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Plankton Blooms as reactive fronts

» Plankton blooms can propagate much more rapidly than a passive
tracer in the same environment.

» Often in the form of localized, strongly inhomogeneous structures
associated with reactive fronts.

Phytoplankton bloom off the coast of Madagascar, speed: 10-20km/day
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Plankton blooms as reactive fronts

» Classic example of reactive front: the Fisher-Kolmogorov or FK front
arising from reaction+diffusion:

0:6 = kA + L 6(1 - 6). (FK)
T
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Plankton blooms as reactive fronts

» Classic example of reactive front: the Fisher-Kolmogorov or FK front
arising from reaction+diffusion:

0:0 = kA0 + = (1 — 0). (FK)
T

» Dubois (1975) employed (FK) in the North Sea under quiescent
conditions.
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» Classic example of reactive front: the Fisher-Kolmogorov or FK front
arising from reaction+diffusion:

0:0 = kA0 + = (1 — 0). (FK)
T

» Dubois (1975) employed (FK) in the North Sea under quiescent
conditions.

» Srokosz et al. (2004) extended (FK) to the Madagascar case,
adopting a diffusive description with

e a mean flow U,
o the Okubo eddy diffusivity K
o the phytoplankton growth rate 771,
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Plankton blooms as reactive fronts

» Classic example of reactive front: the Fisher-Kolmogorov or FK front
arising from reaction+diffusion:

0:0 = kA0 + = (1 — 0). (FK)
T

» Dubois (1975) employed (FK) in the North Sea under quiescent
conditions.

» Srokosz et al. (2004) extended (FK) to the Madagascar case,
adopting a diffusive description with

e a mean flow U,
o the Okubo eddy diffusivity K
o the phytoplankton growth rate 771,

> However the velocity field has a non-trivial structure which affects the
speed, shape and direction of propagation.
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FK fronts in shear and cellular flows
Reaction-diffusion-advection with Fisher-Kolmogorov nonlinearity
0:0(x,t) + u(x) - VO(x,t) = Pe 1 Af(x, t) + Dabd(1 — 6), (FK)
where V- u =0 and
Pe=V/{/k and Da=¢/VT
in domain
Q=Rx[0,7] with u-n=VO-n=0 on B
and

0(x,y,0) = ly<o, 0 —1 asx— —o0, #—0 asx— oo
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FK fronts in shear and cellular flows

For t > 1, a front is established which propagates eastward as long as
Gk > 0 and is stationary if ¢« = 0.

» When u = 0, the front has the form 6(x, y, t) = ©(x — cpt) where

co = 2y/Da/Pe = 2+/k/T.

For a constant flow u = (U, 0), cex = co + U; cex = 0 when ¢ = —U.
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FK fronts in shear and cellular flows

For t > 1, a front is established which propagates eastward as long as
Gk > 0 and is stationary if ¢« = 0.

» When u = 0, the front has the form 6(x, y, t) = ©(x — cpt) where

co = 2y/Da/Pe = 2+/k/T.

For a constant flow u = (U, 0), cex = co + U; cex = 0 when ¢ = —U.
» For a shear flow u = (u(y),0), 0(x,y, t) = O(x — cet,y)
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FK fronts in shear and cellular flows

For t > 1, a front is established which propagates eastward as long as
Gk > 0 and is stationary if ¢« = 0.

» When u = 0, the front has the form 6(x, y,t) = ©(x — cpt) where
co = 2v/Da/Pe = 2\/k/T.

For a constant flow u = (U, 0), cex = co + U; cex = 0 when ¢ = —U.
» For a shear flow u = (u(y),0), 0(x,y, t) = O(x — cet,y)
» When u is 27-periodic, the front is pulsating:

H(X,y, t) = @(X - CFKtaxvy)v

where © is 27-periodic in the second variable. Berestycki & Hamel (2002)
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FK fronts in shear and cellular flows
Focus on u = (u(y),0) and u = V+¢ with

1 = —Uy — (sin(x) 4+ Asin(2x)) sin(y).
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FK fronts in shear and cellular flows

Focus on u = (u(y),0) and u = V+¢ with
1) = —Uy — (sin(x) + Asin(2x)) sin(y).

Pe=250and A=U=0
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FK fronts in shear and cellular flows

Focus on u = (u(y),0) and u = V+¢ with

1 = —Uy — (sin(x) + Asin(2x)) sin(y).

Pe=250and A=U=0

.
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FK fronts in shear and cellular flows
Focus on u = (u(y),0) and u = V+¢ with
1) = —Uy — (sin(x) + Asin(2x)) sin(y).

Pe=250and A=U=0

.
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Bl *ofh

Da=4x10"2

Da=4x10"1 Da=4
Alexandra Tzella Sharp fronts in periodic flows

6/17



FK front speed

» ¢« can be determined for arbitrary Da, Pe from eval problem derived
by looking for solutions of the form exp(—g(x/t)t)¢ for linearised
(FK):

D:0(x, t) + u(x) - VO(x, t) = Pe L Af(x, t) + Dab.

Gértner and Freidlin (1979)
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FK front speed
» ¢« can be determined for arbitrary Da, Pe from eval problem derived
by looking for solutions of the form exp(—g(x/t)t)¢ for linearised
(FK):
D:0(x, t) + u(x) - VO(x, t) = Pe L Af(x, t) + Dab.

Gértner and Freidlin (1979)
Two homogenization regimes (Pe > 1):

> weak reactions Da < Pe1:

Gk ~ 2+/kefDa,  kef - effective diffusivity

obtained from a linear cell problem associated with the
adVeCtion-difFUSion equation e.g. Fannjiang & Papanicolaou (1994), Constantin et al.
(1999), Novikov & Rhyzhik (2007), Rhyzhik & Zlatos (2007), Zlatos (2010); Soward (1987), Childress &

Soward (1989)
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FK front speed

» ¢« can be determined for arbitrary Da, Pe from eval problem derived
by looking for solutions of the form exp(—g(x/t)t)¢ for linearised
(FK):

D:0(x, t) + u(x) - VO(x, t) = Pe L Af(x, t) + Dab.

Gértner and Freidlin (1979)
Two homogenization regimes (Pe > 1):

> weak reactions Da < Pe1:

Gk ~ 2+/kefDa,  kef - effective diffusivity

obtained from a linear cell problem associated with the
advection-diffusion equation e.g. Fannjiang & Papanicolaou (1994), Constantin et al.
(1999), Novikov & Rhyzhik (2007), Rhyzhik & Zlatos (2007), Zlatos (2010); Soward (1987), Childress &
Soward (1989)
> strong reactions Da > Pe™!: g« obtained from a nonlinear cell
problem associated with a Hamilton-Jacobi equation
Freidlin (1985), Majda & Souganidis (1994)

AISO some reSUItS for Other Da e.g. Novikov & Rhyzhik (2007), Tzella & Vanneste (2015)
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The G equation

A heuristic model often used to replace (FK) when PeDa > 1, describing
the front interface as the zero-level curve that satisfies

O +u-VO = co|Vl|, Da/Pe=ci/4=0(1). (G)
unburned burned
gas gas
V(@)
SlT_i
G>Gy G(X,t) Go G< Gy

Williams (1985), Kerstein et al. (1988)
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The G equation

A heuristic model often used to replace (FK) when PeDa > 1, describing
the front interface as the zero-level curve that satisfies

O +u-VO = co|Vl|, Da/Pe=ci/4=0(1). (G)
unburned burned
gas gas
V(@)
G>G0 G<Ga

Williams (1985), Kerstein et al. (1988)

» When u =0, cg = Gk = .
» When u = (u(y), 0), Cc = Crk Embid et al. (1995), Xin & Xu (2013)
> When uis 27T—peri0dic, Ce :?CFK (some results for cg — 0).
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The G equation
A heuristic model often used to replace (FK) when PeDa > 1, describing
the front interface as the zero-level curve that satisfies

0 +u -Vl = |V, Da/Pe=c3/4= 0(1). (G)
unburned flame burned
gas fran gas

Aim: determine effect of u on ce« and c¢ and their difference

Slﬁ

G>Go G(x,t)#Go G<Gy

Williams (1985), Kerstein et al. (1988)

» When u =0, cg = Gk = .
» When u = (u(y),0), cc = ¢ Embid et al. (1995), Xin & Xu (2013)
> When uis 27r-pel’i0dic, Cg :?CFK (some results for cg — 0).
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Sharp FK fronts

In the limit of Pe Da > 1, Da/Pe = ¢2/4 = O(1), the solution to
90+ u-VH=Pe A0+ Dad
can be approximated using a WKB approximation:
0(x, t) ~ e~ Pe S (xt,c0)
At leading order,
I +|VI)P +u(x) - VI +c2/4=0.
The front interface is given by

F(x,t,¢) =0.
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Variational formulation for c.,.

The solution to the Hamilton—Jacobi equation is given by

-
F(x, T,c) = % <inf /0 |X(t) — u(X(t))|2dt - C§T> ,

X()
subject to X(0) = (0,-), X(T)= x.

For T > 1, the front propagates at the constant speed cq« obtained from

. 1 X
Y (cex, @) = Tll_r>noo ?,ﬂ(x, T,00)=0, c= T
e.g. Piatnitski (1998)

Note: ¥(crk, ) is the Legendre dual of J7, the effective Hamiltonian
satisfying the homogenised Hamilton-Jacobi equation

oI +H(VI)=0
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Variational formulation for c.,.

The solution to the Hamilton—Jacobi equation is given by

-
F(x, T,c) = % <)|(rzf)/o |X(t) — u(X(t))|2dt — ch) ,

subject to X(0) = (0,-), X(T)=x.

For T > 1, the front propagates at the constant speed crx obtained from

. 1 X
Y (cex, @) = _’_Iinoo 7J(x, T,00) =0, c= T
e.g. Piatnitski (1998)
Taking T = n7 with 7 = 27/ ce« (flow is periodic)

Y(cex, ) = — <T )l(n(f)/ |X(t) — u(X(t))?dt — C0>

subject to X(7) = X(0)

+ (2, 0).
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Comparison between FK and G speeds
Taking T = n7T with n > 1, we obtain that

2
Cc = —W, where 7q = inf 7, subject to X(7) = X(0) + (27,0)
TG x()

and | X (t) — u(X(t))|? = ¢ for t € [0, 7].
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Comparison between FK and G speeds
Taking T = n7T with n > 1, we obtain that

2
e = ==, where 7 = inf 7, subject to X(7) = X(0) + (27, 0)
TQ X()

and | X (t) — u(X(t))|? = ¢ for t € [0, 7].
The FK speed may be written as

2
Crk = %, where Tpg = |n(f 7 subject to X(7) = X(0) + (27, 0)

and /|x — u(X(£)2dt = .

> Gk 2> G-
» ¢ >0 implies co > —mingmax,u(x,y).

» For shear flows ce = ¢ = ug + ¢ where uy = max, u(y).

Alexandra Tzella Sharp fronts in periodic flows 11/17



Cellular flow (A = U = 0): Trajectories

™

. _

€T

Figure: Minimising periodic trajectories calculated numerically for ¢ = 0.1, ¢ =1
and ¢p = 10. They become closer to the straight line y = 7/2 as ¢y increases.

CFK cG range of validity
7/ Wp(32¢5 %) —m/(2log(mco/8)) oK1
co(14 3¢5 2/4 —105¢5*/64)  co(1l+ 3¢y 2/4 —109¢; */64) > 1
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Cellular flow (A > 0, U > 0): Trajectories

(b)A=1, U=0

Figure: Effect of small-scale perturbations and a mean flow.
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Cellular flow (U < 0): Trajectories

0

—m 0 ™
() A=0, U= —0.1 (f)A=0,U=—05
(minimum ¢o = 0.11) (minimum ¢g = 0.19)

Figure: Effect of an opposing mean flow.

There exist ¢« > 0 for cg + U < 0 (i.e. when there is no ¢z > 0)!
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Cellular flows
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Summary

» We studied the effect of shear & cellular flows on the sharp fronts
arising in the (FK) model for strong reactions and small diffusivity and
on their heuristic approximation by the (G) equation.

» The front speed is determined by a single periodic trajectory
minimising the time of travel across a period under a constraint.
» The difference between the two models is due to the difference

between the pointwise and time-integrated constraint.

» For the class of cellular flows, the difference increases with decreasing
o, remaining small for U > 0. For U < 0 the difference can be
dramatic: the two fronts may propagate in very different directions!

Tzella & Vanneste (2014) Phys. Rev. E 90, 011001(R);
Tzella & Vanneste (2019) SIAM J. Appl. Math, 79(1), 131-152,;
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Outlook

» Challenge: Prove that in all periodic flows, the minimising
trajectories inherit the spatial periodicity of the background flow.

> We have focused on the front speed. We can extend minimal-time
trajectory calculations to explain front shape.

» More complicated unbounded/time-dependent flows and/or reactions?

» Can 2D mesoscale flows+mixing diffusion+reaction really explain the
Madagascar bloom?

Thank you for your attention!
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The eigenvalue problem for the speed

We solve for g(c) via an eigenvalue equation
f(q)p = Pe 'A¢ — (u1, wp) - Vo — 2Pe 1 g + (11q + Pe ' q?)g,
where f is the Legendre transform of g

g(c) = Zt;g(qc - f(q)),

and ¢(x,y) is 2m-periodic in x with 9,¢ =0at y =0, 1.
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Cellular flow: Speed

12 10
—A=0 gl|l—u=0
10 -|—A=0.1 8 —U=0.01
—A=0.5 —U=0.1
8t A=t > 7| u=0s
. —A=5 | 8f—=u=t
m 6 5
Q S
4 53 0
g 0.05 0.1 020305 1
2 1 Co
0 0
0. 10 0.05 05 1 5 10
Co
(b)) A=0, U>0
= 5
| Q
<
R
Q
0
0.05 0.1 0.20.305 1

Co

(c)A=0,U<0
Ty



Variational formulation for ¢,

The front reaches location x after a travel time
T(x,¢0) = )|(n(f) T with X(0) =(0,-), X(T) = x,
subject to |X(t) — u(X(t))]> = & for t € [0, T],
For T > 1, x is large and the front moves at a constant speed given by

. X
=0 Z y)ia)

where once more the dependence on y drops out.
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Numerical procedure
» The periodic trajectory X (t) is approximated by X4 on time grid
{t) = It} where ty =7 = 27/c.

» The action functional is approximated by the sum over the discrete
Lagrangians

N-1
1
Gd({xl};vzo) = T La(X1, Xi41) — Cg
1=0
(I+1)At
where Ly(Xy, X/41) =~ / |X(t) — ”(X(t))lzdt
IAt

and X; = X4(/At) is an approximation to X(t;).

» Midpoint rule for Ly(X;, Xj11).

» Use MATLAB to find the optimal trajectories that minimise the value
of Gd({X/};V:o) and deduce ¢

(a first guess obtained from asymptotics).
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Comparison with simulations: Cellular flow (U = 0)

< Pe=50 |
Pe=125
< Pe=250

> Pe=500

All simulations obtained for ¢y < 1 since ¢p = 2 ]12—2,

» Difficult to go for larger ¢p, due to sharp gradients in the
concentration.

» Range of validity bounded below. For U = 0 we need
Da > (log Pe) L.
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