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Overview 
 Standard linear constraints on segments 

– intensity log-likelihoods, volumetric ballooning, etc. 

1. Basic non-linear regional constraints 
– enforcing intensity distribution (KL, Bhattacharia, L2) 
– constraints on volume and shape 

2. Complexity constraints (label costs) 
– unsupervised and supervised image segmentation, compression 
– geometric model fitting 

3. Geometric constraints  
– unsupervised and supervised image segmentation, compression 
– geometric model fitting (lines, circles, planes, homographies, motion,…) 



Sf,E(S) = B(S)Sf,E(S) +=

Image segmentation  
Basics 
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Linear appearance of region  S 

S,f)S(R =

Examples of potential functions  f 
 

• Log-likelihoods 
 

• Chan-Vese 
 

• Ballooning 
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Part 1 

Basic non-linear regional functionals  

∑
∈

−
Sp

p )S|IPr(ln ||hist)S(hist|| 0−

∑
∈

−
Sp

1 2
0 )vol)S(vol( −



Standard Segmentation Energy 

6 

Fg 

Bg 

Intensity 

Probability 
Distribution 

Target 
Appearance 
Resulting 
Appearance 



Minimize Distance to  
Target Appearance Model 
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harder to optimize 
regional term 
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– appearance models  
– shape 

non-linear 
regional term 

B(S)R(S)E(S) +=

Ω
S
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Related Work 

• Can be optimized with gradient descent  
– first order approximation 
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Ben Ayed et al. Image Processing  2008, 
Foulonneau et al., PAMI 2006 
Foulonneau et al., IJCV 2009 

We use higher-order approximation based on                
  trust region approach 



  a general class of  
non-linear regional functionals  
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Regional Functional 
Examples 

Volume Constraint 
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Bin Count Constraint 
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Regional Functional 
Examples 



Regional Functional 
Examples 

• Histogram Constraint 
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Regional Functional 
Examples 

• Histogram Constraint 

 
V
(S)P(S)logPΣR(S)

i

i
i

k

1i=
=

14 

KL(  R(S) = )|| TS

S1,
S,f

(S)P i
i =



Regional Functional 
Examples 

• Histogram Constraint 
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Shape Prior 

• Volume Constraint is a very crude shape prior 
 
 
 
 
 

• Can be generalized to constraints for a set of 
shape moments mpq  
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• Volume Constraint is a very crude shape prior 
 
 
 
 
 

 
 

Shape Prior 
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Shape Prior using  
Shape Moments mpq 

18 

Volumem00 =

...
RatioAspect 

nOrientatio Principal
mm
mm

0211

1120 =








Mass OfCenter )m,(m 0110 =



• Shape Prior Constraint 

Shape Prior using  
Shape moments 
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Optimization of Energies with  
Higher-order Regional Functionals 

B(S)R(S)E(S) +=
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Gradient Descent (e.g. level sets) 

 
• Gradient Descent 
• First Order Taylor  Approximation for R(S) 
• First Order approximation for B(S)  

(“curvature flow”)  
• Robust with tiny steps 

– Slow 
– Sensitive to initialization 
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B(S)R(S)E(S) +=

http://en.wikipedia.org/wiki/File:Level_set_method.jpg 

Ben Ayed et al. CVPR 2010, 
Freedman et al. tPAMI 2004 



Energy Specific vs. General 

• Speedup via energy- specific methods 
– Bhattacharyya Distance 
– Volume Constraint 

 
• We propose 

– trust region optimization algorithm  
for general high-order energies 

– higher-order (non-linear) approximation 

 
 

 

Ben Ayed et al. CVPR 2010, 
Werner, CVPR2008 
Woodford, ICCV2009 

22 



B(S)(S)U(S)E 0d||SS|| 0

+=
≤−

~min

General Trust Region Approach 
An overview 

• The goal is to optimize 

Trust 
region 

Trust Region 
Sub-Problem 

B(S)R(S)E(S) +=

B(S)(S)U(S)E 0 +=~

• First Order Taylor for R(S) 
• Keep quadratic B(S) 
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General Trust Region Approach 
An overview 

• The goal is to optimize B(S)R(S)E(S) +=

B(S)(S)U(S)E 0 +=~

Trust Region 
Sub-Problem 

B(S)(S)U(S)E 0d||SS|| 0

+=
≤−

~min

24 

0S
d



||SS||λB(S)(S)U(S)L 00λ −++=

Solving Trust Region Sub-Problem 
• Constrained optimization 

       
 minimize  
 
 

• Unconstrained Lagrangian Formulation 
       
 minimize 
 
 

• Can be optimized globally    u
 using graph-cut or convex    
 continuous formulation  
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L2 distance can be approximated 
with unary terms 

[Boykov, Kolmogorov, Cremers,  
Delong, ECCV’06]  
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Approximating distance 
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Trust Region 

• Standard (adaptive) Trust Region 
– Control of step size d 

 

• Lagrangian Formulation 
– Control of  

the Lagrange multiplier λ 
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Spectrum of Solutions  
for different λ or d 
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• Newton step 
• “Gradient Descent” 
• Exact Line Search (ECCV12) 



Volume Constraint  
for Vertebrae segmentation 

Log-Lik. + length + volume 
Fast Trust Region 

Initializations Log-Lik. + length 
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Appearance model  
with KL Divergence Constraint 

Init 

Fast  
Trust Region 

“Gradient Descent” Exact  
Line Search 
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Appearance model is obtained from the ground truth 



Appearance Model with Bhattacharyya 
Distance Constraint 
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“ “ 

Fast Trust Region “Gradient Descent” Exact Line Search 

Appearance model is obtained from the  ground truth 



Shape prior with Tchebyshev moments 
for spine segmentation 
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Log-Lik. + length + Shape Prior 
Fast Trust Region 

Second order Tchebyshev moments computed 
 for the user scribble 



Part 2 

Complexity constraints on appearance 



Segment appearance ? 

• sum of log-likelihoods (linear appearance)  
– histograms 
– mixture models 

 

       

         with constraints 
– based on information theory (MDL complexity) 
– based on geometry (anatomy, scene layout) 

  
• now:                             allow sub-regions (n-labels)           

      
 



Natural Images: GMM or MRF? 
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are pixels in this image i.i.d.? NO! 



Natural Images: GMM or MRF? 
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Natural Images: GMM or MRF? 
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Natural Images: GMM or MRF? 
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Binary graph cuts 

39 [Boykov & Jolly, ICCV 2001] [Rother, Kolmogorov, Blake, SIGGRAPH 2004] 



40 [Boykov & Jolly, ICCV 2001] [Rother, Kolmogorov, Blake, SIGGRAPH 2004] 

Binary graph cuts 



41 [Boykov & Jolly, ICCV 2001] [Rother, Kolmogorov, Blake, SIGGRAPH 2004] 

Binary graph cuts 



• Objects within image can be as complex as 
image itself 

• Where do we draw the line? 

A Spectrum of Complexity 
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MRF? GMM? Gaussian? object recognition?? 



Single Model Per Class Label 
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Pixels are identically distributed inside each segment 



Multiple Models Per Class Label 
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Now pixels are not identically distributed inside each segment 



Multiple Models Per Class Label 
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Now pixels are not identically distributed inside each segment Our Energy ≈ Supervised Zhu & Yuille! 
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boundary 
length 

MDL 
regularizer + color 

similarity + 

α-expansion (graph cuts) can handle such energies  
with some optimality guarantees [IJCV’12,CVPR’10] 

• Leclerc, PAMI’92 
• Zhu & Yuille. PAMI’96;  Tu & Zhu. PAMI’02 
• Unsupervised clustering of pixels 



 
(unsupervised image segmentation)  

Fitting color models 

information theory (MDL) interpretation: 
= number of bits to compress image I  losslessly 
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each label  L  represents some distribution Pr(I|L) 



(unsupervised image segmentation)  

Fitting color models 

Label costs only 

Delong, Osokin, Isack, Boykov, IJCV 12   (UFL-approach) 



(unsupervised image segmentation)  

Fitting color models 

Spatial smoothness only [Zabih & Kolmogorov, CVPR 04] 



(unsupervised image segmentation)  

Fitting color models 

Spatial smoothness + label costs 

Zhu & Yuille, PAMI 1996 (gradient descent) 
Delong, Osokin, Isack, Boykov, IJCV 12 (a-expansion) 



Fitting planes (homographies) 
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Delong, Osokin, Isack, Boykov, IJCV 12 (a-expansion) 



Fitting planes (homographies) 

Delong, Osokin, Isack, Boykov, IJCV 12 (a-expansion) 
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Back to interactive segmentation 
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segmentation colour models “sub-labeling” 

EMMCVPR 2011 



Main Idea 
• Standard MRF: 

 
 
• Two-level MRF:  
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object MRF 

GMMs GMMs 

background MRF 

image-level MRF 

object GMM background GMM 

image-level MRF 

unknown number of labels in each group! 



Our multi-label energy functional 
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• Penalizes number of GMMs (labels) 
– prefer fewer, simpler models 
– MDL / information criterion                               

regularize “unsupervised” aspect 
 

• Discontinuity cost c is higher between 
labels of different categories 

 

data costs smooth costs label costs 

GMMs GMMs 
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set of labels L 

background  
labels 

object  
labels 

two categories of labels  
(respecting hard-constraints) 



More Examples 
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standard 1-level MRF 2-level MRF 



More Examples 

58 

2-level MRF standard 1-level MRF 



Beyond GMMs 
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GMMs 

GMMs + planes 

plane 

GMMs only 



Part 3 

Geometric constraints on sub-segments 



• Sub-labels maybe known apriori 
- known parts of organs or cells 
- interactivity becomes optional 

 

• Geometric constraints should be added 
  - human anatomy (medical imaging) 
     - or known scene layout (computer vision) 

Towards biomedical image segmentation…  



Illustrative Example 

• We want to distinguish between these objects 

62 

input what mixed model gives what we want 

mixed appearance model: 



main ideas 
 

– sub-labels with distinct appearance models (as earlier)     
   
– basic geometric constraints between parts 

- inclusion/exclusion 
- expected distances  
   and margins 
 
For some constraints  
globally optimal segmentation 
can be computed 
in polynomial time 
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Illustrative Example 

• Model as two parts: “light X contains dark Y” 
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Center object the 
only object that fits 
two-part model 
(no localization) 



 
 
 
 

 

     ‘layer cake’    

 a-la  Ishikawa’03 
 

Our Energy 
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Let                        over objects L  and pixels P  



Surface Regularization Terms 

 

 
• Standard regularization of                                 

each independent surface 
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Let                        over objects L  and pixels P  



Geometric Interaction Terms 

 

 
• Inter-surface interaction 
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Let                        over objects L  and pixels P  



So What Can We Do? 
• Nestedness/inclusion of sub-segments 
    ICCV 2009 (submodular, exact solution) 

 

• Spring-like repulsion of surfaces, minimum distance 
    ICCV 2009 (submodular, exact solution) 
 

• Spring-like attraction of surfaces, Hausdorf distance 
    ECCV 2012 (approximation) 

 
 

• Extends Li, Wu, Chen & Sonka [PAMI’06] 
– no pre-computed medial axes 
– no topology constraints 
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Applications 

• Medical Segmentation 
– Lots of complex shapes with                                     

priors between boundaries  
– Better domain-specific models 

 
• Scene Layout Estimation 

– Basically just regularize                                     
Hoiem-style data terms [4] 
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Application: Medical 
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our result input 



Application: Medical 
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full body MRI two-part model 



Application: Medical 
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full body MRI 



Conclusions 

• linear functionals are very limited 
– be careful with i.i.d. (histograms or mixture models) 

• higher-order regional functionals 
• use sub-segments regularized by 
 

– complexity or sparcity   (MDL, information theory)  
– geometry (based on anatomy) 

literature: ICCV’09, EMMCVPR’11, ICCV’11, , IJCV12, ECCV’12 
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