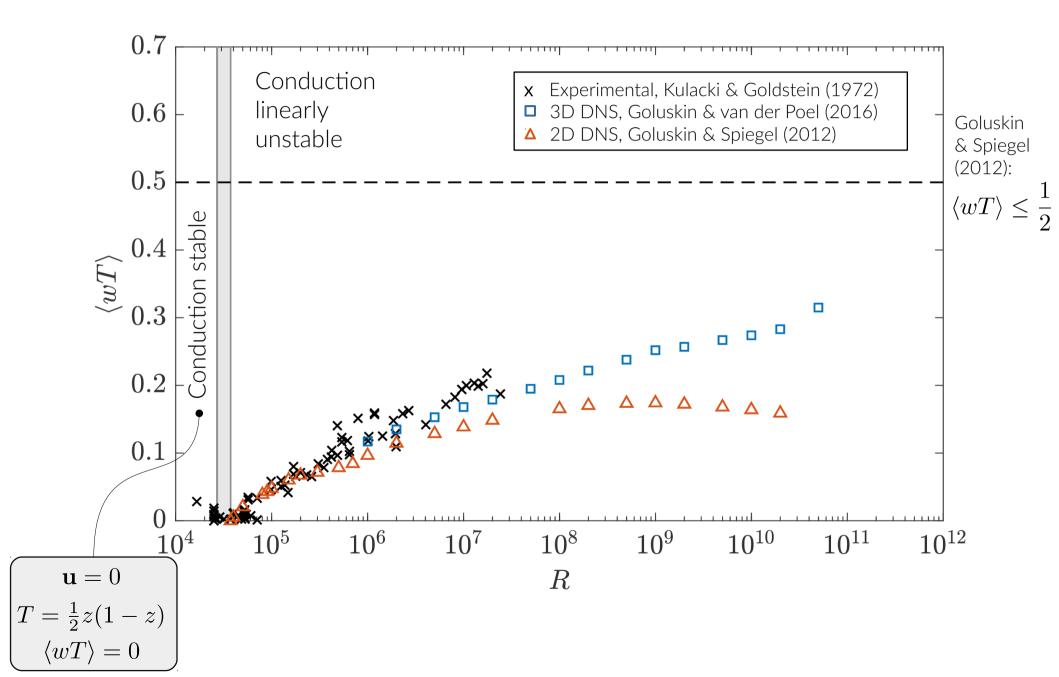
Heat flux through top and bottom boundaries:

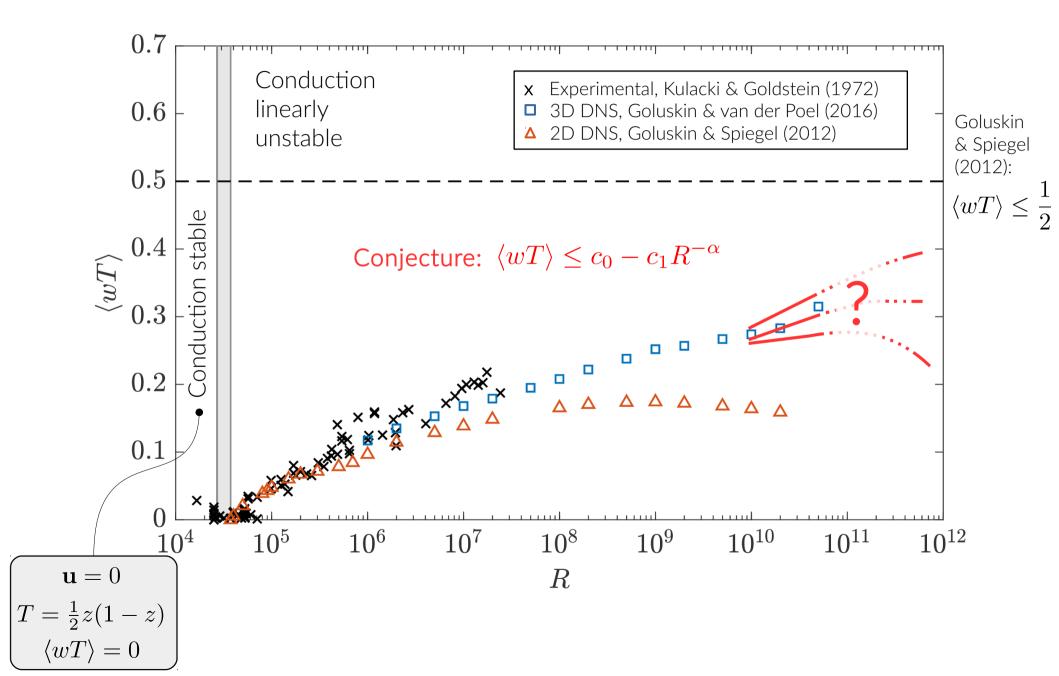
$$\mathcal{F}_T = -\overline{\partial_z T}|_{z=1} = \frac{1}{2} + \langle wT \rangle$$
$$\mathcal{F}_B = \overline{\partial_z T}|_{z=0} = \frac{1}{2} - \langle wT \rangle$$

Q: Variation with heating rate (*R*)?









$$\limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V}\{\mathbf{u}(\cdot, t), T(\cdot, t)\} \,\mathrm{d}t = 0$$
$$= \frac{\mathcal{V}\{\mathbf{u}(\cdot, \tau), T(\cdot, \tau)\} - \mathcal{V}\{\mathbf{u}(\cdot, 0), T(\cdot, 0)\}}{\tau}$$

$$\langle wT \rangle = \langle wT \rangle + \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V}\{\mathbf{u}(\cdot, t), T(\cdot, t)\} \,\mathrm{d}t$$

$$\langle wT \rangle = \langle wT \rangle + \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V} \{ \mathbf{u}(\cdot, t), T(\cdot, t) \} \,\mathrm{d}t$$
$$= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \oint_\Omega wT + \frac{\delta \mathcal{V}}{\delta \mathbf{u}} \cdot \partial_t \mathbf{u} + \frac{\delta \mathcal{V}}{\delta T} \cdot \partial_t T \,\mathrm{d}\mathbf{x} \,\mathrm{d}t$$

$$\langle wT \rangle = \langle wT \rangle + \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V} \{ \mathbf{u}(\cdot, t), T(\cdot, t) \} \, \mathrm{d}t$$

$$= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \frac{\delta \mathcal{V}}{\delta \mathbf{u}} \cdot \partial_t \mathbf{u} + \frac{\delta \mathcal{V}}{\delta T} \cdot \partial_t T \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

$$= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

$$\begin{split} \langle wT \rangle &= \langle wT \rangle + \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V} \{ \mathbf{u}(\cdot, t), T(\cdot, t) \} \, \mathrm{d}t \\ &= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \frac{\delta \mathcal{V}}{\delta \mathbf{u}} \cdot \partial_t \mathbf{u} + \frac{\delta \mathcal{V}}{\delta T} \cdot \partial_t T \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \mathbf{U} - \mathbf{U} \end{split}$$

$$\begin{split} & = \langle wT \rangle + \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V} \{ \mathbf{u}(\cdot, t), T(\cdot, t) \} \, \mathrm{d}t \\ &= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \frac{\delta \mathcal{V}}{\delta \mathbf{u}} \cdot \partial_t \mathbf{u} + \frac{\delta \mathcal{V}}{\delta T} \cdot \partial_t T \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \mathbf{U} - \mathbf{U} \\ &= \mathbf{U} - \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega^\tau \int_\Omega \mathbf{U} - wT - \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \end{split}$$

$$\begin{split} &= 0 \\ \langle wT \rangle = \langle wT \rangle + \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V} \{ \mathbf{u}(\cdot, t), T(\cdot, t) \} \, \mathrm{d}t \\ &= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \frac{\delta \mathcal{V}}{\delta \mathbf{u}} \cdot \partial_t \mathbf{u} + \frac{\delta \mathcal{V}}{\delta T} \cdot \partial_t T \, \mathrm{d}\mathbf{x} \, \mathrm{d}t \\ &= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega wT + \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \mathbf{U} - \mathbf{U} \\ &= \mathbf{U} - \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau \int_\Omega^\tau \underbrace{\int_\Omega \mathbf{U} - wT - \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x}}_{\mathcal{S}\{\mathbf{u}, T\}} \end{split}$$

• Infinite-time averages of time derivatives of bounded functionals vanish!

$$\langle wT \rangle = \langle wT \rangle + \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{V} \{ \mathbf{u}(\cdot, t), T(\cdot, t) \} \, \mathrm{d}t$$

$$= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \int_{\Omega} wT + \frac{\delta \mathcal{V}}{\delta \mathbf{u}} \cdot \partial_t \mathbf{u} + \frac{\delta \mathcal{V}}{\delta T} \cdot \partial_t T \, \mathrm{d}\mathbf{x} \, \mathrm{d}t$$

$$= \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \int_{\Omega} wT + \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t + \mathbf{U} - \mathbf{U}$$

$$= \mathbf{U} - \limsup_{\tau \to \infty} \frac{1}{\tau} \int_0^{\tau} \int_{\Omega} \frac{\mathbf{U} - wT - \mathcal{D}(\mathbf{u}, T) \, \mathrm{d}\mathbf{x} \, \mathrm{d}t }{\mathcal{S}\{\mathbf{u}, T\}}$$

If $S{\mathbf{u}, T} \ge 0$ for all $\mathbf{u}(\mathbf{x})$ and $T(\mathbf{x})$ consistent with physical constraints, then $\langle wT \rangle \le U$

$$\mathcal{V}\{\mathbf{u},T\} = \int_{\Omega} \frac{a}{2PrR} |\mathbf{u}|^2 + \frac{b}{2} |T|^2 - [1 - z + \psi(z)] T \,\mathrm{d}\mathbf{x}$$

• After some algebra:

$$\mathcal{S}\{\mathbf{u},T\} = \mathbf{U} - \frac{1}{2} + \psi(1) \int_{z=1}^{z} \partial_z T \, \mathrm{d}x \mathrm{d}y - [\psi(0) - 1] \int_{z=0}^{z} \partial_z T \, \mathrm{d}x \mathrm{d}y$$
$$+ \int_{\Omega} \frac{a}{R} |\nabla \mathbf{u}|^2 + \mathbf{b} |\nabla T|^2 - (\mathbf{a} - \psi') w T + (\mathbf{b}z - \psi' - 1) \partial_z T + \psi \, \mathrm{d}x$$

$$egin{aligned} \langle wT
angle & \leq \inf_{U,a,b,\psi(z)} & U \ & ext{ s.t. } & \mathcal{S}\{\mathbf{u},T\} \geq 0 & orall \mathbf{u},T: egin{cases} ext{BCs} \ \nabla \cdot \mathbf{u} = 0 \ &
onumber \ &$$

balance parameters

$$\mathcal{V}\{\mathbf{u}, T\} = \int_{\Omega} \frac{a}{2PrR} |\mathbf{u}|^2 + \frac{b}{2} |T|^2 - [1 - z + \psi(z)] T \, \mathrm{d}\mathbf{x}$$
(rescaled) background
temperature field

• After some algebra:

$$S\{\mathbf{u},T\} = \mathbf{U} - \frac{1}{2} + \psi(1) \int_{z=1} \partial_z T \, \mathrm{d}x \mathrm{d}y - [\psi(0) - 1] \int_{z=0} \partial_z T \, \mathrm{d}x \mathrm{d}y$$
$$+ \int_{\Omega} \frac{a}{R} |\nabla \mathbf{u}|^2 + \mathbf{b} |\nabla T|^2 - (\mathbf{a} - \psi') w T + (\mathbf{b}z - \psi' - 1) \partial_z T + \psi \, \mathrm{d}x$$

$$egin{aligned} \langle wT
angle & \leq \inf_{U,a,b,\psi(z)} & U \ & ext{ s.t. } & \mathcal{S}\{\mathbf{u},T\} \geq 0 & orall \mathbf{u},T: egin{cases} ext{BCs} \
abla \cdot \mathbf{u} = 0 \ &
abla \cdot \mathbf{u} = 0 \end{aligned}$$

balance parameters

$$\mathcal{V}\{\mathbf{u}, T\} = \int_{\Omega} \frac{a}{2PrR} |\mathbf{u}|^2 + \frac{b}{2} |T|^2 - [1 - z + \psi(z)] T \, \mathrm{d}\mathbf{x}$$
(rescaled) background
temperature field

• After some algebra:

$$\mathcal{S}\{\mathbf{u},T\} = \mathbf{U} - \frac{1}{2} + \psi(1) \int_{z=1} \partial_z T \, \mathrm{d}x \mathrm{d}y - [\psi(0) - 1] \int_{z=0} \partial_z T \, \mathrm{d}x \mathrm{d}y$$
$$+ \int_{\Omega} \frac{a}{R} |\nabla \mathbf{u}|^2 + \mathbf{b} |\nabla T|^2 - (\mathbf{a} - \psi') w T + (\mathbf{b}z - \psi' - 1) \partial_z T + \psi \, \mathrm{d}\mathbf{x}$$

$$\langle wT \rangle \leq \inf_{U,a,b,\psi(z)} U$$

s.t. $S\{\mathbf{u},T\} \geq 0 \quad \forall \mathbf{u},T: \begin{cases} BCs \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$

balance parameters

$$\mathcal{V}\{\mathbf{u}, T\} = \int_{\Omega} \frac{a}{2PrR} |\mathbf{u}|^2 + \frac{b}{2} |T|^2 - [1 - z + \psi(z)] T \, \mathrm{d}\mathbf{x}$$
(rescaled) background
temperature field

• After some algebra:

$$\mathcal{S}\{\mathbf{u},T\} = \mathbf{U} - \frac{1}{2} + \psi(1) \int_{z=1} \partial_z T \, \mathrm{d}x \mathrm{d}y - [\psi(0) - 1] \int_{z=0} \partial_z T \, \mathrm{d}x \mathrm{d}y$$
$$+ \int_{\Omega} \frac{a}{R} |\nabla \mathbf{u}|^2 + \mathbf{b} |\nabla T|^2 - (\mathbf{a} - \psi') w T + (\mathbf{b}z - \psi' - 1) \partial_z T + \psi \, \mathrm{d}\mathbf{x}$$

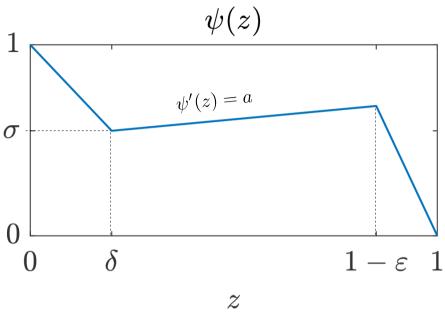
$$\langle wT \rangle \leq \inf_{\substack{U,a,b,\psi(z)\\ \text{s.t.}}} U$$
s.t.
$$\inf_{\substack{\mathbf{u},T:\\ BCs\\ \nabla \cdot \mathbf{u}=0}} \mathcal{S}\{\mathbf{u},T\} \geq 0$$

Computational results



Analytical results

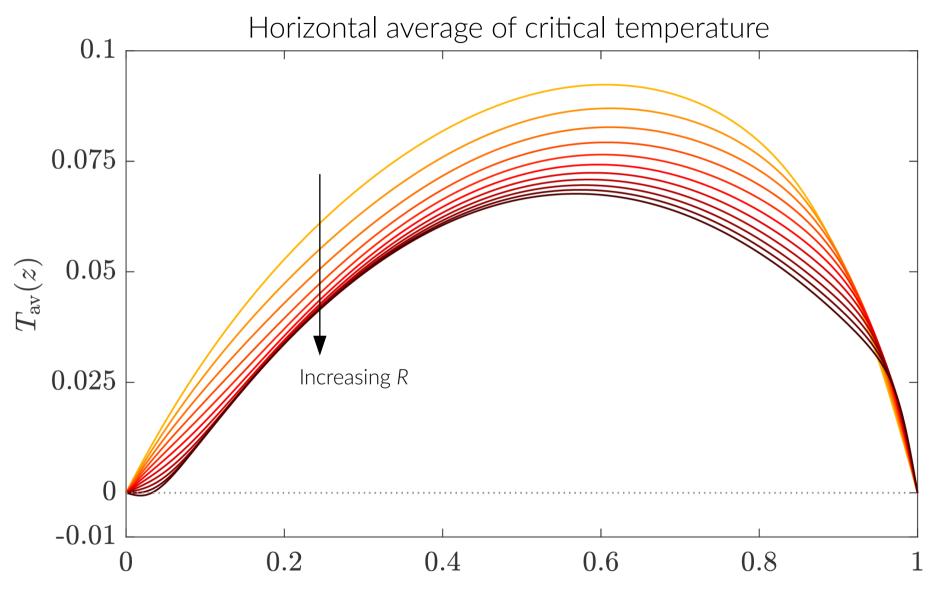


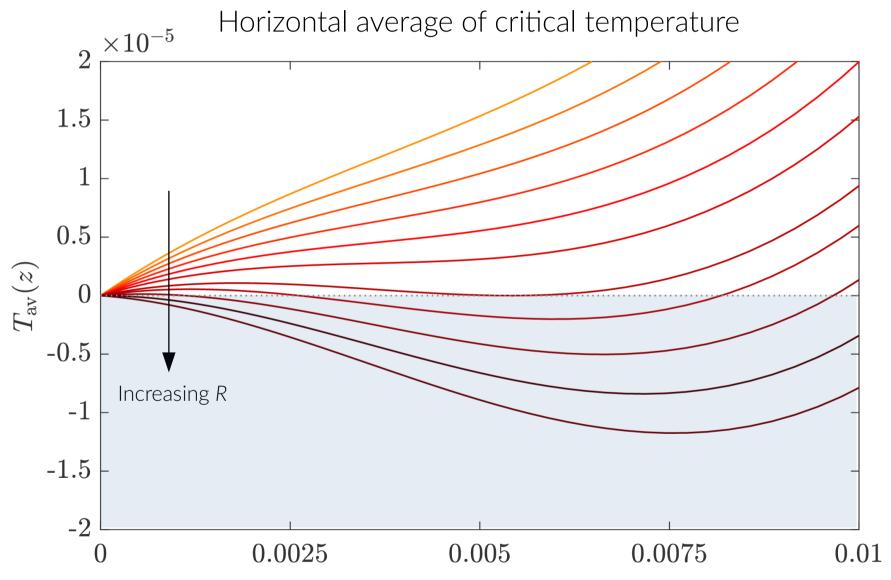


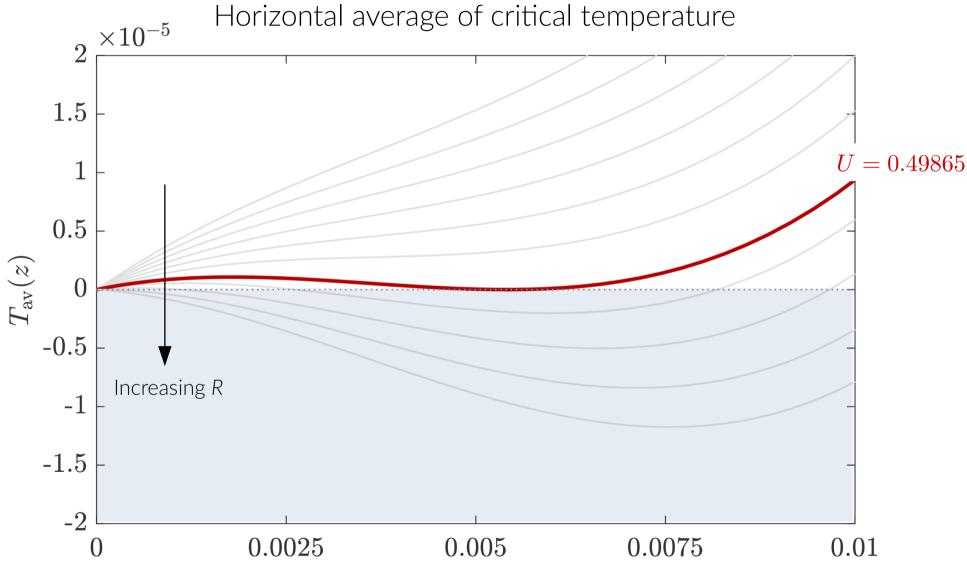
$$\langle wT \rangle \le \frac{1}{16} [8(3\sqrt{2}-4)^2]^{\frac{1}{5}} R^{\frac{1}{5}}$$

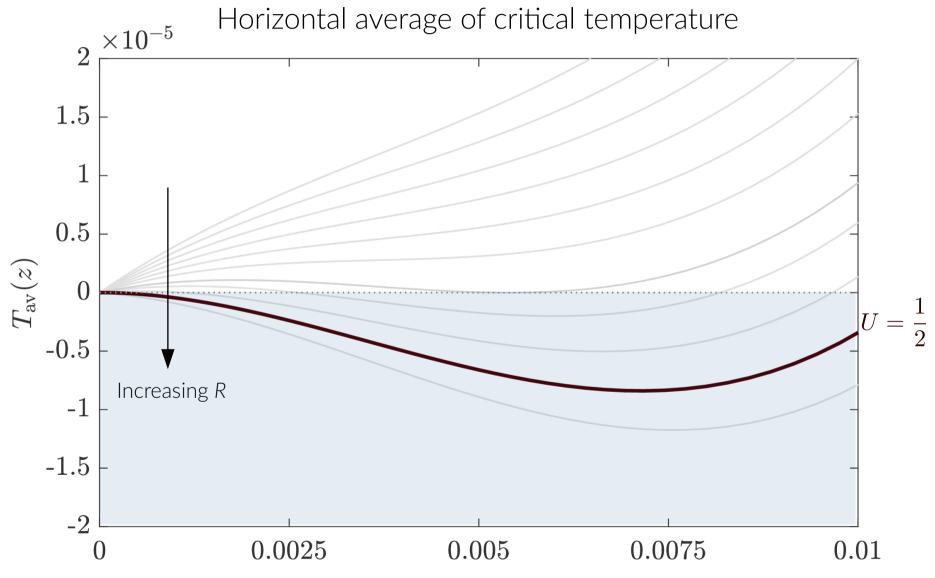
 $\leq \frac{1}{2}$ if $R \leq 69572$

What is missing?









Revised bounding framework

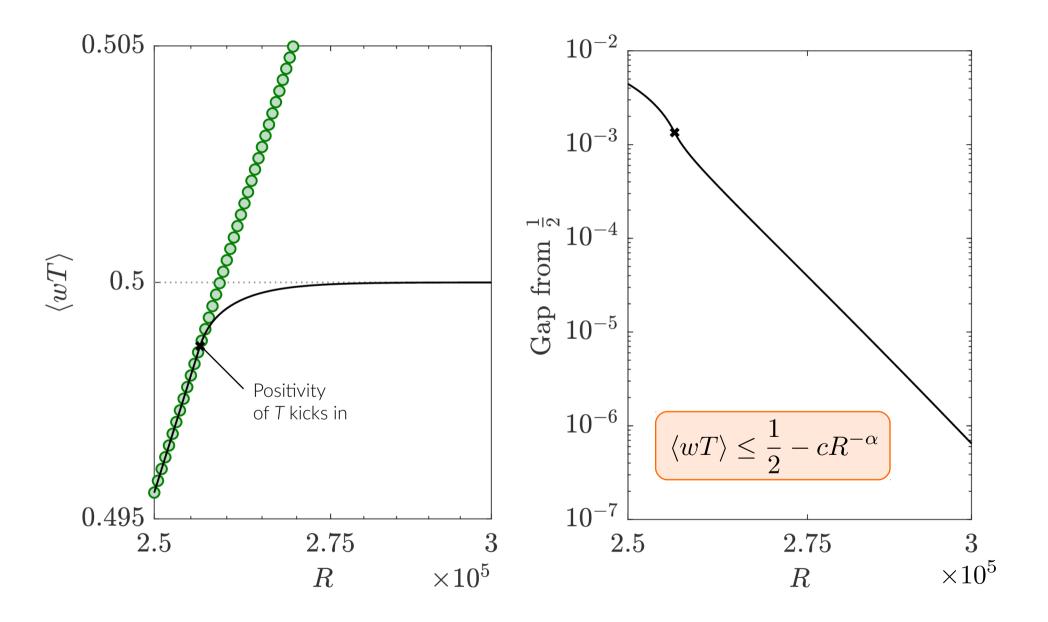
$$\langle wT \rangle \leq \inf_{U,a,b,\psi(z)} U$$

s.t. $S\{\mathbf{u},T\} \geq 0 \quad \forall \mathbf{u},T: \begin{cases} BCs \\ \nabla \cdot \mathbf{u} = 0 \\ T(\mathbf{x}) \geq 0 \text{ on } \Omega \end{cases}$

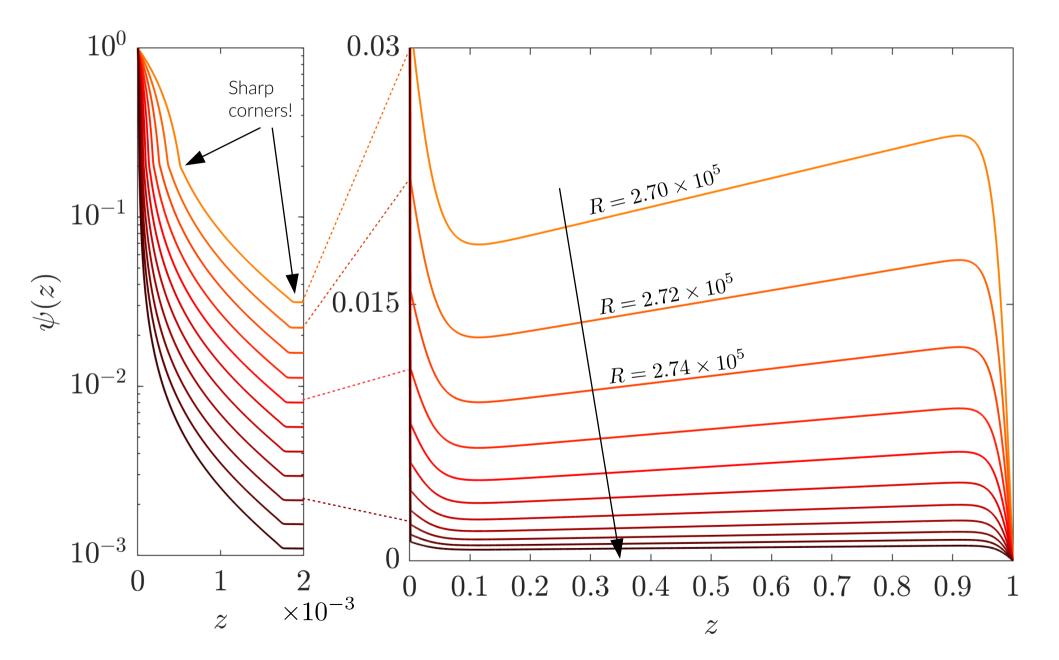
Enforce using a nonnegative Lagrange multiplier:

$$\langle wT \rangle \leq \inf_{U,a,b,\psi(z),q(z)} U$$
s.t. $S\{\mathbf{u},T\} \geq \int_{\Omega} q'(z)T \, \mathrm{d}\mathbf{x} \quad \forall \mathbf{u},T: \begin{cases} \mathrm{BCs} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$
 $q'(z) \geq 0 \quad \forall z \in [0,1] \end{cases}$

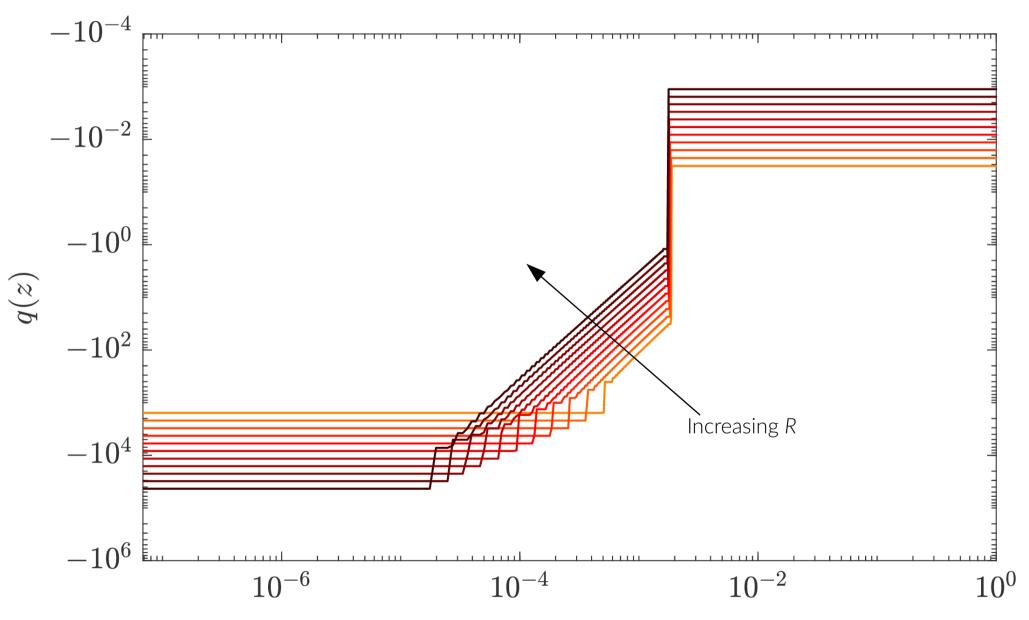
Computational upper bounds



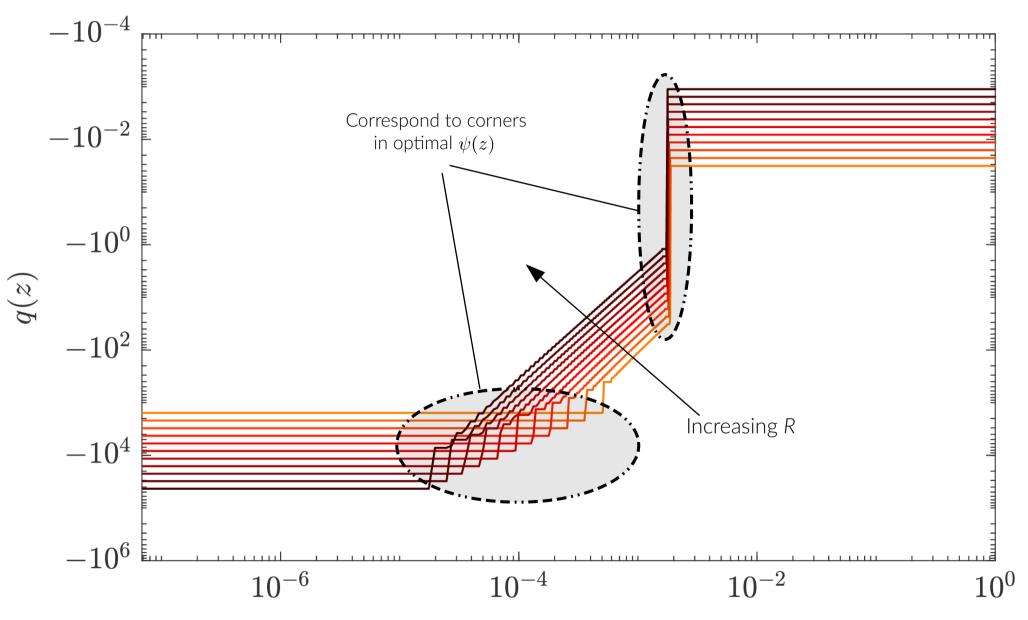
Optimal $\psi(z)$



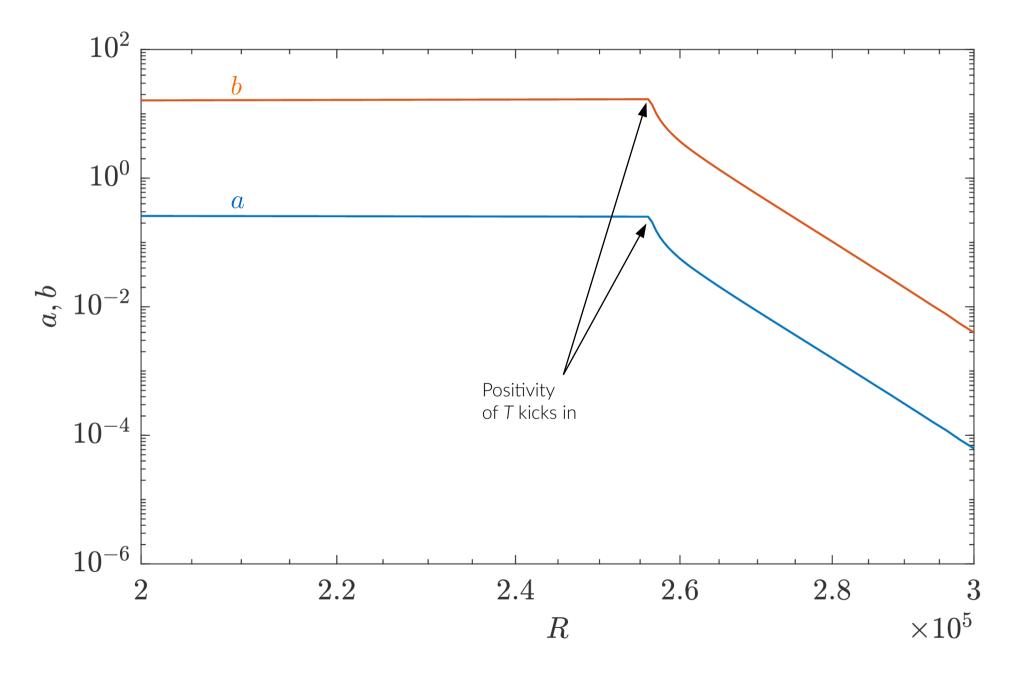
Optimal Lagrange multipliers



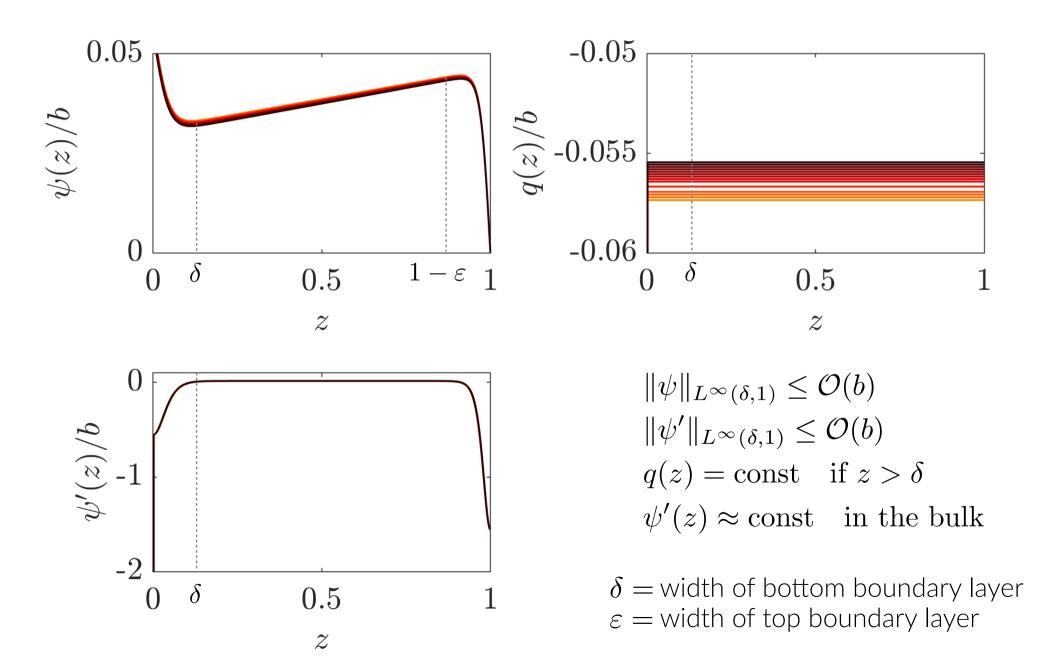
Optimal Lagrange multipliers



Optimal balance parameters



Approx. scaling with *b* <u>away from z=0</u>



$$\langle wT \rangle \leq \frac{1}{2} + \frac{1}{4b} \left\| bz - \frac{b}{2} - \psi' + q \right\|_{2}^{2} - \int_{0}^{1} \psi dz$$

$$\begin{split} \psi(0) &\leq 1, \\ \psi(1) &\leq 0, \\ q'(z) &\geq 0, \\ \int_0^1 q(z) \mathrm{d}z &= \psi(1) - \psi(0), \\ \int_0^1 \frac{2a}{R} |\partial_z w|^2 + b |\partial_z T|^2 - (a - \psi') w T \,\mathrm{d}z &\geq 0 \quad \forall w, T: \text{ BCs} \end{split}$$

$$\langle wT \rangle \leq \frac{1}{2} + \frac{1}{4b} \left\| bz - \frac{b}{2} - \psi' + q \right\|_{2}^{2} - \int_{0}^{1} \psi dz$$

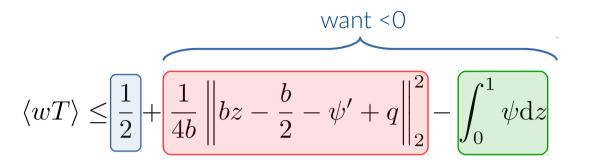
$$egin{aligned} \psi(0) &\leq 1, \ \psi(1) &\leq 0, \ q'(z) &\geq 0, \ &\int_0^1 q(z) \mathrm{d} z = \psi(1) - \psi(0), \ &\int_0^1 rac{2a}{R} |\partial_z w|^2 + b |\partial_z T|^2 - (a - \psi') w T \,\mathrm{d} z \geq 0 \quad orall w, T: \ \mathrm{BCs} \end{aligned}$$

$$\langle wT \rangle \leq \boxed{\frac{1}{2}} + \frac{1}{4b} \left\| bz - \frac{b}{2} - \psi' + q \right\|_2^2 - \int_0^1 \psi \mathrm{d}z$$

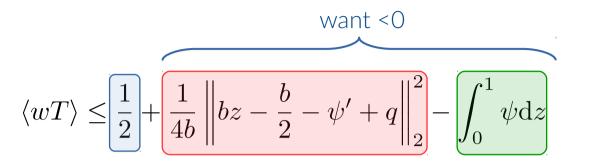
$$egin{aligned} \psi(0) &\leq 1, \ \psi(1) &\leq 0, \ q'(z) &\geq 0, \ &\int_0^1 q(z) \mathrm{d} z = \psi(1) - \psi(0), \ &\int_0^1 rac{2a}{R} |\partial_z w|^2 + b |\partial_z T|^2 - (a - \psi') w T \,\mathrm{d} z \geq 0 \quad orall w, T: ext{ BCs} \end{aligned}$$

$$\langle wT \rangle \leq \boxed{\frac{1}{2}} + \boxed{\frac{1}{4b} \left\| bz - \frac{b}{2} - \psi' + q \right\|_2^2} - \int_0^1 \psi \mathrm{d}z$$

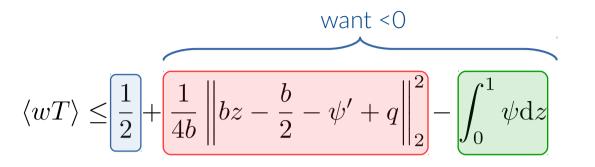
$$egin{aligned} \psi(0) &\leq 1, \ \psi(1) &\leq 0, \ q'(z) &\geq 0, \ &\int_0^1 q(z) \mathrm{d} z = \psi(1) - \psi(0), \ &\int_0^1 rac{2a}{R} |\partial_z w|^2 + b |\partial_z T|^2 - (a - \psi') w T \,\mathrm{d} z \geq 0 \quad orall w, T: ext{ BCs} \end{aligned}$$



$$egin{aligned} \psi(0) &\leq 1, \ \psi(1) &\leq 0, \ q'(z) &\geq 0, \ &\int_0^1 q(z) \mathrm{d} z = \psi(1) - \psi(0), \ &\int_0^1 rac{2a}{R} |\partial_z w|^2 + b |\partial_z T|^2 - (a - \psi') w T \,\mathrm{d} z \geq 0 \quad orall w, T: ext{ BCs} \end{aligned}$$



$$\begin{split} \psi(0) &\leq 1, \\ \psi(1) &\leq 0, \\ q'(z) &\geq 0, \\ \int_0^1 q(z) \mathrm{d}z &= \psi(1) - \psi(0), \\ \int_0^1 \frac{2a}{R} |\partial_z w|^2 + b |\partial_z T|^2 - (a - \psi') w T \,\mathrm{d}z &\geq 0 \quad \forall w, T: \text{ BCs} \end{split}$$



$$\begin{split} \psi(0) &\leq 1, \\ \psi(1) &\leq 0, \\ q'(z) &\geq 0, \\ \int_0^1 q(z) \mathrm{d}z &= \psi(1) - \psi(0), \\ \int_0^1 \frac{2a}{R} |\partial_z w|^2 + b |\partial_z T|^2 - (a - \psi') w T \mathrm{d}z \geq 0 \quad \forall w, T: \text{ BCs} \end{split}$$

Simplest idea fails!

Suppose that:

1) $\psi(0) = 1, \ \psi(1) = 0$

2)
$$\|\psi\|_{L^{\infty}(\delta,1)}, \|\psi'\|_{L^{\infty}(\delta,1)} \leq \mathcal{O}(b)$$

3)
$$\psi'(z) \ge 0$$
 on an interval $(\delta, 1 - \varepsilon)$

4) $\psi'(z)$ and q(z) are <u>constant</u> on some interval $(\frac{1}{2} - c, \frac{1}{2} + c)$ with c = O(1)5) $a \le b$

6) We use the "classical" estimates, e.g.

$$\left| \int_{0}^{\delta} (a - \psi') w T \mathrm{d}z \right| \leq \delta^{2} ||a - \psi'||_{L^{\infty}(0,\delta)} ||\partial_{z}w||_{2} ||\partial_{z}T||_{2}$$
$$\left| \int_{1-\varepsilon}^{1} (a - \psi') w T \mathrm{d}z \right| \leq \varepsilon^{2} ||a - \psi'||_{L^{\infty}(1-\varepsilon,1)} ||\partial_{z}w||_{2} ||\partial_{z}T||_{2}$$

Then, the best possible bound U^* that one can prove satisfies

$$U^* \ge \frac{1}{2} + b\left[\frac{c^3}{6} - \mathcal{O}(R^{-\frac{1}{4}})\right] > \frac{1}{2} \text{ if } R \gg 1$$

Agree well with numerics

Simplest idea fails!

Suppose that:

Agree well with

numerics

1.4

1)
$$\psi(0) = 1$$
, $\psi(1) = 0$
2) $\|\psi\|_{L^{\infty}(\delta,1)}$, $\|\psi'\|_{L^{\infty}(\delta,1)} \leq \mathcal{O}(b)$
3) $\psi'(z) \geq 0$ on an interval $(\delta, 1 - \varepsilon)$
4) $\psi'(z)$ and $q(z)$ are constant on some interval $(\frac{1}{2} - c, \frac{1}{2} + c)$ with $c = \mathcal{O}(1 + \varepsilon)$
5) $a \leq b$

6) We use the "classical" estimates, e.g.

$$\left| \int_0^\delta (a - \psi') w T \mathrm{d}z \right| \le \delta^2 ||a - \psi'||_{L^\infty(0,\delta)} ||\partial_z w||_2 ||\partial_z T||_2$$
$$\left| \int_{1-\varepsilon}^1 (a - \psi') w T \mathrm{d}z \right| \le \varepsilon^2 ||a - \psi'||_{L^\infty(1-\varepsilon,1)} ||\partial_z w||_2 ||\partial_z T||_2$$

Then, the best possible bound U^* that one can prove satisfies

$$U^* \ge \frac{1}{2} + b \left[\frac{c^3}{6} - \mathcal{O}(R^{-\frac{1}{4}}) \right] > \frac{1}{2} \text{ if } R \gg 1$$

Simplest idea fails!

Suppose that:

Agree well with

numerics

1)
$$\psi(0) = 1$$
, $\psi(1) = 0$
2) $\|\psi\|_{L^{\infty}(\delta,1)}$, $\|\psi'\|_{L^{\infty}(\delta,1)} \leq \mathcal{O}(b)$
3) $\psi'(z) \geq 0$ on an interval $(\delta, 1 - \varepsilon)$
4) $\psi'(z)$ and $q(z)$ are constant on some interval $(\frac{1}{2} - c, \frac{1}{2} + c)$ with $c = \mathcal{O}(1)$
5) $a \leq b$

6) We use the "classical" estimates, e.g.

$$\left| \int_0^\delta (a - \psi') w T \mathrm{d}z \right| \le \delta^2 ||a - \psi'||_{L^\infty(0,\delta)} ||\partial_z w||_2 ||\partial_z T||_2$$
$$\left| \int_{1-\varepsilon}^1 (a - \psi') w T \mathrm{d}z \right| \le \varepsilon^2 ||a - \psi'||_{L^\infty(1-\varepsilon,1)} ||\partial_z w||_2 ||\partial_z T||_2$$

Then, the best possible bound U^* that one can prove satisfies

$$U^* \ge \frac{1}{2} + b\left[\frac{c^3}{6} - \mathcal{O}(R^{-\frac{1}{4}})\right] > \frac{1}{2} \text{ if } R \gg 1$$

Conclusions

- Bounds on vertical heat transfer for convection with internal heating are elusive!
- "Modern background method" leads to a sensible and <u>computationally</u> <u>tractable</u> problem
- New analytical bound

$$\langle wT \rangle \le \frac{1}{16} [8(3\sqrt{2}-4)^2]^{\frac{1}{5}} R^{\frac{1}{5}} \left(\le \frac{1}{2} \text{ if } R \le 69572 \right)$$

• Positivity of temperature is <u>necessary</u> to obtain

$$\langle wT \rangle \le \frac{1}{2} - cR^{-\alpha} < \frac{1}{2} \qquad \forall R$$

- Simplest type of analytical constructions fail
 - a) More subtle properties of optimal solution?
 - b) More sophisticated estimates?

Conclusions

- Bounds on vertical heat transfer for convection with internal heating are elusive!
- "Modern background method" leads to a sensible and <u>computationally</u> <u>tractable</u> problem
- New analytical bound

$$\langle wT \rangle \le \frac{1}{16} [8(3\sqrt{2}-4)^2]^{\frac{1}{5}} R^{\frac{1}{5}} \left(\le \frac{1}{2} \text{ if } R \le 69572 \right)$$

• Positivity of temperature is <u>necessary</u> to obtain

$$\langle wT \rangle \le \frac{1}{2} - cR^{-\alpha} < \frac{1}{2} \qquad \forall R$$

- Simplest type of analytical constructions fail
 - a) More subtle properties of optimal solution?
 - b) More sophisticated estimates?

Thank you! giovanni.fantuzzi10@imperial.ac.uk