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Hard Froblems and Crypto

O Cryptography: desigh functions that are
computationally hard to break {(e.g., ihvert)

O Strategy:

0 Find a computationally hard problem P

0 Find a way to exploit this hardness to design
functions thatare as hard to invertas solving P

0 Example:
0 Factoring problem: Given N=pq, find p and q

O Rabin: x —> x*x mod N
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The search of hard problems

0O Hard problems are abundant in computer science
(e.g., NP-complete problems)

0 Howevet, finding hard problems that are suitable
for cryptographic applications 18 hot easy:
0 Need problems that are hard on the average

0 Cryptographic applications require extra properties,
e.g., a trapdoor to invert the function

0 E.g., Rabin: if pand q are khown, theh one can
efficiently compute x given x*x mod {N=pq)
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Candidate hard problems

0O Most hard problems curtently used in
cryptography are from number theory

0 E.g., factoring, discrete logarithm
0 Not desirable:

0 Evidence that most of these problems are not the
hardest within NP

0 Breakthrough in number theory would be a disaster
0 Cuantum computers can efficiently factor mumbers
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Lattice based cryptography

O Different class of problems to be used in crypto

0O Many of these problems are NP-hard to solve
exactly, or even approximately (within small
factors) [vEBE1, ABSS97, A96, M9E DK S9F]

0O Some lattice problems are provably hard on the

average, assuming the worst case intractability of
some other lattice problem [A97F, CN97]

0 No quantum algorithm is known
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Lattices

O setof all integer linear combinations of basis
vectors B={b ,...b_}

0O Ewvery lattice has infinitely many bases

O All bases have the same determinant

£l
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Lattice Cryptosystems

Ajtai—Dwork cryptosystems [AD97]
(OH cryptosystem [GUH97]
NTRU [HP59§]

Tensor Cryptosystems [F399]

HNF [MO1]

Other v ariants

O O B B B
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This Talk

O Ovetview of main lattice based cryptosystems
(AD1, GGH, NTRU)

0 Technique to improve key size using HNF
0 Appication to AD1, GGH, Tensor

0O Comparison with NTRU

0O Open problems
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Shortest Vector Problem

O Given alattice, find the nonzeto lattice vector
clogest to the origin.

=

»
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Closest vector problem

0O Given alattice B and a target point ¥, find the
lattice point closest to the target
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Other Hard Lattice Problems

0O Problmes:

O Shortest Basis (SBP): Given a lattice basis B, find
smallest basis for the lattice L(B). [Several variants.]

0 Unique shortest vector problem (USVP): like SVP,
but shortes t vector is unique up to some polynomial
factor

0 Covering radius problem: given a lattice L{B), find r
such that every point in span(B) is within distance r
from L(B)
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Encrypting with Lattices (GGH)

Decryption:
a Use B fo find By = Rx
; o Closestto c
- Dieh=ec-By=m

(I} Private Key: Encryption: &)
Trapdoor lattice B Select Rx at random.
Add small error m,

Eim)=Rx+m=¢

Public Eey:
Bandorm basis B
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Questions

0O How is the secret (good) basis chosen?

0O How is the public basis computed from the
private one?

0 How is the public basis used to encrypt?

0O How is the secret basis used to decrypt?
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Secret basis and decryption

O Different cryptosystems suggest different ways
to choose the secret bagis

O AD: short dual vector (or hidden hyperplane)
0 GGH: short lattice basis

0 Tensor: decomposition of the lattice

0 NTRU: short lattice vector

0 The decryption algorithm depends on the choice
of the secret basis
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Ajtai-Dwork

O Trapdoor is a collection of hyperplanes
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GGH

O sectey key is agood (short, almost orthogonal )
hasis
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Tensor based cryptosystem

0O Trapdoor is a decomposition of the lattice as the

tensot product of many small dimensional
lattices
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NTRU

0O Originally described as a cryptosystem based on
polynomial ring arithmetics:
O Secret key is a pair of polynomials f,g.
0 Public key is the quotiend h=(g/f ) mod (X"-1,q)

0 The encryption of message m using randomness r is
the polynomial ¢ = 3hr + mmod q

0 Decryption: (fc mod (X"-1,q))/f (mod (X"-1,3))
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Choosing the public key

O Intuitive solution:
O Apply a random transformation B >>> R
0 Method used in [GGH97, ADSY, FS99]

0O Analisys:
O Integer lattices repeatidentically when translated by
multiples of det(B)
0 R has been propetly randomized when all entries of R
are roughly as big as the det(B)
O Evenif B is a 0-1 matrix, det(B) can be (n log n) bits,

resulting in public keys of size (1’ log n) ’—. ’—. |—.
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HNF Fublic Key

O Hermite Normal Form: Unique lower triangul at
mattix that generates the same lattice as B

0 Ewvery entry is reduced modulo the cortresponding
diagonal element

h,..h = det(B)

Size(H) =n size(det(B)i=n"logn
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Security of HNF basis

O since HNF can be efficiently computed from any
other basig, it is the "most” secure basis

e

Attack
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Encrypting with lattices

0O Compute the chipettext as follows:

O Instead of adding a random lattice vector Rx to m
0 Reduce m modulo the {orthogonalized) public basis

0O Notice: ¢’ =r(m) mod R =c mod R can be
computed from c, therefore it is more secure.

c= Bx+m
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Security vs Key Size
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Key size vs Security

Qi ensian

500 S 1000 1800 2400
Key Size (KE)
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Lesson

0O The "right” choice is better than random choice

0O HNF basis is at least as secure as any other basis
0 HNF basis is much smaller than random basis

0O The modified "cryptosystems”™ are deterministic

0 They should be regarded as trapdoor functions
0 Can be transformed into encryption schemes

0O Despite the reduction, key size is still much

bigger than RSA, Rabin, etc.
|5 T
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Optimality of HNF key size

O Ssimple counting argument shows that the bit size
of HNF basis is optimal: there are exp(s)
different lattices with HNF of size g!

O In otder to get smaller key size, one need to use
lattices of special form

0 What kind of lattices can be used to reduce the
public key size?
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Modular lattices

O L is g—modulat if x=0mod q implies x is in L

0O The public key size get slighly smaller: instead
of O{n®log n), now is O(n® log q)

0O Still nor enough. Even for q=2, there are still
exp(O(n?)) different lattices:

0 Consider all triangular matrices with 2 on the
diagonal, and 0/1 off the diagonal

O There are 2°°-% such matrices, and they all represent

different lattices.
I
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Cyclic lattices

O For any x=[x,,...,x |, define the cyclic shift
rot()=0x,,x,..., X ]
0O Alattice i cyclicif (x in L) implies (rot(x) in L)

0 iven x, the smallest cyclic lattice containing x
is generated by x, rot(x)},..., rot*{x).

0O For most vectors, x, rot{x),..., rot*(x) ate linearly
independent, and C{x) is full dimentional

0O There are many cyclic lattices that can be

represented by a single vector x. ’-. ’-. |-.
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2—cyclic lattices

O Assume n is even, and define the double rotation
rot,([x,y1) = [rot(x),rot(y)].

O A lattice is 2—cyclic if {[x,¥] in L) implies
(rot,(Bx¥])in L)

0 Notice that rot,"*([x,¥]) = [x,¥]

0O Therefore, the 2—cyclic lattice generated by a
single vector is never full dimensional!
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2—cyclic g-modular lattices

0 Consider any vector [, ¥]

0O The smallest 2—cyclic g—modular lattice
containing [x,¥] is generated by vectors

0 [xyl, rot,(Bxy]), ..., rot**{[xy])
o All nvectors (0,...,q,...,0)

0 These are (3/2)n vectors in n dimentional space,
s0 they are certainly linearly dependent

0 Abasis can be computed using HNF algorithm

0 The lattice is always full rank
0T
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Generating (2,q)-lattices

O Let [f,g] be a short vector, and let L. be the (2,q)-
lattice generated by [f,2].

0 Let M(f) be the circulant matrix associate to f,
i.e., the square matrix with rows rot'(f)

O L is generated by the rows of

15n
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R e

HNF basis of (2,q)-lattices

O Isomorphism: M{f)*M(g) = M({f*g), whete £*g is
computed in Z[X]/(X*¥-1)

0 Letf’ be the inverse of f modulo {X*-1,q)

-

h=1fg=gf

B
.|
i

:
i
’
|
:
E
:
i
)
|
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Encrypting with (2,q)-lattices

O We ate given the HNF basis H, and a small error
vector [¢,m], and want to compute [§,m] mod H

0 Morphism: s*M(f) = ¢*f mod {X** - 1)

e=(m — s*h) mod (¥"* -1, q)
g=-3r e= {3r*h + m)mod (3£ — 1, q)

http://www.ipam.ucla.edu/publications/cry2002/cry2002_dmicciancio/img33.htm [10/16/2003 4:13:42 PM]


http://www.ipam.ucla.edu/publications/cry2002/cry2002_dmicciancio/text33.htm

Slide 35

NTRU, Alternative definition

O Secret key: short lattice vector [f,g]

0O Public key: HNF basis of the smallest 2—cyclic q-
modul ar lattice containing [f,g].

0O "Encryption’ input is a shott etrot vector of the
form x = [-3s, m]. Output is {(x mod H).

0O Decryption: 777
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Conclusion

0O HNF techhique gives an optimal way to compute

public basis for lattices. In particular, HNF can
be used to improve [AD1, GGH, FS].

0 HNF public basis requires O(n?) bits in general.
In order to get shorter keys, one has to considet
special classes of lattices

0 NTRU is an interesting example of HNF
cryptosystem, when applied to (2,q )-lattices.
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Open problems (1)

O Find other classes of lattices that result in O{n)
public key size. E.g., cah we do encryption using
cyclic lattices?

0O Complexity of cyclic or {2,q) lattices:
O Are SVP, CVP NP-hard?
O Is CVP with preprocessing hard?

0O Ig there a natural geometric interpretation for
NTRU dectyption procedure?

0O Is there some general technique that can be used

for decryption? ’_. ’_. |_.

http://www.ipam.ucla.edu/publications/cry2002/cry2002_dmicciancio/img36.htm [10/16/2003 4:13:53 PM]


http://www.ipam.ucla.edu/publications/cry2002/cry2002_dmicciancio/text36.htm

Slide 38

DOV LD

Open Problems (2)

O Ajtai—Dwork proposed also acryptosystem AD2
with worst—case/average—case connection. Can
the HNF technique be adapted to work on AD2?

0O Average—casefworst—case connection for cyclic
lattices ala’ Ajtai. (YES! [MO2] gives efficient
OWF based on worst case hardness of
appriximating SVP in cyclic lattices)
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