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Mixing mechanisms

Molecular diffusion (homogenization) � ∂tf = κΔf

Stirring (transfer mass from low to high wavenumber modes)�
filamentation � ∂tf + u · ∇f = 0

Figure: Miles & Doering 2018



In the spotlight: In a domain Ω, for a given stirring field u, with
∇ · u = 0, consider

∂tθ + u · ∇θ = κΔθ (AD)

where θ = θ(x, t) is the concentration field.

Figure: Miles & Doering 2018

What is the smallest scale that we expect to see in passive
tracer mixing?
� “good” stirring creates very fine filaments that (due to

incompressibility) get stretched longer, becoming thinner and
thinner

� in presence of diffusion these filaments reach a minimal width



A good measure for mixing

Suppose Ω = Td

� Variance is not a good measure for mixing (in regular
contexts, u drops out)

� The norm
�∇−1θ(t)�2

L2=
�

k �=0
Ld |θ̂k(t)|2

|k|2

with θ̂k(t) = 1
Ld

�
e−ik·xθ(x) dx was introduced by Mathew

et.al 2005-2007 as it “ downplays the role of small scales”
(cit. Thiffeault). This norm captures both homogenization
(pure diffusion, decrease Fourier amplitudes |θk|, k �= 0) and
filamentation (pure advection, transfer mass from low to high
wavenumbers modes).



Results of C.Miles and C.Doering, 2018

Quantify the ratio

λ(t) := �∇−1θ(t)�L2

�θ(t)�L2

which we call filamentation length.
Theoretical results:
� For �∇u(t)�L∞= 1,

λ(t) ≥ λ(0) exp(−t)

� For �u(t)�L∞= 1,

λ(t) � �θ0�L2

�∇θ0�L2
exp

�
− t

2κ

�



Numerical results: for energy and enstrophy constrained flows, i.e.
�u(t)�L2= C or �∇u(t)�L2= C

Figure: Numerical simulation with local-in-time optimal flows. Miles&Doering
2017. λ(t)/λΓ = λ(t)

√
Pe and Pe = κ−1 for �∇u�L∞ = 1



Conjecture

λ(t) := �∇−1θ(t)�L2
�θ(t)�L2

t→∞−→
�

κ
�∇u� := λB .

Why is this conjecture hard to prove mathematically?
� While (pointwise) upper bounds on �θ(t)�L2 are easy due to

the boundary conditions and incompressibility, lower bounds
are very difficult to prove

� The quotient in λ is very tricky. Convergence for long time to
the Batchelor scale would mean that the norms �θ�L2 and
�∇−1θ�L2 will go exponentially to zero at the same rate!

� Will this convergence hold for any given flow? For which
class of flows does this happen?

� Even on simple geometries like Ω = Td the situation is not
clear (as, roughly speaking, energy comes back in).



What happens when Ω = Rd?





∂tθ + u · ∇θ − κΔθ = 0 in Rd

∇ · u = 0
θ(x, 0) = θ0(x)

Interpolation estimate:

�∇−1θ(t)�2
�θ(t)�2

≥ �θ(t)�2
�∇θ(t)�2

(1)

Need:
� A pointwise (in time) lower bound for �θ(t)�2
� A pointwise (in time) upper bound for �∇θ(t)�2



Looking for a lower bound for �θ(t)�2...

Decompose:
θ(x, t) = h(x, t) + η(x, t)

where
�

∂th − κΔh = 0
h(x, 0) = θ0(x)

�
∂tη − κΔη = −u · ∇θ

η(x, 0) = 0

then

�θ(t)�L2≥ �h(t)�L2−�η(t)�L2



Lower bound for �h(t)�L2 : Assume |θ̂0(ξ)|≥ M for |ξ|≤ δ, then
�

Rd
|h(x, t)|2 dx =

�

Rd
|ĥ(ξ, t)|2 dξ

=
�

Rd
|θ̂0(ξ)|2e−2κ|ξ|2t dξ

≥ M2
�

|ξ|≤δ
e−2κ|ξ|2t dξ

∼ M2δde−2κδ2
t− d

2

Upper bound for �η(t)�L2 :

d

dt
�η(t)�2

2≤ −2κ�∇η(t)�2+2�∇h(t)�∞�u(t)�2�θ(t)�2

Need an upper bound for �θ(t)�2
2



...through an upper bound for �θ(t)�2
2

Claim:
�θ(t)�2

2� κ−�(1 + t)− d
2

Sketch: Fourier-splitting method (Schonbeck’85)

d

dt
((1 + t)β�θ(t)�2

2) ≤ β(1 + t)β
�

S(t)
|θ̂(ξ, t)|2 dξ

where S(t) =
�

ξ ∈ Rd| |ξ|≤
�

β
2κ(1+t)

� 1
2
�



Bound on
�

S(t)|θ̂(ξ, t)|2 dξ: Representation formula, in Fourier
variables

θ̂(ξ, t) = e−κ|ξ|2 θ̂0(ξ) +
� t

0
e−κ|ξ|2(t−s)(−�u · ∇θ)(ξ, s)ds

Square and integrate over S(t) and use

|�u · ∇θ|≤ C|ξ|�θ(t)�2�u(t)�2 .

Need �u(t)�L2∼ (1 + t)−α for some α > 1
2 for the claim!



Upper bound for �θ(t)�L2 � upper bound on �η(t)�L2

�η(t)�L2�κ

�
(1 + t)− d

4 + 1
4 − α

2 1
2 < α < 3

2
(1 + t)− d

4 − 1
2 α ≥ 3

2

Put together:

�θ(t)�L2≥ �h(t)�L2−�η(t)�L2�M,δ,κ (1 + t)− d
4 (1 − (1 + t)− α

2 + 1
4 )



Our result

Theorem (Nobili & Pottel, ’20)
In R3, let the following conditions be satisfied
� |θ̂0(ξ)|≥ M for |ξ|≤ δ

� �u(t)�L2 ∼ (1 + t)−α for some α > 1
2

� �∇u(t)�L∞ ∼ (1 + t)−ν

then
λ(t) �M,δ,κ (1 + t) 1

2 f(t) ,

where

(1 + t) 1
2 f(t) t→∞→

�
+∞ for ν ≥ 1 dispersion
0 for ν ∈ [0, 1) mixing



Remarks

� Result agrees with diffusive dispersion:

E(X2
t ) = 2κt .

� Decay of velocity field at infinity is crucial.
� It would be interesting to know whether the results are sharp

for some velocity field.
� Passing from Rd to Td (within the method) would require

some new idea...



An (connected and) very intersting open problem...

The limit for very small κ is relevant, as the molecular diffusivity is
generally very small. But how can the (Batchelor-scale) conjecture
be justified in the limit κ → 0?
L2 energy decay of solutions to (AD):

1
2�θk(t)�2

L2= 1
2�θk(0)�2

L2−κ

� t

0
�∇θκ(s)�2

L2 ds

In certain turbulent regimes it is expected

κ

� t

0
�∇θκ(t)�2

L2≥ c > 0

with c independent of κ.



Simulations shows that
limPe→∞ Λ(Pe) = c > 0
where Λ is the dominant
decay exponent of (AD).

Interpretation: in terms of
the “Batchelor-conjecture”
it means that the Batchelor
scale saturates at a
non-zero value in the limit
of small κ.
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Thank you for your attention!


