
Itay Hen November 7, 2023IPAM Workshop

Itay Hen

Information Sciences Institute, USC

IPAM workshop: Many-body Quantum Systems 

via Classical and Quantum Computation

November 7, 2023

QMC of  everything: 

A universal algorithm for 

simulating arbitrary quantum 

many-body systems

Based partly on: arXiv:2307.06503, arXiv:2006.02539



Itay Hen November 7, 2023IPAM Workshop

Lev Barash Arman Babakhani Amir Kalev

 Funding:

Main collaborators and funding



Itay Hen November 7, 2023IPAM Workshop

A brief intro to quantum Monte Carlo (QMC) 

simulations 

 Permutation Matrix Representation QMC

 QMC of everything: Provably ergodic Markov 

chains for arbitrary spin ½ systems

 Generalization to higher-spin particles, 

fermions and bosons

 PMR in quantum computing

 Summary and conclusions

Outline



Itay Hen November 7, 2023IPAM Workshop

A brief intro to QMC simulations



Itay Hen November 7, 2023IPAM Workshop

 Generally, large-scale quantum many-body systems cannot be 

studied analytically. Too many degrees of freedom. 

 Quantum Monte Carlo (QMC) sampling is often the only 

approach available to study these without approximations. 

 Still, QMC is known to be inefficient in very many cases. 

Motivation

sign problem 

(negative weights)

small energy gaps 

(phase transitions)
classical glassiness

Also: for each model, one usually needs a specially tailored algorithm.
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 Goal is to write Z = 𝑇𝑟 𝑒−𝛽𝐻

as a sum of non-negative weights 𝑊𝒞

for configurations 𝒞: 𝑍 = σ𝒞𝑊𝒞 .

 Similarly write observables as

𝐴 =
1

𝑍
𝑇𝑟 𝐴 𝑒−𝛽𝐻 as 

1

𝑍
σ𝒞𝐴𝒞𝑊𝒞 .

 Use Markov chain to sample each 𝒞 with 

probability 𝑝𝒞 =
𝑊𝒞

𝑍
.

 Collect statistics about 𝐴 by measuring 𝐴𝒞 .  

Visit important configurations more often. 

 Hope for (1) no sign problem and (II) rapid mixing. 

What is QMC?

Markov Chain Monte Carlo (MCMC) 

in QMC configuration space
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Standard QMC approaches

 Path integral Monte Carlo methods are prone to Trotterization errors.

𝑒−𝛽𝐻 = 𝑒−Δ𝑡𝐻
𝐿
≈ 𝑒−Δ𝑡𝐴𝑒−Δ𝑡𝐵

𝐿
but    𝑒Δ𝑡 𝐴𝑒Δ𝑡 𝐵 ≠ 𝑒Δ𝑡 (𝐴+𝐵)

 Other schemes which are immune to Trotterization errors:

 Continuous-time path integral Monte Carlo 

[pioneered by Prokof’ev et al].

 Stochastic series expansion (SSE) 

[pioneered by Sandvik]. 

 These have their own “issues”. 

 Common annoyance: need to design update 

rules on a model-by-model basis. im
a
gi

n
a
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e

spatial direction
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Permutation Matrix Representation 

Quantum Monte Carlo
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 PMR-QMC is a novel series expansion of the quantum 

partition function (T. Albash, G. Wagenbreth, IH, PRE, 2017).

 It is parameter-free and Trotter-error free.

 It is universal and abstract: it applies essentially to any 

model and does not require model-specific adjustments.

 It does not solve the sign problem 

but can be used to solve or 

mitigate it in certain cases.

 Becomes a thermal classical 

simulation in the classical limit. 

Permutation matrix representation
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Permutation 

matrix 

representation of 

the Hamiltonian

= =+ + +

+ + +

 Choose a basis ۧ|𝑧 (call it the “computational” basis).

 Cast Hamiltonian as a sum of 𝑀 monomial (generalized 

permutation) operators ෨𝑃𝑗=𝐷𝑗𝑃𝑗 (always possible and easy 

to do):

+ + +

++ +

Permutation matrix representation

𝐻 =෍

𝑗=0

𝑀

෨𝑃𝑗 =෍

𝑗=0

𝑀

𝐷𝑗𝑃𝑗 = 𝐷0 +෍

𝑗=1

𝑀

𝐷𝑗𝑃𝑗
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 Sum of products of diagonal (non-local) operators 𝐷𝑗
and permutation operators 𝑃𝑗, where 𝑃𝑗 ۧ|𝑧 = ۧ|𝑧′ ≠ ۧ|𝑧 . 

 𝑃0 = 𝕀 making 𝐷0, the “classical”/diagonal Hamiltonian.

 Rest of permutations 𝑃𝑗 have no fixed points.  

 E.g., for spin models, 𝑃𝑗
′s would be 𝕀 , 𝑋1, 𝑋2, … , 𝑋1𝑋2, …

The 𝐷𝑗’s are generally non-local diagonal operators.

𝐻 =෍

𝑗=0

𝑀

෨𝑃𝑗 =෍

𝑗=0

𝑀

𝐷𝑗𝑃𝑗 = 𝐷0 +෍

𝑗=1

𝑀

𝐷𝑗𝑃𝑗

Permutation matrix representation
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 Expand the partition function Z = 𝑇𝑟 𝑒−𝛽𝐻 in a Taylor 

series substituting 𝑇𝑟 ∙ = σ 𝑧 ∙ 𝑧 :

The off-diagonal series expansion

Z = σ 𝑧 σ
−𝛽 𝑛

𝑛!
𝐷0 + σ𝐷𝑗𝑃𝑗

𝑛
𝑧 . 

Z = σσ
−𝛽 𝑛

𝑛!
𝑧
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ 𝑛 𝑜𝑓𝐷0 𝑎𝑛𝑑 𝐷𝑗𝑃𝑗

𝑧 . 

 Expanding, we get

T. Albash, G. Wagenbreth and I. Hen, “Off-Diagonal Expansion 

Quantum Monte Carlo”, Phys. Rev. E 96, 063309 (2017).
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Take one such product for example:

𝑧 𝐷0 ∙ 𝐷0 ∙ 𝐷1𝑃1 ∙ 𝐷0 ∙ 𝐷1𝑃1 ∙ 𝐷0 ∙ 𝐷0 ∙ 𝐷2𝑃2 𝑧 ∙ 𝐸(𝑧)

𝑧 𝐷0 ∙ 𝐷0 ∙ 𝐷1𝑃1 ∙ 𝐷0 ∙ 𝐷1𝑃1 ∙ 𝐷0 ∙ 𝐷0 ∙ 𝐷2𝑃2 ∙ 𝐷0 𝑧

𝑧 𝐷0 ∙ 𝐷0 ∙ 𝐷1𝑃1 ∙ 𝐷0 ∙ 𝐷1𝑃1 ∙ 𝐷0 ∙ 𝐷0 𝑃2 𝑧 ∙ 𝑑2(𝑧
′)𝐸(𝑧)

𝑧 𝐷0 ∙ 𝐷0 ∙ 𝐷1𝑃1 ∙ 𝐻𝑐 ∙ 𝐷1𝑃1𝑃2 𝑧 ∙ 𝐸2 𝑧′ 𝑑2 𝑧′ 𝐸(𝑧)

𝑧 𝑃1𝑃1𝑃2 𝑧 ∙ 𝐸2 𝑧′′′ 𝑑1 𝑧′′′ 𝐸(𝑧′′)𝑑1(𝑧
′′)𝐸2 𝑧′ 𝑑2 𝑧′ 𝐸(𝑧)

⋮

ۧ|𝑧′

ۧ|𝑧

ۧ|𝑧′

ۧ|𝑧′′′

This is the “off-diagonal core” consisting of a unique product 

of permutation matrices. Evaluates either to 0 or to 1. 

=

=

The off-diagonal series expansion
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There is an infinite number of terms that share the same 

off-diagonal core 𝑧 𝑃𝑖𝑞 …𝑃𝑖2𝑃𝑖1 𝑧 . We group them together.

 Each pair ۧ|𝑧 , 𝑆Ԧ𝑖𝑞 = 𝑃𝑖𝑞 …𝑃𝑖2𝑃𝑖1 defines a closed walk on the 

Hamiltonian graph (where basis states are nodes, 

off-diagonal elements are edges):

ۧ|𝑧 = ۧ|𝑧0 → ۧ|𝑧1 → ⋯ → ൿ|𝑧𝑞 = ۧ|𝑧
𝑃𝑖1 𝑃𝑖2 𝑃𝑖𝑞

This path ”induces” a sequence of classical 

energies 𝐷0 ۧ|𝑧 = 𝐸𝑧 ۧ|𝑧 : 𝐸𝑧0 , 𝐸𝑧1 , … , 𝐸𝑧𝑞 .

And accompanying 𝑑𝑖1 𝑧1 , 𝑑𝑖2 𝑧2 ,…

Every term is a 

closed walk in 

Hamiltonian 

graph

The off-diagonal series expansion
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 Summing the contributions of all terms that share the 

same off-diagonal core, we get the infinite sum

This is the divided difference of the Boltzmann 

factors of sequences (multi-sets) of intermediate 

classical energies along the imaginary time direction. 

=

As it turns out, this sum can be neatly evaluated to the 

easily computable

𝑒
−𝛽 𝐸𝑧0 ,𝐸𝑧1 ,…,𝐸𝑧𝑞

Grouping with divided differences
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Digression: divided differences
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Digression: divided differences

𝑥

𝐹(𝑥)

𝐹 𝑥0 = 𝐹(𝑥0)

𝑥0

𝐹(𝑥0)

The divided difference of a 

function with an input 

multi-set of size one, is simply

The divided differences of a function 𝐹(𝑥) with respect to the input multi-

set 𝑥0, … 𝑥𝑞 is given by:
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Digression: divided differences

𝑥

𝐹(𝑥)

𝐹 𝑥0, 𝑥1 =
𝐹(𝑥1)− 𝐹(𝑥0)

𝑥1 − 𝑥0
≈ 𝐹′(𝜉)

𝑥0

𝐹(𝑥0)

𝑥1

𝐹(𝑥1)

The divided differences of a function taking as input a multi set with two 

elements is:
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Digression: divided differences

𝑥

𝐹(𝑥)

𝐹 𝑥0, 𝑥1, 𝑥2 =
𝐹[𝑥0, 𝑥1] − 𝐹[𝑥1, 𝑥2]

𝑥0 − 𝑥2
≈
1

2
𝐹′′(𝜉)

𝑥0

𝐹(𝑥1)

𝑥1

𝐹(𝑥2)

𝑥2

𝐹(𝑥0)

The divided differences of a function taking as input a multi set with three

elements is:
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Digression: divided differences

 In the general case, the evaluation of the

divided differences of a function with 𝑞 + 1 inputs

𝐹 𝑥0, … , 𝑥𝑞 =
𝐹[𝑥0, … , 𝑥𝑞−1 ] − 𝐹[𝑥1, … , 𝑥𝑞 ]

𝑥0 − 𝑥𝑞

is done via the recursion relation:

 Also:

 The computational cost of calculating

divided differences scales as 𝑞2 in the worst case.

𝐹 𝑥0, … , 𝑥𝑞 =
𝐹 𝑛 (𝜉)

𝑛!
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 Grouping all terms together, we end up with the final form

Z = ෍

𝑧,𝑆Ԧ𝑖𝑞=𝕀

𝐷(𝑧,𝑆Ԧ𝑖𝑞)
𝑒
−𝛽 𝐸𝑧0 ,𝐸𝑧1 ,…,𝐸𝑧𝑞

𝑍 is a sum over all basis 

states ۧ|𝑧 and all the 

combinations of products 

of 𝑃𝑗 operators 

𝑆Ԧ𝑖𝑞 = 𝑃𝑖𝑞 …𝑃𝑖2𝑃𝑖1 (with 𝑞

the size of the sequence) 

that evaluate to 𝑆Ԧ𝑖𝑞 = 𝕀.

This is the divided-

difference exponential 

whose inputs are the 

classical energies along the 

walk. Its sign is −1 𝑞.

𝐷(𝑧,𝑆Ԧ𝑖𝑞)
is a product 

of 𝑞 off−diagonal

matrix elements

 Each summand is a  “generalized 

Boltzmann weight” 𝑊 = 𝐷(𝑧,𝑆𝑞)𝑒
−𝛽 𝐸𝑧0 ,𝐸𝑧1 ,…,𝐸𝑧𝑞 .

The partition function
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Provably ergodic QMC

for arbitrary spin ½ systems
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 Recall we have a Markov chain to 

sample each 𝒞 with probability 𝑝𝒞 =
𝑊𝒞

𝑍
.

 Here, 𝒞 is a pair ۧ|𝑧 , 𝑆Ԧ𝑖𝑞 = 𝑃𝑖𝑞 …𝑃𝑖2𝑃𝑖1(= 𝕀) .

 Covering the ۧ|𝑧 space is easy –

“classical moves”, e.g., spin flips. 

We must also make sure the process is 

ergodic for any set of 𝑃𝑖 appearing in 𝐻.

This becomes an interesting problem in theory. 

 Can we produce a finite set of moves that can

generate all sequences 𝑆Ԧ𝑖𝑞 that evaluate to 𝕀? Yes.

Guaranteeing ergodicity 

Markov Chain Monte Carlo (MCMC) 

in QMC configuration space
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Take for example, spin ½ systems.  

Here the 𝑃𝑖 are Pauli-𝑋 strings. 

As group elements, they obey 

𝑃𝑖 = 𝑃𝑖
−1, [𝑃𝑖 , 𝑃𝑗] = 0.  

We were able to prove that all 𝑆Ԧ𝑖𝑞 can be 

generated with:

 Operator swapping, e.g., 𝑃3𝑃1𝑃2𝑃3 → 𝑃3𝑃2𝑃1𝑃3

 Pair insertion/deletion, e.g., 𝑃2𝑃1 → 𝑃2𝑃3𝑃3𝑃1

 Insertion and deletion of the “fundamental cycles” 

of the model, e.g., 𝑃1𝑃2 → 𝑃2𝑃4𝑃5𝑃6𝑃1

These are products of distinct 𝑃𝑖 ’s that evaluate to 𝕀. 

Markov Chain Monte Carlo (MCMC) 

in QMC configuration space

Guaranteeing ergodicity 
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 On a triangular lattice, we may have:

𝑃1 = 𝑋2𝑋3, 𝑃2 = 𝑋1𝑋3 and 𝑃3 = 𝑋1𝑋2.

 Here a fundamental cycle is 𝑃1𝑃2𝑃3 = 𝕀.

Why? Denote:

𝑃1 ≡ [0,1,1], 𝑃2 ≡ [1,0,1], 𝑃3 ≡ [1,1,0].

 Products of permutations correspond to 

mod-2 addition of these vectors. 

The fundamental cycles corresponds to the null-space vectors 

of the 𝑃 matrices: 0,1,1 ⊕ 1,0,1 ⊕ 1,1,0 = 0,0,0 .

All fundamental cycles may be found automatically and 

efficiently!

XY model on the 

triangular lattice.

Guaranteeing ergodicity 
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 On a triangular lattice, we may have:

𝑃1 = 𝑋2𝑋3, 𝑃2 = 𝑋1𝑋3 and 𝑃3 = 𝑋1𝑋2.

 Here a fundamental cycle is 𝑃1𝑃2𝑃3 = 𝕀.

 E.g., the sequence 𝑃2𝑃1𝑃2𝑃1𝑃3𝑃1𝑃2.

Via local swaps: 𝑃1𝑃1𝑃1𝑃2𝑃2𝑃2𝑃3.

 Pair deletions: 𝑃1𝑃2𝑃3. 

 Fundamental cycle deletion: 𝕀. 

This leads to update moves with verified ergodicity 

for any and all spin ½ systems!

XY model on the 

triangular lattice.

Guaranteeing ergodicity 
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Generalization to higher-spin 

particles, fermions and bosons
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What about fermions?

Can be mapped via a Jordan-Wigner 

transformation to spin ½ particles. 

What about higher spin particles? 

Slightly less trivial group structure:

𝑃𝑖 = 𝑃𝑖
−1 → 𝑃𝑖

2𝑠 = 𝑃𝑖
−1 but just 

as doable. mod 2 → mod 2𝑠 + 1.

What about bosons?

Can be treated as infinitely-high-spin 

particles. 

We thus have a method that automatically

simulates essentially all condensed matter models. 

Other types of systems?

Particles of the standard model
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PMR in quantum computing
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Same expansion but for quantum circuits

 In the context of quantum Hamiltonian simulation algorithms:

Sum over all the 

combinations of 

products of 𝑃𝑗 operators 

𝑃𝒊𝑞 = 𝑃𝑖𝑞 …𝑃𝑖2𝑃𝑖1 (with 

𝑞 the size of the 

sequence) 

This is the divided-

difference exponential 

whose inputs are the 

classical energies along 

the path.

𝐷𝒊𝑞 is the product

of all

𝑑𝑖𝑗 𝑧𝑗 along path.

One for each 

permutation 

operator.

 𝒊𝑞 = 𝑖1, 𝑖2, … , 𝑖𝑞 is a multi-index. Each index 𝑖𝑗 = 1…𝑀

picks an off-diagonal permutation.
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 Consider from now on the short-time evolution operator

 Using the off-diagonal series expansion we can write 𝑈 as:

 Explicitly: 

The off-diagonal evolution 𝑈𝑂𝐷

Off-diagonal time evolution
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Write the time-evolution operator as a product of short-

time evolution operators. 

Time step is set to Δ𝑡 = 𝑙𝑛2/ σ𝑖=1 Γ𝑖 .

 Important: 𝑟 = 𝑡/Δ𝑡, number of repetitions is 

proportional to the  “dimensionless time” 𝑇 = 𝑡 σ𝑖=1 Γ𝑖
where Γ𝑖 = 𝐷𝑖 are the norms of the non-local off-

diagonal operators.  

 Diagonal part has been “integrated out”.

𝑟 times

The circuit

𝑒−𝑖𝐻𝑡 = 𝑒−𝑖𝐻Δ𝑡𝑒−𝑖𝐻Δ𝑡⋯ 𝑒−𝑖𝐻Δ𝑡
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Comparison with Taylor-based LCU

 Comparison with truncated Taylor series method is warranted.  

 Gate cost of both algorithms scales linearly with their respective 

“dimensionless times” 𝑇. Qubit cost scales with their respective 

expansion orders 𝑄~log 𝑇 and respective number of operators 𝑀 to 

which the Hamiltonian is decomposed. 

These 

numbers are 

very different. 

 Examples:
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Summary and conclusions
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We developed a very powerful classical 

simulation tool: one algorithm to fit them all…

We have not solved the sign problem 

(but are working on it…). 

 Haven’t discussed measurements:  We can show (paper 

in preparation) that essentially any conceivable physical 

operator may be measured, including integrated 

observables.   

 Method can be successfully ported to quantum 

computers. 

Summary and conclusions
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