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Heat transport efficiency beyond
the so-called ‘ultimate’ regime?

Basile Gallet, B. Flesselles, V. Bouillaut, S. Lepot, B. Miquel,
S. Aumaitre, SPEC, CEA Saclay, FRANCE.



Rayleigh-Bénard convection

Enhanced heat transport:
C' D C/)
K - P = f(AT)?

To + AT

>

Dimensionless parameters:
PH
_ - Y X
Nu AT » Nu ~ Ra' Pr
B ag AT H?

%

Ra

Scaling-law that can be
y extrapolated to parameter
Pr = — values of natural flows.

Y



\ Two competlng predlctlons ,

=1 / 3 [Malkus (1954)]

+ Marginally stable BLs:
0 independent of H.
(2) » P independent of H.

To + AT all existing

____ experimental RB datal |
ey =1/2 [Spiegel, Kraichnan (1962)]

Heat flux should be independertof
moleculard|foS| ities K and V.
N7y ~ Ra1/2 Ppl/2 mixing-length or

« Ultimate » regime



Radiatively driven
convection in the lab [j

water + dye

sapphire plate  —
borosilicate plate —

water-cooled
IR filtration stage

water-cooled >
thermal screen

nigh-throughput
spotlight

+ uniform effective cooling associated
with secular heating.



Tuning the absorption length

P
* Internal heat source: Q(z) = ze_z/e\ tuned through dye
concentration
* [wo limiting cases
¢ < 0: similar to RB ¢ > 0: bypassing the BL.
H H
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600' """"""" 1 00 \\\1
Q(2)/Q(z = 0) Q(2)/Q(z = 0)
we expect ¥ = 1/3. Heat flux governed by bulk

turbulence?



Nusselt vs Rayleigh
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Nusselt vs
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Nusselt vs Rayleigh
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‘Ultimate’ in what sense?

e QOur setup leads to Nu ~ vV Ra: scaling relation between P and AT’
does not involve the tiny molecular diffusivities kK and V.

m) ‘fully turbulent’ flow (good news for a
model of geo- and astrophysical flows!).

« Nu < v Ra is arigorous upper bound for RB convection
[Howard, Busse, Doering & Constantin, etc]. Does the bound
hold for our alternate setup?

=) What is the maximum heat transport
efficiency Nu for a given Ra?



Boussinesq equations

ou+ (u-V)u=—-Vp+Pr(Vu+Te,) V-u=0
OT +u-VT = VT +RapS(z)
agPH? \S e */! ( —1/€>
p— <) = ]. — €
Rap pCK?v () 4
Pr=v/k

+ insulating, either stress-free or no-slip boundaries at z=0;1.
Emergent Rayleigh number based on rms temperature:

Ra = (T2)"/ Nu = Rap/Ra

Rk: The results to come also hold for the following definitions:

/ -
Ramax = \,-"ma.xz{Tg(z)} Nipax = Rap/Ramax

(T being mean-zero)



A simple upper bound

Ou+ (u-Viu=—-Vp+ Pr(V?u+ Te,)
O,T +u-VT =V*T + RapS(z)

C

Multiply by z, average over space and time.
Keeping only dominant terms at large Ra, for brevity:

~ 2\1/2 <w2>1/2
Rap (25(z)) ~ (wT) < (w”) ""Ra wip Nu <

Bound rms vertical velocity according to:

(w?) < ((0:w)?) _ ((Vu)?) _ {(wT) _Ra Ra 1/2 b <w >1/2 Ra

T T T 7'('2 — 72
Finally: R >
A
Nu < 2<S>2—2 Ra | for £ <1
x
e (2 T N e,

much greater than Ra



Beyond the ‘ultimate’ heat transport efficiency?

For convection driven by internal heat sources and sinks:

Nu < Ra

2
2

* |s this the true scaling behavior of the system? Or is it
just a limitation of the bounding procedure?

e |s it sharp” Can we exhibit solutions that display this
scaling behavior?

e |f so, what does the flow look like?



A simple example

Consider the simpler source/sink distribution S(z) = v/2sin(27z)
with stress-free boundary conditions.

Look tor 2D steady solutions using a streamfunction:

J (4, Ay) = Pr [A%) + 9, T Chini & Cox 2009)]

J(, T)=AT + Ra, S(z) 'Sondak, Smith, Waleffe 2015]
'\Wen et al., 2020]

Introduce asymptotic expansion for strong heating Rap > 1
= Ra, V20 + 107 + Rap 20y + ...

T /2 - —1/2
T =Ra, V1o + 1, + Ra, Y21y + ...




A simple example

To highest order in Rap
J (Yo, Ag) = 0, J (o, Ton) = S(z) = V2sin(272)

Solution of the form:

o = U, sin(mwa) sin(mz) L 5
+0 T ( ) sin( } with T'm — 2'\/5/71‘—%1.5"771

Ty = T, cos(mx) sin(mz)

Solvability condition at next order (or simply power integral) yields:
'17()771 — ::2—|/47T_E)/2 Trn — _:27/47[.1/2

On this asymptotic branch of solutions,
Ra = <T2>1/2 ~ Ra}o/Z — v/NuRa ﬂ Nu ~ Ra




Stable and realized in 2D!

Temperature field from 2D DNS using spectral solver Coral [B. Miguel]

Insulatng B.C.

T =10 B.C.
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A challenge is to prove the stability of this asymptotic solution up to

arbitrary Rayleigh number in 2D... | |
[IMiquel, Bouillaut, Lepot, Gallet, PRF, 2020]



Heat transport beyond the ‘ultimate’ regime

Nu
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Focusing on turbulent flows

This is all fine, but Nu ~ Ra is associated with laminar flows, whereas
the 3D solutions and laboratory tflows are strongly turbulent.

Can we compute an upper bound that focuses on turbulent flows
instead?

®) Define turbulent: ‘zeroth law of turbulence’

v(|Vul?) H

t. # 0
<u2>3/2 » const. #

Dissipation coefficient C =

Re —» o©



Back to the bound

Combining the definition of C with the energy power integral.

<w2>1/2 < \/PrCRa

<w2>1/2
(25)

Substitution into Nu <

yields:

Pr Ra
s
u s ;

On a turbulent branch of solutions, characterized by an
asymptotically constant dissipation coefficient C, the heat transport
efficiency cannot exceed the ‘ultimate’ scaling-law.



Summary

Numerically and experimentally, we measure C ~ 2, independent of 2
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Conclusions

Our setup leads to Nu ~ v Ra in the laboratory and in 3D DNS.

Rigorous upper bound Nu < Ra, over all solutions.

heat transport beyond the ultimate efficiency is achieved by
analytical laminar solutions, realized in 2D stress-free DNS.

The better upper bound Nu < vV Ra holds for any turbulent
branch of solutions.

(any branch of solutions with an asymptotically constant
dissipation coefficient).

Any scaling exponent greater than 1/2 is necessarily associated with
non-turbulent tlows.



