Transport and Mixing in Complex and Turbulent Flows

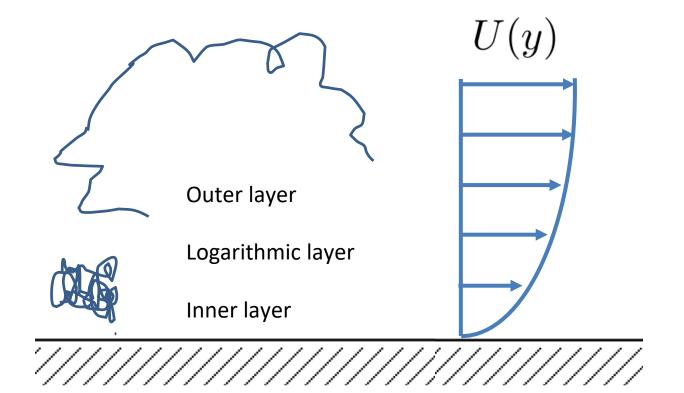
Institute for Pure & Applied Mathematics

January 11 - 14, 2021

Extension of QSQH theory to all velocity components

Sergei Chernyshenko

Imperial College London The context: near-wall turbulence, large and small structures, modulation, Re-effects, ...



Old recipe that survived a century: near the wall in wall units flow statistics are independent of Re, dp/dx, ...

$$u_{\tau} = \sqrt{\bar{\tau}}/\rho,$$

$$u^{+} = u/u_{\tau}, \ t^{+} = \frac{tu_{\tau}^{2}}{\nu}, \ x^{+} = \frac{xu_{\tau}}{\nu}, \ y^{+} = \dots, \ z^{+} = \dots$$

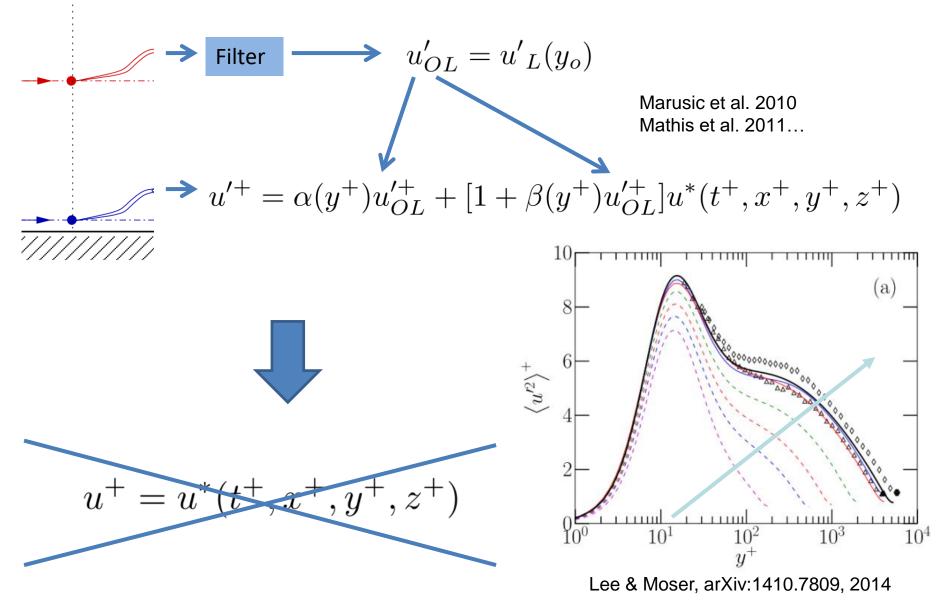
$$(u^{+} = u^{+}(t^{+}, x^{+}, y^{+}, z^{+}, Re))$$

$$u^{+} = u^{+}(t^{+}, x^{+}, y^{+}, z^{+}, Re)$$

$$u^{+} = u^{*}(t^{+}, x^{+}, y^{+}, z^{+})$$

$$(lassic universality)''$$

Large-scale influence violates classic universality



Main idea: quasi-steady-quasi-homogeneous (QSQH) universality

$$u = \sqrt{\frac{\overline{\tau}}{\rho}} u^* \neq \overline{u}_{\tau} u^* \left(\frac{t \overline{u}_{\tau}^2}{\nu}, \frac{x \overline{u}_{\tau}}{\nu}, \frac{y \overline{u}_{\tau}}{\nu}, \frac{z \overline{u}_{\tau}}{\nu} \right)$$

$$\tau = \overline{\tau} + \tau' \quad \Rightarrow \quad \tau = \tau_L + \tau'_S$$

$$u = u_{\tau_L} (t, x, z) \widetilde{u} \left(\frac{t u_{\tau_L}^2}{\nu}, \frac{x u_{\tau_L}}{\nu}, \frac{y u_{\tau_L}}{\nu}, \frac{z u_{\tau_L}}{\nu} \right)$$

Main idea: quasi-steady-quasi-homogeneous (QSQH) universality

$$u = \sqrt{\frac{\overline{\tau}}{\rho}} u^* \neq \overline{u}_{\tau} u^* \left(\frac{t \overline{u}_{\tau}^2}{\nu}, \frac{x \overline{u}_{\tau}}{\nu}, \frac{y \overline{u}_{\tau}}{\nu}, \frac{z \overline{u}_{\tau}}{\nu} \right)$$

$$\tau = \overline{\tau} + \tau' \quad \Rightarrow \quad \tau = \tau_L + \tau'_S$$

$$u = u_{\tau_L}(t, x, z) \widetilde{u} \left(\frac{t u_{\tau_L}^2}{\nu}, \frac{x u_{\tau_L}}{\nu}, \frac{y u_{\tau_L}}{\nu}, \frac{z u_{\tau_L}}{\nu} \right)$$

Chernyshenko, Marusic, Mathis 2012 arXiv:1203.3714

UCLA	Mathematics of Turbulence Program	IPAM
Workshop IV: Turbulence in Engineering Applications		19 November 2014

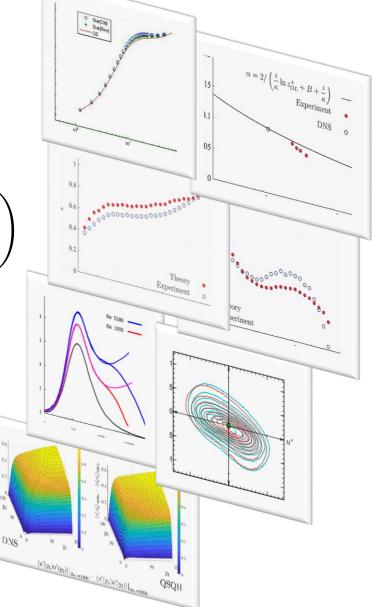
Relationship between large-scale structures and near-wall turbulence: theory and implications

Sergei Chernyshenko

Imperial College London

Acknowledgements:

Michael Leschziner, Emile Touber, Chi Zhang, Lionel Agostini, Ivan Marusic, Romain Mathis, Ravish Karve



Rigour is achieved by specifying filter properties instead of specifying the filter

QSQH theory describes a statistical ensemble

$$u = u_{\tau_L}(t, x, z) \tilde{u} \left(\frac{t u_{\tau_L}^2}{\nu}, \frac{x u_{\tau_L}}{\nu}, \frac{y u_{\tau_L}}{\nu}, \frac{z u_{\tau_L}}{\nu} \right)$$

with $u_{\tau_L}(t, x, z)$ and $\tilde{u}(\theta, \xi, \eta, \zeta)$ statistically independent,

averaging $\langle f \rangle$ and large-scale filtering Lf defined for any f(t, x, y, z),

 u_{τ_L} being large scale: $u_{\tau_L} = Lg$ for some g,

and L having the properties:

- Linearity: 1.
- Invariance of averages: $L\langle f \rangle = \langle f \rangle$ 2.
- 3. Projection property:
- Commuting with averaging: $\langle Lf \rangle = L \langle f \rangle$ 4.
- Scale-separation property: 5. $Lf(t, x, y, z, Lg_1, \dots, Lg_n) = \langle f(t, x, y, z, \xi_1, \dots, \xi_n) \rangle$ $=Lg_n$

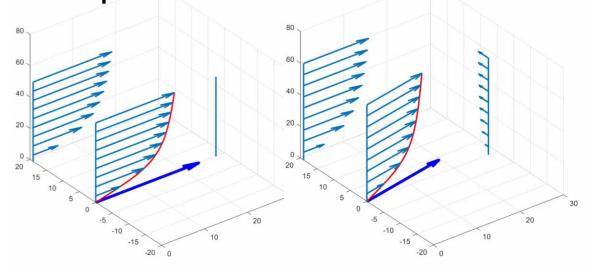
LLf = Lf

 $\mathcal{L}(af + bg) = a\mathcal{L}f + b\mathcal{L}g$

Plus 2 physical assumptions: A) there is such L that real flows satisfy the above at least approximately, and B): statistics of $\tilde{u}(\theta, \xi, \eta, \zeta)$ are independent of outer parameters.

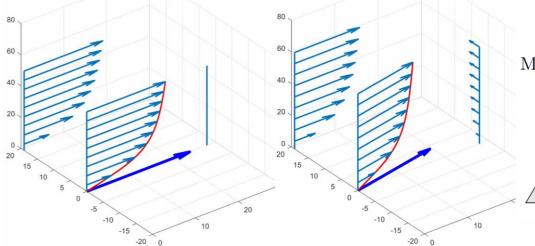
$$\left|\xi_n\right\rangle_{\xi_1 = Lg_1, \dots, \xi_n}$$

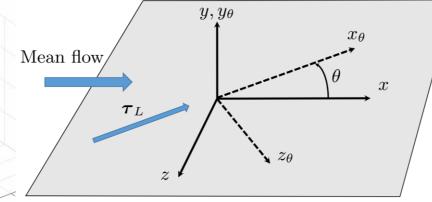
Extension of the QSQH theory to all velocity components



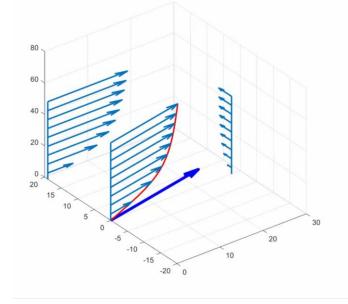
$$u = u_{\tau_L}(t, x, z)\tilde{u}\left(\frac{tu_{\tau_L}^2}{\nu}, \frac{xu_{\tau_L}}{\nu}, \frac{yu_{\tau_L}}{\nu}, \frac{zu_{\tau_L}}{\nu}\right)$$

Extension of the QSQH theory to all velocity components





$$\begin{split} u_{\theta}(t, x_{\theta}, y_{\theta}, z_{\theta}) &= u_{\tau_{L}} \tilde{u}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z}) \\ v_{\theta}(t, x_{\theta}, y_{\theta}, z_{\theta}) &= u_{\tau_{L}} \tilde{v}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z}) \\ w_{\theta}(t, x_{\theta}, y_{\theta}, z_{\theta}) &= u_{\tau_{L}} \tilde{w}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z}) \\ \tilde{t} &= t u_{\tau_{L}}^{2}, \quad \tilde{x} = x_{\theta} u_{\tau_{L}}, \quad \tilde{y} = y_{\theta} u_{\tau_{L}}, \quad \tilde{z} = z_{\theta} u_{\tau_{L}} \\ P[u_{\tau_{L}}, \theta, \tilde{u}, \tilde{v}, \tilde{w}, Re] &= P_{o}[u_{\tau_{L}}, \theta, Re] P_{u}[\tilde{u}, \tilde{v}, \tilde{w}] \end{split}$$



A wish list, and the benefits of workshops

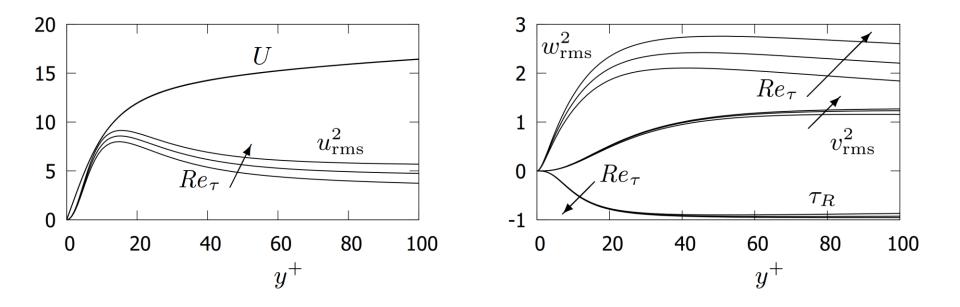
VIRTUAL POSTER SESSION FOR IPAM'S WORSHOP, TRANSPORT AND MIXING IN COMPLEX AND TURBULENT FLOWS

<u>"Far-field boundary conditions for simulating a 'patch' of wall-bounded turbulent flow,"</u>

presented by Sean P. Carney (University of California, Los Angeles)

$$\begin{split} u_{\theta}(t, x_{\theta}, y_{\theta}, z_{\theta}) &= u_{\tau_{I}} \underbrace{\tilde{u}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z})}_{\tilde{v}(\tilde{t}, x_{\theta}, y_{\theta}, z_{\theta}) &= u_{\tau_{I}} \underbrace{\tilde{v}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z})}_{\tilde{v}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z})}_{\tilde{w}(\tilde{t}, x_{\theta}, y_{\theta}, z_{\theta}) &= u_{\tau_{I}} \underbrace{\tilde{v}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z})}_{\tilde{w}(\tilde{t}, \tilde{x}, \tilde{y}, \tilde{z})}_{\tilde{t} &= tu_{\tau_{L}}^{2}, \quad \tilde{x} = x_{\theta}u_{\tau_{L}}, \quad \tilde{y} = y_{\theta}u_{\tau_{L}}, \quad \tilde{z} = z_{\theta}u_{\tau_{I}}}_{P[u_{\tau_{L}}, \theta, \tilde{u}, \tilde{v}, \tilde{w}, Re]} = P_{o}[u_{\tau_{L}}, \theta, Re]P_{u}[\tilde{u}, \tilde{v}, \tilde{w}]$$

Why only streamwise and spanwise rms?



DNS data for $Re_{\tau} = 950$, 2000 and 5200 showing that $u_{\rm rms}^2$ and $w_{\rm rms}^2$ vary with Re_{τ} significantly more than $U, v_{\rm rms}^2$ and $\tau_R = \langle u'v' \rangle$.

At Re attainable the amplitude of the fluctuations of large-scale motions is very small

(Zhang & Chernyshenko 2016), $\left\langle u_{\tau_L}^{\prime 2} \right\rangle = 0.004364$ for $Re_{\tau} = 1000$

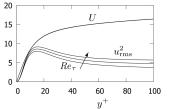
$$U(y) = \tilde{U}(y) + \frac{1}{2} \left\langle u_{\tau_L}^{\prime 2} \right\rangle \frac{d}{dy} y^2 \frac{d\tilde{U}}{dy} - \frac{1}{2} \left\langle \theta^2 \right\rangle \tilde{U}(y) + \dots$$

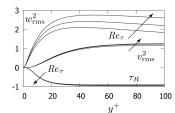
$$u_{\rm rms}^2(y) = \left\langle u_{\tau_L}^{\prime 2} \right\rangle \left(\frac{dy\tilde{U}}{dy} \right)^2 + \tilde{u}_{\rm rms}^2(y) + \frac{\left\langle u_{\tau_L}^{\prime 2} \right\rangle}{2} \frac{d^2 y^2 \tilde{u}_{\rm rms}^2}{dy^2} + \left\langle \theta^2 \right\rangle \left(\tilde{w}_{\rm rms}^2 - \tilde{u}_{\rm rms}^2 \right) + \dots$$

$$v_{\rm rms}^2(y) = \tilde{v}_{\rm rms}^2(y) + \frac{1}{2} \left\langle u_{\tau_L}^{\prime 2} \right\rangle \frac{d^2 y^2 \tilde{v}_{\rm rms}^2}{dy^2} + \dots,$$

$$w_{\rm rms}^2(y) = \left\langle \theta^2 \right\rangle \tilde{U}^2 + \tilde{w}_{\rm rms}^2(y) + \frac{1}{2} \left\langle u_{\tau_L}^{\prime 2} \right\rangle \frac{d^2 y^2 \tilde{w}_{\rm rms}^2}{dy^2} + \left\langle \theta^2 \right\rangle \left(\tilde{u}_{\rm rms}^2 - \tilde{w}_{\rm rms}^2 \right) + .$$

A few terms are large





$$\Delta U(y) = \frac{1}{2} \Delta \left\langle u_{\tau_L}^{\prime 2} \right\rangle \frac{d}{dy} y^2 \frac{d\tilde{U}}{dy} - \frac{1}{2} \Delta \left\langle \theta^2 \right\rangle \tilde{U}(y) + \dots,$$

$$\Delta u_{\rm rms}^2 = \Delta \langle u_{\tau_L}^{\prime 2} \rangle \left(\frac{dy \tilde{U}}{dy} \right)^2 + \frac{1}{2} \Delta \langle u_{\tau_L}^{\prime 2} \rangle \frac{d^2 y^2 \tilde{u}_{\rm rms}^2}{dy^2} + \Delta \langle \theta^2 \rangle \left(\tilde{w}_{\rm rms}^2 - \tilde{u}_{\rm rms}^2 \right) + \dots,$$
$$\Delta v_{\rm rms}^2 = \frac{\Delta \langle u_{\tau_L}^{\prime 2} \rangle}{2} \frac{d^2 y^2 \tilde{v}_{\rm rms}^2}{dy^2} + \dots,$$

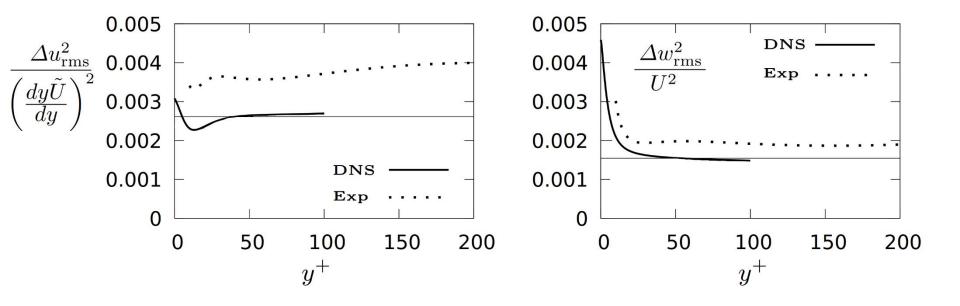
$$\Delta w_{\rm rms}^2 = \frac{\Delta \langle u_{\tau_L}^{\prime 2} \rangle}{2} \frac{d^2 y^2 \tilde{w}_{\rm rms}^2}{dy^2} + \Delta \langle \theta^2 \rangle \left(\underline{\tilde{U}^2} + \tilde{u}_{\rm rms}^2 - \tilde{w}_{\rm rms}^2 \right) + \dots,$$

$$\Delta \langle u'v'
angle = rac{\Delta \langle u_{ au_L}^{\prime 2}
angle}{2} rac{d^2 y^2 ilde{ au}_R}{dy^2} - rac{1}{2} \left\langle heta^2
ight
angle ilde{ au}_R + \dots$$

 $y^+ = 40, \ (dy\tilde{U}/dy)^2 \approx 285, \ u_{\rm rms}^2 \approx 6, \quad \tilde{U}^2 \approx 203, \ w_{\rm rms}^2 \approx 2.4$

$$\Delta u_{\rm rms}^2 \approx \Delta \left\langle u_{\tau_L}^{\prime 2} \right\rangle \left(\frac{dy \tilde{U}}{dy} \right)^2, \ \Delta w_{\rm rms}^2 \approx \Delta \left\langle \theta^2 \right\rangle \tilde{U}^2, \ \Delta v_{\rm rms}^2 \approx \Delta \left\langle u^\prime v^\prime \right\rangle \approx 0.$$

Comparisons are satisfactory



The DNS data are for a plane channel with $Re_{\tau} = 2000$ and 5200 (Lee & Moser (2015)) The experimental data are for a zero pressure gradient boundary layer with $Re_{\tau} = 3000$ and 10500 (Baidya *et al.* 2012)

QSQH resolved a paradox: how can dp/dx change the kappa but not the log?

As $Re \to \infty$, dU/dy depends only on u_{τ} and y. By Π theorem, $dU/dy = u_{\tau}/y$. Integration gives $U = \frac{u_{\tau}}{\varkappa} \log y + Bu_{\tau}$

with 'log' and with constant \varkappa .

$$U(y) = \left\langle u_{\tau_L} \widetilde{U} \left(y u_{\tau_L} \right) \right\rangle,$$
$$\widetilde{U}(z) = \frac{1}{2} \left\langle u_{\tau_L} \widetilde{U} \left(y u_{\tau_L} \right) \right\rangle$$

$$\tilde{U}(\tilde{y}) = \frac{1}{\varkappa} \log \tilde{y} + B$$

$$U^{+}(y^{+}) = \frac{\left\langle u_{\tau_{L}}^{+} \cos \theta \right\rangle}{\tilde{\kappa}} \log y^{+} + \left\langle \left(\frac{1}{\tilde{\kappa}} \log u_{\tau_{L}}^{+} + \tilde{B} \right) u_{\tau_{L}}^{+} \cos \theta \right\rangle$$

$$\frac{\Delta\kappa}{\kappa} \approx -\frac{\Delta u_{\rm rms}^2}{2\left(\frac{dy\tilde{U}}{dy}\right)^2} + \frac{\Delta w_{\rm rms}^2}{2\tilde{U}^2}$$

$$\frac{\Delta B}{B} \approx -\left(1 - \frac{1}{B}\right) \frac{\Delta u_{\rm rms}^2}{2\left(\frac{dy\tilde{U}}{dy}\right)^2} - \frac{\Delta w_{\rm rms}^2}{2\tilde{U}^2}.$$

QSQH resolved a paradox: how can dp/dx change the kappa but not the log?

As $Re \to \infty$, dU/dy depends only on u_{τ} and y. By Π theorem, $dU/dy = u_{\tau}/y$. Integration gives $U = \frac{u_{\tau}}{\log u} + R$

$$U = \frac{a_{\tau}}{\varkappa} \log y + B$$

with 'log' and with constant \varkappa .

$$U(y) = \left\langle u_{\tau_L} \widetilde{U} \left(y u_{\tau_L} \right) \right\rangle,$$

$$\tilde{U}(\tilde{y}) = \frac{1}{\varkappa} \log \tilde{y} + B$$

$$U^{+}(y^{+}) = \frac{\left\langle u_{\tau_{L}}^{+} \cos \theta \right\rangle}{\tilde{\kappa}} \log y^{+} + \left\langle \left(\frac{1}{\tilde{\kappa}} \log u_{\tau_{L}}^{+} + \tilde{B} \right) u_{\tau_{L}}^{+} \cos \theta \right\rangle$$

$$\frac{\Delta\kappa}{\kappa} \approx -\frac{\Delta u_{\rm rms}^2}{2\left(\frac{dy\tilde{U}}{dy}\right)^2} + \frac{\Delta w_{\rm rms}^2}{2\tilde{U}^2}$$

< 1%<current experimental uncertainty

$$\frac{\Delta B}{B} \approx -\left(1 - \frac{1}{B}\right) \frac{\Delta u_{\rm rms}^2}{2\left(\frac{dy\tilde{U}}{dy}\right)^2} - \frac{\Delta w_{\rm rms}^2}{2\tilde{U}^2}.$$

Summary

- QSQH theory:
 - Postulates that near-wall turbulence adjusts to the large-scale component of wall friction
 - Achieves rigour by postulating the required properties of large-scale filter instead of specifying the filter
 - Generates nontrivial results
 - Compares satisfactory in the viscous and buffer layer
- QSQH theory is extended to all velocity components
- Taking into account the fluctuations of the direction of large-scale motion makes a difference, in particular for spanwise velocity
- QSQH theory implies the dependence of the log-law constants on the large-scale motions while retaining the log law.
- For more see Sergei Chernyshenko, "Extension of QSQH theory of scale interaction in near-wall turbulence to all velocity components", <u>arXiv:2002.05585</u> [physics.flu-dyn]