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Fluid mixing of diffusive quantity

Advection: Filamentation / reduction of scales

Diffusion:




Linear model equations

0:0 + u -V = k\0

For simplicity: TY;
0 = 0(t,x) € R passive scalar;
u = u(t,x) € RY velocity, divergence-free, V-u = 0;

0 < k <« 1 diffusivity constant.

0(t, x) dx = Oo(x) dx = 0, say.
T Td



Some oversimplified heuristics

Viewer discretion is advised...



Consider regular initial configuration, O(1) variations,

00 € [_1a 1]a HHOH ~ 17 ||V90|| ~ 1.

Apply straining flow, not too rough, say,

|Vu(t)|=U ~ 1.

Result: Initially reduction of scale by advection, later reduction of
intensity by diffusion.



Early advection-dominated mixing stage

Neglect diffusion: k = 0.
Constant intensity:
16(£)]] = [16oll-

Reduction of scale:

IV=o(t)]| ~ e <.

Lower bound: Crippa—De Lellis ‘08, Brenier—Otto-S. ‘11, S. '11,
lyer—-Kiselev—Xu '14, Leger '18.

Upper bound: Alberti—Crippa—Mazzucato '14, '19, Yao—Zlatos '17,
Elgindi-Zlatos '19, Blumenthal-Bedrossian—Punshon-Smith '19.



Late diffusion-dominated mixing stage

Neglect advection: u = 0.

Scale-wise dispersion for heat equation. For any wavenumber k:

Oi(t) = e kPG, (0).

Decrease of variance dominated by smallest wavenumber kg:

—rlkg|?
16(t)]| ~ e~ 1P 6o



Crossover wavenumber kg

Balance between advection and diffusion determined by

ke ~ 1/ 2.
K

Associated length kEl is the Batchelor scale.

dimensional analysis:

We might thus expect that for large times:
16(2)II < e "*|l6oll
for some D ~ 1 and all t > 1/D.



Enhanced dissipation!

We expect
16(2)II < =260l

for some D ~ 1 and all t > 1/D.

Recall: D ~ k for heat equation!



Rigorous results



What is known?

Enhanced dissipation: 3D > k, A > 1 such that

16(e)]| < Ae™ %60l

Qualitiatve results: Constantin—Kiselev—Ryzhik—Zlatos '08. Sharp
characterization of steady velocity fields.

Quantitative results for shear flows, N ~ 1, D ~ k* for some

a € (0,1): Bedrossian—Coti Zelati '14, Wei '19, Coti Zelati-Drivas
'19, Coti Zelati '19, Colombo—Coti Zelati-Widmayer '20, Coti
Zelati-Dolce '20; ... for randomly forced fluid systems:
Bedrossian—Blumenthal-Punshon-Smith '19:

1 1
A~1,D~log = and A~ = D~1.
K K
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New result: Universal upper bound

Suppose ||fg]] ~ ||[VO|| ~ 1 and let u be arbitrary, satisfying
t
/ IVull dt <1+ ¢,
0

for some a € (0,1]. (Example: ||Vu||=U= a=1.)

Theorem (S. "20). If there exist N and D such that

16(e)]| < Ae™P*l6o

D < A .
~ Iog%

then
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Remarks

First absolute upper bound on rate of enhanced dissipation.
Pivotal cases: * A~ 1= D < log™* % This bound is sharp
by Bedrossian et al. modulo stochastics...

x D~1= N2 Iog%. Optimal result not known.

Similar (but suboptimal) results by Brué—Nguyen '20.

Coti Zelati-Delgadino—Elgindi '19: |IF there exists a universal
mixer with ||V u|[; < 1, then D > log™2 L.

Result is different from the lower bound

[0(t)] = e Pt — which is certainly controversial.

|6ol| ~ || VBo|| ~ 1 is necessary, otherwise: VD3by...

The proof relies on stability estimates for advection-diffusion
equations in terms of Kantorovich—Rubinstein distances with
logarithmic cost (cf. Crippa—De Lellis '08,

Brenier-Otto-S. '11, S. '13, '17, '18.)
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A final remark on mixing

By a simple interpolation argument, e.g., for a = 1.

Theorem (S. '20). If there exist N and D such that

/\2
v < Y e

then

Note:

XN/
D

~ Batchelor scale (modulo logarithms).
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