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Plankton Blooms as reactive fronts
I Plankton blooms can propagate much more rapidly than a passive

tracer in the same environment.
I Often in the form of localized, strongly inhomogeneous structures

associated with reactive fronts.

Phytoplankton bloom off the coast of Madagascar, speed: 10-20km/day
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Plankton blooms as reactive fronts

I Classic example of reactive front: the Fisher-Kolmogorov or FK front
arising from reaction+diffusion:

∂tθ = κ∆θ +
1
τ
θ(1− θ). (FK)

I Dubois (1975) employed (FK) in the North Sea under quiescent
conditions.

I Srokosz et al. (2004) extended (FK) to the Madagascar case,
adopting a diffusive description with

a mean flow U,
the Okubo eddy diffusivity K
the phytoplankton growth rate τ−1.

I However the velocity field has a non-trivial structure which affects the
speed, shape and direction of propagation.
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FK fronts in shear and cellular flows

Reaction-diffusion-advection with Fisher-Kolmogorov nonlinearity

∂tθ(x , t) + u(x) · ∇θ(x , t) = Pe−1∆θ(x , t) + Da θ(1− θ), (FK)

where ∇ · u = 0 and

Pe = V `/κ and Da = `/V τ

in domain

Ω = R× [0, π] with u · n = ∇θ · n = 0 on B

and

θ(x , y , 0) = 1x≤0, θ → 1 as x → −∞, θ → 0 as x →∞.
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FK fronts in shear and cellular flows

For t � 1, a front is established which propagates eastward as long as
cFK > 0 and is stationary if cFK = 0.

I When u = 0, the front has the form θ(x , y , t) = Θ(x − c0t) where

c0 = 2
√

Da/Pe = 2
√
κ/τ.

For a constant flow u = (U, 0), cFK = c0 +U; cFK = 0 when c0 = −U.
I For a shear flow u = (u(y), 0), θ(x , y , t) = Θ(x − cFKt, y)

I When u is 2π-periodic, the front is pulsating:

θ(x , y , t) = Θ(x − cFKt, x , y),

where Θ is 2π-periodic in the second variable. Berestycki & Hamel (2002)
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FK fronts in shear and cellular flows
Focus on u = (u(y), 0) and u = ∇⊥ψ with

ψ = −Uy − (sin(x) + A sin(2x)) sin(y).
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Da = 4× 10−2 Da = 4× 10−1 Da = 4
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FK front speed
I cFK can be determined for arbitrary Da, Pe from eval problem derived

by looking for solutions of the form exp(−g(x/t)t)φ for linearised
(FK):

∂tθ(x , t) + u(x) · ∇θ(x , t) = Pe−1∆θ(x , t) + Da θ.

Gärtner and Freidlin (1979)

Two homogenization regimes (Pe� 1):
I weak reactions Da� Pe−1:

cFK ∼ 2
√
κeffDa, κeff : effective diffusivity

obtained from a linear cell problem associated with the
advection-diffusion equation e.g. Fannjiang & Papanicolaou (1994), Constantin et al.

(1999), Novikov & Rhyzhik (2007), Rhyzhik & Zlatos (2007), Zlatos (2010); Soward (1987), Childress &

Soward (1989)

I strong reactions Da� Pe−1: cFK obtained from a nonlinear cell
problem associated with a Hamilton-Jacobi equation

Freidlin (1985), Majda & Souganidis (1994)

Also some results for other Da e.g. Novikov & Rhyzhik (2007), Tzella & Vanneste (2015)
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The G equation
A heuristic model often used to replace (FK) when PeDa� 1, describing
the front interface as the zero-level curve that satisfies

∂tθ + u · ∇θ = c0|∇θ|, Da/Pe = c20/4 = O(1). (G)
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Figure 1: G-equation model.

rigorously established in [28] and [4] independently. In homogenization theory, sT

is also the e↵ective Hamiltonian of the following cell problem:

sl|p + DG| + V (x) · (p + DG) = H̄(p) = sT (p). (1.3)

Here H̄(p), the e↵ective Hamiltonian, is the unique constant such that the above
equation admits periodic approximate viscosity solutions. As usual, the following
inf-max formula holds:

sT (p) = inf
�2C1(Tn)

✓
max
Rn

sl|p + D�| + V (x) · (p + D�)

◆
. (1.4)

Here Tn = Rn/Zn is the n-dimensional flat torus. Now scale V to AV for A > 0.
The cell problem becomes

sl|p + DG| + AV (x) · (p + DG) = sT (p, A).

It is clear that sT = sT (p, A) grows at most linearly as A ! +1. Also

sT (p, A) = lim
t!+1

�G(x, t)

t
locally uniformly for all x 2 Rn, (1.5)

where
�G(x, t) = sup

⇠
(�p · ⇠(t)) . (1.6)

Here ⇠ : [0, t] ! Rn runs through all Lipschitz continuous curves which satisfy
⇠(0) = x and |⇠̇ + AV (⇠)|  sl, a.e. in [0, t]. The goal of this paper is as follows.

(1) For any unit vector p 2 Rn, identify and study properties of the limit

lim
A!+1

sT (p, A)

A
.

2

Williams (1985), Kerstein et al. (1988)

I When u = 0, cG = cFK = c0.
I When u = (u(y), 0), cG = cFK Embid et al. (1995), Xin & Xu (2013)

I When u is 2π-periodic, cG =?cFK (some results for c0 → 0).
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Aim: determine effect of u on cFK and cG and their difference
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Sharp FK fronts
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In the limit of Pe Da� 1, Da/Pe = c20/4 = O(1), the solution to

∂tθ + u · ∇θ = Pe−1 ∆θ + Da θ

can be approximated using a WKB approximation:

θ(x , t) ∼ e−Pe I (x ,t,c0).

At leading order,

∂tI + |∇I |2 + u(x) · ∇I + c20/4 = 0.

The front interface is given by

I (x , t, c0) = 0.

Alexandra Tzella Sharp fronts in periodic flows 9 / 17



Variational formulation for cFK

The solution to the Hamilton–Jacobi equation is given by

I (x ,T , c0) =
1
4

(
inf
X (·)

∫ T

0
|Ẋ (t)− u(X (t))|2 dt − c20T

)
,

subject to X (0) = (0, ·), X (T ) = x .

For T � 1, the front propagates at the constant speed cFK obtained from

G (cFK, c0) := lim
T→∞

1
T

I (x ,T , c0) = 0, cFK =
x

T
.

e.g. Piatnitski (1998)

Note: G (cFK, c0) is the Legendre dual of H , the effective Hamiltonian
satisfying the homogenised Hamilton-Jacobi equation

∂tÎ + H (∇Î ) = 0

.
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Taking T = nτ with τ = 2π/cFK (flow is periodic),

G (cFK, c0) =
1
4

(
1
τ

inf
X (·)

∫ τ

0
|Ẋ (t)− u(X (t))|2 dt − c20

)
,

subject to X (τ) = X (0) + (2π, 0).
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Comparison between FK and G speeds
Taking T = nτ with n� 1, we obtain that

cG =
2π
τG
, where τG = inf

X (·)
τ, subject to X (τ) = X (0) + (2π, 0)

and |Ẋ (t)− u(X (t))|2 = c20 for t ∈ [0, τ ].

The FK speed may be written as

cFK =
2π
τFK

, where τFK = inf
X (·)

τ subject to X (τ) = X (0) + (2π, 0)

and
1
τ

∫ τ

0
|Ẋ (t)− u(X (t))|2dt = c20 .

I cFK ≥ cG.
I cG > 0 implies c0 > −minxmaxyu(x , y).

I For shear flows cFK = cG = u+ + c0 where u+ = maxy u(y).
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Cellular flow (A = U = 0): Trajectories

Figure: Minimising periodic trajectories calculated numerically for c0 = 0.1, c0 = 1
and c0 = 10. They become closer to the straight line y = π/2 as c0 increases.

cFK cG range of validity

π/Wp(32c−2
0 ) −π/(2 log(πc0/8)) c0 � 1

c0(1 + 3c−2
0 /4 − 105c−4

0 /64) c0(1 + 3c−2
0 /4 − 109c−4

0 /64) c0 � 1
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Cellular flow (A > 0, U > 0): Trajectories

(a) A = 0.5, U = 0 (b) A = 1, U = 0

(c) A = 0, U = 0.1 (d) A = 0, U = 0.5

Figure: Effect of small-scale perturbations and a mean flow.
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Cellular flow (U < 0): Trajectories

(e) A = 0, U = −0.1
(minimum c0 = 0.11)

(f) A = 0, U = −0.5
(minimum c0 = 0.19)

Figure: Effect of an opposing mean flow.

There exist cFK > 0 for c0 + U ≤ 0 (i.e. when there is no cG > 0)!
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Cellular flows
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Summary

I We studied the effect of shear & cellular flows on the sharp fronts
arising in the (FK) model for strong reactions and small diffusivity and
on their heuristic approximation by the (G) equation.

I The front speed is determined by a single periodic trajectory
minimising the time of travel across a period under a constraint.

I The difference between the two models is due to the difference
between the pointwise and time-integrated constraint.

I For the class of cellular flows, the difference increases with decreasing
c0, remaining small for U ≥ 0. For U < 0 the difference can be
dramatic: the two fronts may propagate in very different directions!

Tzella & Vanneste (2014) Phys. Rev. E 90, 011001(R);
Tzella & Vanneste (2019) SIAM J. Appl. Math, 79(1), 131-152;

Alexandra Tzella Sharp fronts in periodic flows 16 / 17



Outlook

I Challenge: Prove that in all periodic flows, the minimising
trajectories inherit the spatial periodicity of the background flow.

I We have focused on the front speed. We can extend minimal-time
trajectory calculations to explain front shape.

I More complicated unbounded/time-dependent flows and/or reactions?

I Can 2D mesoscale flows+mixing diffusion+reaction really explain the
Madagascar bloom?

Thank you for your attention!
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The eigenvalue problem for the speed

We solve for g(c) via an eigenvalue equation

f (q)φ = Pe−1∆φ− (u1, u2) · ∇φ− 2Pe−1q∂xφ+ (u1q + Pe−1q2)φ,

where f is the Legendre transform of g

g(c) = sup
q>0

(qc − f (q)),

and φ(x , y) is 2π-periodic in x with ∂yφ = 0 at y = 0, 1.
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Cellular flow: Speed
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(a) A 6= 0, U = 0 (b) A = 0, U > 0
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(c) A = 0, U < 0
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Variational formulation for cG

The front reaches location x after a travel time

T (x , c0) = inf
X (·)

T with X (0) = (0, ·), X (T ) = x ,

subject to |Ẋ (t)− u(X (t))|2 = c20 for t ∈ [0,T ],

For T � 1, x is large and the front moves at a constant speed given by

cG = lim
x→∞

x

T ((x , y), c0)
,

where once more the dependence on y drops out.
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Numerical procedure

I The periodic trajectory X (t) is approximated by X d on time grid
{tl = l∆t}Nl=0 where tN = τ = 2π/c .

I The action functional is approximated by the sum over the discrete
Lagrangians

Gd({X l}Nl=0) =
1
τ

N−1∑

l=0

Ld(X l ,X l+1)− c20

where Ld(X l ,X l+1) ≈
∫ (l+1)∆t

l∆t
|Ẋ (t)− u(X (t))|2dt

and X l = X d(l∆t) is an approximation to X (tl).
I Midpoint rule for Ld(X l ,X l+1).
I Use MATLAB to find the optimal trajectories that minimise the value

of Gd({X l}Nl=0) and deduce c0
(a first guess obtained from asymptotics).
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Comparison with simulations: Cellular flow (U = 0) 4
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FIG. 4. (Color online). Front speed c as a function of Da
for di↵erent values of Pe. The large-Pe prediction (8) de-
rived from the numerical minimization of (9) (dashed lines) is
compared with the exact expression (3) estimated by solving
the eigenvalue problem (4) numerically (solid lines) and with
direct numerical simulations of (1) (symbols).

seek an instanton as a power series �⇤(�) = (�, y0) +
c�1(x1(�), y1(�)) + . . ., where x1, y1 are functions of pe-
riod 2⇡ that satisfy x1(0) = y1(0) = 0. Substituting into
(9), we find that at O(c�1),

G (c) =
c2

4
+

1

8⇡
inf

x1,y0,y1

Z 2⇡

0

(x02
1 +y02

1 +4y1 sin� sin y0)d�,

(14)
after some manipulations. Minimizing this integral leads
to the instanton

�⇤(�) =
⇣
�,
⇡

2

⌘
+ c�1(0,�2 sin�) + . . . , for c � 1,

(15)
in excellent agreement with our numerical solution (see
Fig. 2 for c = 5). Combining (14) and (15), yields G (c) =
c2/4 � 3/8 + O(c�2). We now use (8) to find that

c ⇠ 2
p
�

✓
1 +

3

16�
+ . . .

◆
, for � � 1, (16)

which corresponds to Da � Pe. The leading-order term
in (16) is the bare speed c0. As Fig. 3 shows, the second
term in the expansion is necessary for a good agreement
between asymptotic and full results.

Comparison with numerical results. We now compare
our predictions for c derived from (8)–(9) with values
obtained from (i) numerical evaluation of the principal
eigenvalue in (4), and (ii) direct numerical simulations of
(1) with r(✓) = ✓(1�✓). For (i) we use a standard second-
order discretization to approximate (4) and choose the
spatial resolution � to satisfy ⇡/� = 750. The resulting
matrix eigenvalue problem is solved for a range of values
of q using MATLAB. For (ii) we discretize (1) using a
fractional-step method with a Godunov splitting which
alternates between advection (using a first-order upwind
method with a minmod limiter – see [36] for details),

di↵usion (using an alternating direction implicit method)
and reaction (solved exactly). We choose the same spatial
resolution � as for (4). The computational domain is
made finite using artificial boundaries at x = ±N⇡, with
N = 5, so that boundary e↵ects are negligible. The front
is tracked for long times by modifying the computational
domain: when the solution at x = (N � 1)⇡ exceeds � =
10�6, we eliminate the nodes with �N⇡ 6 x 6 (�N+1)⇡
and add new nodes with N⇡ 6 x 6 (N + 1)⇡ where we
set ✓ = 0. We calculate the front speed using a linear
fit of the right endpoint of the front, x+

✏ (t) = max{x :
✓(x, t) = ✏} where ✏ = 10�3. Results are insensitive to
the exact values of ✏ and �.

The three set of numerical results are shown in Fig.
4. The speeds derived from the eigenvalue equation (4)
are in excellent agreement with the corresponding val-
ues obtained from the full numerical simulations of equa-
tion (1). With increasing values of Pe, the asymptotic
expression (8)–(9) becomes increasingly accurate, with
excellent agreement for Pe = 250, 500 and satisfactory
agreement for the moderate values Pe = 50, 125. As ex-
pected, (8)–(9) is valid for a broad range of values of
Da, restricted only by Da � (log Pe)�1. Note that the
use of both the eigenvalue equation and the full numer-
ical simulations is restricted: as Pe increases, the solu-
tions to (1) and (4) become progressively localized, with
O(1/

p
DaPe) lengthscales that are challenging to resolve

when Da, Pe � 1.

Conclusion.—We have derived a compact expression
for the front speed based on the minimization of the
large-deviation action (9) over periodic instantons. This
leads to the e�cient computation of the speed for a large
range of values of Da. For the particular case of cellular
flows, this expression provides the new closed-form re-
sults (12) and (16) valid for (log Pe)�1 ⌧ Da ⌧ Pe and
Da � Pe. In the first regime, the passage of the front
near the stagnation points at the cell corners is shown to
control the front speed; as a result this is almost insensi-
tive to the reaction rate and depends logarithmically on
the Péclet number. For Da = O(log Pe)�1 and smaller,
the front speed is not controlled by a single minimiz-
ing trajectory, and asymptotic solutions to the eigenvalue
problem (4) must be sought by other means; this will be
the subject of future work [23].

The authors thank P. H. Haynes, G. C. Papanicolaou
and A. Pocheau for helpful discussions. The work was
supported by EPSRC (Grant No. EP/I028072/1).

[1] T. Tel, A. de Moura, C. Grebogi, and G. Károlyi, Phys.
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All simulations obtained for c0 � 1 since c0 = 2
√

Da
Pe .

I Difficult to go for larger c0, due to sharp gradients in the
concentration.

I Range of validity bounded below. For U = 0 we need
Da� (log Pe)−1.
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