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Fluid mixing of diffusive quantity

Advection: Filamentation / reduction of scales

Diffusion: Reduction of intensity (gradients)
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Linear model equations

∂tθ + u · ∇θ = κ∆θ

• For simplicity: Td ;

• θ = θ(t, x) ∈ R passive scalar;

• u = u(t, x) ∈ Rd velocity, divergence-free, ∇·u = 0;

• 0 < κ� 1 diffusivity constant.

∫
Td

θ(t, x) dx =

∫
Td

θ0(x) dx
!

= 0, say.
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Some oversimplified heuristics

Viewer discretion is advised...
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Consider regular initial configuration, O(1) variations,

θ0 ∈ [−1, 1], ‖θ0‖ ∼ 1, ‖∇θ0‖ ∼ 1.

Apply straining flow, not too rough, say,

‖∇u(t)‖ ≡ U ∼ 1.

Result: Initially reduction of scale by advection, later reduction of

intensity by diffusion.

4



Early advection-dominated mixing stage

Neglect diffusion: κ = 0.

Constant intensity:

‖θ(t)‖ = ‖θ0‖.

Reduction of scale:

‖∇−1θ(t)‖ ∼ e−cUt .

Lower bound: Crippa–De Lellis ’08, Brenier–Otto–S. ’11, S. ’11,

Iyer–Kiselev–Xu ’14, Leger ’18.

Upper bound: Alberti–Crippa–Mazzucato ’14, ’19, Yao–Zlatos ’17,

Elgindi–Zlatos ’19, Blumenthal–Bedrossian–Punshon-Smith ’19.
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Late diffusion-dominated mixing stage

Neglect advection: u = 0.

Scale-wise dispersion for heat equation. For any wavenumber k:

θ̂k(t) = e−κ|k|
2t θ̂k(0).

Decrease of variance dominated by smallest wavenumber kB :

‖θ(t)‖ ∼ e−κ|kB |
2t‖θ0‖.
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Crossover wavenumber kB

Balance between advection and diffusion determined by

dimensional analysis:

kB ∼
√

U

κ
.

Associated length k−1B is the Batchelor scale.

We might thus expect that for large times:

‖θ(t)‖ ≤ e−Dt‖θ0‖

for some D ∼ 1 and all t � 1/D.
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Enhanced dissipation!

We expect

‖θ(t)‖ ≤ e−Dt‖θ0‖

for some D ∼ 1 and all t � 1/D.

Recall: D ∼ κ for heat equation!
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Rigorous results
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What is known?

Enhanced dissipation: ∃D � κ, Λ ≥ 1 such that

‖θ(t)‖ ≤ Λe−Dt‖θ0‖.

Qualitiatve results: Constantin–Kiselev–Ryzhik–Zlatos ’08. Sharp

characterization of steady velocity fields.

Quantitative results for shear flows, Λ ∼ 1,D ∼ κα for some

α ∈ (0, 1): Bedrossian–Coti Zelati ’14, Wei ’19, Coti Zelati–Drivas

’19, Coti Zelati ’19, Colombo–Coti Zelati–Widmayer ’20, Coti

Zelati–Dolce ’20; ... for randomly forced fluid systems:

Bedrossian–Blumenthal–Punshon-Smith ’19:

Λ ∼ 1,D ∼ log−1
1

κ
and Λ ∼ 1

κ
,D ∼ 1.
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New result: Universal upper bound

Suppose ‖θ0‖ ∼ ‖∇θ‖ ∼ 1 and let u be arbitrary, satisfying∫ t

0
‖∇u‖ dt . 1 + tα,

for some α ∈ (0, 1]. (Example: ‖∇u‖ ≡ U =⇒ α = 1.)

Theorem (S. ’20). If there exist Λ and D such that

‖θ(t)‖ ≤ Λe−Dt‖θ0‖,

then

D .

(
Λ

log 1
κ

)α

.
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Remarks

• First absolute upper bound on rate of enhanced dissipation.

• Pivotal cases: ∗ Λ ∼ 1 =⇒ D . log−1 1
κ . This bound is sharp

by Bedrossian et al. modulo stochastics...

∗ D ∼ 1 =⇒ Λ & log 1
κ . Optimal result not known.

• Similar (but suboptimal) results by Bruè–Nguyen ’20.

• Coti Zelati–Delgadino–Elgindi ’19: IF there exists a universal

mixer with ‖∇u‖L∞ ≤ 1, then D & log−2 1
κ .

• Result is different from the lower bound

‖θ(t)‖ & e−Dt — which is certainly controversial.

• ‖θ0‖ ∼ ‖∇θ0‖ ∼ 1 is necessary, otherwise: ∀D∃θ0...

• The proof relies on stability estimates for advection-diffusion

equations in terms of Kantorovich–Rubinstein distances with

logarithmic cost (cf. Crippa–De Lellis ’08,

Brenier–Otto–S. ’11, S. ’13, ’17, ’18.) 12



A final remark on mixing

By a simple interpolation argument, e.g., for α = 1.

Theorem (S. ’20). If there exist Λ and D such that

‖∇−1θ(t)‖ . Λ2√κ
D

e−Dt ,

then

D .
Λ

log 1
κ

.

Note:
Λ2√κ
D

≈ Batchelor scale (modulo logarithms).
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