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An evolving scalar field

Let f t(x) = f(t,x) be a spatially-periodic mean-zero function bounded
uniformly in L2(Td) for all t > 0.

For example, f(t,x) might be a solution to the advection-diffusion equation

∂f

∂t
+ u · ∇f = D∆f,

with mean-zero f0 ∈ L2(Td) and smooth incompressible (i.e. ∇ · u = 0)
flow u(t,x).
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Mix-norms

Mathew et al. [2003] used the H−1/2 norm as a measure of mixing, and Lin et al.
[2011] extended this to any negative Sobolev (e.g., H−q) norm.

These are collectively known as mix-norms. Thus the magnitude of

∥∥f t
∥∥
H−q

measures how well-mixed f t is.

This viewpoint has proved very fruitful both for proving theorems and for
applications: Doering and Thiffeault [2006], Shaw et al. [2007], Thiffeault [2012],
Lunasin et al. [2012], Iyer et al. [2014], Kiselev and Xu [2016], Marcotte and
Caulfield [2018], Miles and Doering [2018], Yao and Zlatos̆ [2017], Vermach and
Caulfield [2018], Bedrossian and He [2020], Coti Zelati [2020] . . . .
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Mix-norms and correlations

Correlations decay to zero iff any such mix-norm decays to zero. That is,

lim
t→∞

〈
f t , g

〉
= 0 ∀g ∈ L2 ⇐⇒ lim

t→∞

∥∥f t
∥∥
H−q = 0, for any q > 0.

In that sense decay of correlations and decay of mix-norms are ‘equivalent.’

But do correlations and mix-norms decay at the same rate?

Question

How is the rate of decay of a mix-norm related to the rate of decay of
correlations?
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Rate of mixing

The Ḣ−q norm is defined via the duality equation

‖f‖Ḣ−q = sup
g∈Ḣq

|〈f , g〉|
‖g‖Ḣq

.

In our setting, this supremum can be realized. The mix-norm is the envelope of
correlations with ‖g‖Ḣq = 1.

‖f t‖Ḣ−q

The mix-norm is the point-wise smallest uniform rate of decay of correlations.

However, each correlation could potentially decay strictly faster than the
mix-norm.
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Different notions of the rate of decay of correlations

When studying a collection of functions converging to zero as t→∞, such as
|〈f t , g〉| for g ∈ Ḣq, there are several common ways to define a rate of decay:

1 Correlations decay at the uniform rate r(t) for g ∈ Ḣq if
∣∣〈f t , g

〉∣∣ ≤ r(t) ‖g‖Ḣq , for each g ∈ Ḣq .

2 Correlations decay at the asymptotic rate %(t) for g ∈ Ḣq if
∣∣〈f t , g

〉∣∣ = O (%) , for each g ∈ Ḣq .

That is,

lim sup
t→∞

|〈f t , g〉|
%(t)

= Cg ∈ [0,∞).

3 Correlations decay at the translational rate λ(t) for g ∈ Ḣq if for each
g ∈ Ḣq there exists τg ∈ R such that for all t > τg we have

∣∣〈f t , g
〉∣∣ ≤ λ(t− τg) ‖g‖Ḣq .

To compare the different notions of decay rate, we construct a test function g
where the correlation |〈f t , g〉| decays slowly.
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Different notions: sketch

1)# htt

2) ¥7,7. anti

3)
Htt t)

1 The uniform rate must work for all correlations;

2 The asymptoptic rate can be fit for each correlation, lifting the tail by
multiplication by a constant;

3 The translational rate lifts the tail by translating.
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q-recurrence

Denote PIf
t as the projection of f t onto the Fourier modes k ∈ I. Then

∥∥PIf
t
∥∥2
Ḣ−q =

∑

k∈I

k−2q |f̂ t(k)|2

measures the amount of mix-norm supported on I.

Definition

We say f t is q-recurrent if there exists a finite set I ⊂ Zd such that

lim sup
t→∞

‖PIf
t‖Ḣ−q

‖f t‖Ḣ−q

> 0.

Functions that are not q-recurrent will be called q-transient.

As time progresses the Fourier energy could move off of I, but for q-recurrent
functions a proportion of the Fourier energy always returns to populate the spatial
scales in I.
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Example: baker’s map and q-transience

The baker’s map B : T2 → T2:

For the y-independent initial function f0(x, y) = 2 cos (2πx) , applying the
baker’s map gives fn = f0 ◦B−n = 2 cos (2π 2nx).

Given any finite set I ∈ Zd, it is clear that, as n increases, the Fourier energy will
move off of I and never return. Therefore fn is q-transient ∀q > 0.
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Example: baker’s map and q-transience (cont’d)

This is a one dimensional action on Fourier coefficients fnk = fnk1,0
via an

infinite dimensional matrix Ak` as

fn+1
k =

∑

`

Ak` f
n
`

where

1

1

1

1
. . .







1

1

2

2

3

3

4

4

. . .

5

6

7

8
...

(Ak`) =

is populated by 1’s along a subdiagonal of slope −2 and 0’s everywhere else. 10 / 23



Example: baker-like action and q-recurrence

Consider the action on the Fourier coefficients of fn(x) via the infinite
dimensional matrix

a

b

1

1

1
. . .







1

1

2

2

3

3

4

4

. . .

5

6

7

8
...

(Ãk`) =

where a, b > 0 are constants such that a2 + b2 = 1.
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Example: baker-like action and q-recurrence (cont’d)

Nonzero coefficients of fn:

k = 1 2 3 4 5 6 7 8 . . .

f0k 1

f1k a b

f2k a2 ab b

f3k a3 a2b ab b

...

The energy starts concentrated on the k = 1 mode and subsequently splits
between modes k = 1, 2 so that L2 norm is preserved. After that, the k = 1 mode
continues to donate a proportion b of its energy to k = 2 and the energy on k = 2
is transported down the spectrum at the same rate as the baker’s map (k = 2n).

From direct computation, we find fn is q-transient for q ≤ log2(1/a) and
q-recurrent for q > log2(1/a).
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Sine flow example

The sine flow is a two-dimensional time-periodic flow with a full period
consisting of the shear flow

u1(t, x) =
√

2 (0 , sin(2πx+ ψ1)), 0 ≤ t < 1/2,

followed by

u2(t, y) =
√

2 (sin(2πy + ψ2) , 0), 1/2 ≤ t < 1,

with (x, y) ∈ [0, 1]2 and periodic spatial boundary conditions. Here ψ1 and ψ2 are
random phases, uniformly distributed in [0, 2π], chosen independently at every
period.
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Sine flow example (cont’d)

Advection-diffusion equation with u given by the random sine flow, the rate of
decay of the mix-norms is independent of q. The the initial condition
is f0(x) =

√
2 cos(2πx), and the diffusivity is D = 10−5.

14 / 23



Results: independence on q

In general, if f t is q-recurrent then the decay rate of the mix-norm is independent
of q in the following sense:

Theorem

If f t is q-recurrent, then it is also q′-recurrent for any q′ > q. Moreover, we have

lim sup
t→∞

‖f t‖Ḣ−q′

‖f t‖Ḣ−q

> 0 .

Then together with the trivial estimate

∥∥f t
∥∥
Ḣ−q′ ≤

∥∥f t
∥∥
Ḣ−q

we conclude that ‖f t‖Ḣ−q′ is Big-O but not Little-O of ‖f t‖Ḣ−q .
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Results: constructing a test function 1

q-recurrence is the property that allows us to construct a test function achieving
the decay rate of the mix-norm:

Theorem

Let f t be a mean-zero function in L2(Td) with ‖f t‖Ḣ−q > 0 for all t > 0.

Then f t is q-recurrent if and only if there is a function g ∈ Ḣq such that

lim sup
t→∞

|〈f t , g〉|
‖f t‖Ḣ−q

> 0.

The proof is by construction (see paper).
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Results: constructing a test function 2

In general, we may find a correlation function with decay rate arbitrarily close to
the mix-norm:

Theorem

Let f t be a mean-zero function in L2(Td) with ‖f t‖Ḣ−q > 0 for all t > 0. For
any positive function h(t) such that h(t) = o (‖f t‖Ḣ−q ), there is a function

g ∈ Ḣq such that

lim sup
t→∞

|〈f t , g〉|
h(t)

> 0.
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Results: Answering the original question

Having constructed these slowly decaying correlations, we can prove the following
corollary:

Corollary

1 For any asymptotic rate %, we have

lim sup
t→∞

%(t)

‖f t‖H−q

> 0 .

2 For any translational rate λ satisfying lim supt→∞ λ(t− τ)/λ(t) finite for
any τ ∈ R, we have

lim sup
t→∞

λ(t)

‖f t‖H−q

> 0 .

We conclude the mix-norm is asymptotically the smallest uniform, asymptotic,
and translational rate of decay of correlations.
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Conclusion

These results answer the question we posed at the outset:

Question

How is the rate of decay of a mix-norm related to the rate of decay of
correlations?

Answer

• For q-recurrent f t, there is a test function g for which we achieve the decay
rate of the mix-norm.

• For q-transient f t, we can get arbitrarily close.
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G. Mathew, I. Mezić, and L. Petzold. A multiscale measure for mixing and its
applications. In Proc. Conf. on Decision and Control, Maui, HI. IEEE,
December 2003.
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