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Mixing mechanisms

Molecular diffusion (homogenization) ~ 0,f = KA f
<

Stirring (transfer mass from low to high wavenumber modes)~~
filamentation ~~» Oy f +u-Vf =0
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Figure: Miles & Doering 2018




In the spotlight: In a domain 2, for a given stirring field u, with
V -u =0, consider

00 +u- VO = kAf (AD)

where 6 = 0(x,t) is the concentration field.

Figure: Miles & Doering 2018

What is the smallest scale that we expect to see in passive
tracer mixing?
» “good” stirring creates very fine filaments that (due to
incompressibility) get stretched longer, becoming thinner and
thinner

» in presence of diffusion these filaments reach a minimal width



A good measure for mixing

Suppose 2 = T¢
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Variance is not a good measure for mixing (in regular
contexts, u drops out)

The norm
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with Oy (t) = ﬁ [ e~ %@ () dr was introduced by Mathew
et.al 2005-2007 as it “ downplays the role of small scales”
(cit. Thiffeault). This norm captures both homogenization
(pure diffusion, decrease Fourier amplitudes |fk|, k # 0) and
filamentation (pure advection, transfer mass from low to high
wavenumbers modes).



Results of C.Miles and C.Doering, 2018

Quantify the ratio
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which we call filamentation length.
Theoretical results:

» For [|[Vu(t)|pe=1,

A(t) = A(0) exp(—t)

> For [lu(t)|[p==1,
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Numerical results: for energy and enstrophy constrained flows, i.e.
la(®)[| 2= C or [Vu(t)|| 2= C

3.1. Methodology

We solve (3) with either flow (4) or (5) by using a Fourier basis to represent the spatial domain
with a 4th order Runge—Kutta time-stepping method. We slightly perturb the concentration
field 0y (x) = sin(27x/L) by evolving the field according to (3) with a steady sin flow given by
u(x) = sin(27y/L)x for a time duration of 0.01. The concentration field, resulting from this
short time integration, is then used as an initial condition for the(local=in=time optimisation
scheme. This perturbation is necessary since the denominator is zero in both expressions (4)
and (5) for pure Fourier modes such as 6, [2]. All simulation code is written in Python and
available at http://github.com/cjm715/lit.
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Figure: Numerical simulation with local-in-time optimal flows. Miles&Doering
2017. A(t)/Ar = A(t)VPe and Pe = k™! for | Vu|/pe= 1



Conjecture

V@)l 2 t—oo R .
MO = T, 7 Vel = A8

Why is this conjecture hard to prove mathematically?
» While (pointwise) upper bounds on [|6(t)]| ;2 are easy due to
the boundary conditions and incompressibility, lower bounds
are very difficult to prove

» The quotient in X\ is very tricky. Convergence for long time to
the Batchelor scale would mean that the norms [|6]| ;2 and
IV=10]| 12 will go exponentially to zero at the same rate!

» Will this convergence hold for any given flow? For which
class of flows does this happen?

» Even on simple geometries like Q = T¢ the situation is not
clear (as, roughly speaking, energy comes back in).



What happens when Q = R%?

90 +u-VO—rkAO=0 inR?
V-u=0
0(x,0) = bo(x)

Interpolation estimate:
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Need:
» A pointwise (in time) lower bound for ||0(t)]2
» A pointwise (in time) upper bound for || V0(t)]|2



Looking for a lower bound for ||0(¢)||2...

Decompose:
O(x,t) = h(z,t) + n(z,1)
where
{@ —kAL=0 {@'}]—/{A?]: —u- Vo
then
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Lower bound for ||/1(t)||z2: Assume |0 (£)|> M for |€|< &, then
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Upper bound for ||7(t)|| z2:
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Need an upper bound for ||0(t)]|3



..through an upper bound for ||0(t)]|3

Claim: .
10@I3S (L +1)2

Sketch: Fourier-splitting method (Schonbeck'85)
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Bound on fs(t)|9(§,t)|2 d¢: Representation formula, in Fourier
variables

A A t —_—
e t) = eI o) + [ e P a V) (€, 5)ds
0
Square and integrate over S(¢) and use

ju - VO|< ClEO) |2 ]lu(®)])2 -

Need [|u(t)||z2~ (14 t)~* for some o > % for the claim!



Upper bound for ||0(t)||z2 ~~ upper bound on ||7(t)]| 12
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Put together:
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Our result

Theorem (Nobili & Pottel, '20)

In R3, let the following conditions be satisfied
> 00(€)[z M for ¢|< o
> |[u(t)||p2 ~ (1+t)~* for some a > 3
> [[Vu)|ze ~ (1 +)7"

then )
AMt) 2 (L+1)2f(F),

where
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0 forv e [0,1) mixing



Remarks

» Result agrees with diffusive dispersion:

E(X}) = 2xt|.

» Decay of velocity field at infinity is crucial.

» It would be interesting to know whether the results are sharp
for some velocity field.

» Passing from R? to T (within the method) would require
some new idea...



An (connected and) very intersting open problem...

The limit for very small k is relevant, as the molecular diffusivity is
generally very small. But how can the (Batchelor-scale) conjecture
be justified in the limit kK — 07

L? energy decay of solutions to (AD):
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In certain turbulent regimes it is expected
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with ¢ independent of x.
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Abstract. Eufnn'mg the results developed by Gorodetskyi et al.
[0. Gorodetskyi, Anderson, Phys. Fluids 24, 07
(2012)] on the dppllcdnnn of the mapping matrix formalism to simu-
late advective-diffusive transport, we investigate the structure and the
properties of strange eigenfunctions and of the associated eigenvalues
up to values of the Péclet number Pe ~ O(10%). Attention is focused
on the possible occurrence of a singular limit for the second eigenvalue,
va, of the advection-diffusion propagator as the Péclet number, Pe,
tends to infinity, and on the structure of the corresponding eigenfunc-
tion. Prototypical time-periodic flows on the two-torus are cor
which give rise to toral twist maps with different hyperbolic

Anosov, pseud, sov, and smooth nonunifor
perbolic systems possessing a hyperbolic set of full measure. We show

that for uniformly hyperbolic systems, a singular limit of the dominant
decay exponent occurs, log|vs] — constant # 0 for Pe — 0o, whereas
1og |2 — 0 according to a power-law in smooth non-uniformly hyper-
bolic systems that are not uniformly hyperbolic. The mere presence of
a nonempty set of nonhyperbolic points (even if of zero Lebesgue mea-
sure) is thus found to mark the watershed between regular vs. singular

behavior of 1, with Pe as Pe — oc.

Simulations shows that

limpe 00 A(Pe) = ¢ >0
where A is the dominant
decay exponent of (AD).

Interpretation: in terms of
the “Batchelor-conjecture”
it means that the Batchelor
scale saturates at a
non-zero value in the limit
of small k.
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