QMC of everything: A universal algorithm for simulating arbitrary quantum many-body systems

Itay Hen

Information Sciences Institute, USC
Based partly on: arXiv:2307.06503, arXiv:2006.02539 IPAM workshop: Many-body Quantum Systems via Classical and Quantum Computation

November 7, 2023

Main collaborators and funding

Lev Barash

Arman Babakhani

Amir Kalev

- Funding:

Outline

\square A brief intro to quantum Monte Carlo (QMC) simulations

- Permutation Matrix Representation QMC
- QMC of everything: Provably ergodic Markov chains for arbitrary spin $1 / 2$ systems
- Generalization to higher-spin particles, fermions and bosons
\square PMR in quantum computing
- Summary and conclusions

A brief intro to QMC simulations

Motivation

- Generally, large-scale quantum many-body systems cannot be studied analytically. Too many degrees of freedom.
- Quantum Monte Carlo (QMC) sampling is often the only approach available to study these without approximations.
\square Still, QMC is known to be inefficient in very many cases.

sign problem (negative weights)

small energy gaps (phase transitions)

classical glassiness
-Also: for each model, one usually needs a specially tailored algorithm.

What is QMC?

\square Goal is to write $\mathrm{Z}=\operatorname{Tr}\left[e^{-\beta H}\right]$ as a sum of non-negative weights $W_{\mathcal{C}}$ for configurations $\mathcal{C}: Z=\sum_{\mathcal{C}} W_{\mathcal{C}}$.
a Similarly write observables as $\langle A\rangle=\frac{1}{Z} \operatorname{Tr}\left[A e^{-\beta H}\right]$ as $\frac{1}{Z} \sum_{\mathcal{C}} A_{\mathcal{C}} W_{\mathcal{C}}$.

- Use Markov chain to sample each \mathcal{C} with probability $p_{\mathcal{C}}=\frac{W_{\mathcal{C}}}{Z}$.
- Collect statistics about A by measuring $A_{\mathcal{C}}$. Visit important configurations more often.
\square Hope for (I) no sign problem and (II) rapid mixing.

Standard QMC approaches

\square Path integral Monte Carlo methods are prone to Trotterization errors. $e^{-\beta H}=\left(e^{-\Delta t H}\right)^{L} \approx\left(e^{-\Delta t A} e^{-\Delta t B}\right)^{L} \quad$ but $\quad e^{\Delta t A} e^{\Delta t B} \neq e^{\Delta t(A+B)}$

- Other schemes which are immune to Trotterization errors:
- Continuous-time path integral Monte Carlo [pioneered by Prokof'ev et al].
- Stochastic series expansion (SSE) [pioneered by Sandvik].
- These have their own "issues".
- Common annoyance: need to design update rules on a model-by-model basis.

Permutation Matrix Representation Quantum Monte Carlo

Permutation matrix representation

- PMR-QMC is a novel series expansion of the quantum partition function (T.Albash, G.Wagenbreth, IH, PRE, 2017).
- It is parameter-free and Trotter-error free.
- It is universal and abstract: it applies essentially to any model and does not require model-specific adjustments.
- It does not solve the sign problem but can be used to solve or mitigate it in certain cases.
- Becomes a thermal classical simulation in the classical limit.

Permutation matrix representation

- Choose a basis $\{|z\rangle\}$ (call it the "computational" basis).
- Cast Hamiltonian as a sum of M monomial (generalized permutation) operators $\widetilde{P}_{j}=D_{j} P_{j}$ (always possible and easy to do):

$$
H=\sum_{j=0}^{M} \tilde{P}_{j}=\sum_{j=0}^{M} D_{j} P_{j}=D_{0}+\sum_{j=1}^{M} D_{j} P_{j}
$$

Permutation matrix representation of the Hamiltonian

Permutation matrix representation

$$
H=\sum_{j=0}^{M} \tilde{P}_{j}=\sum_{j=0}^{M} D_{j} P_{j}=D_{0}+\sum_{j=1}^{M} D_{j} P_{j}
$$

- Sum of products of diagonal (non-local) operators D_{j} and permutation operators P_{j}, where $P_{j}|z\rangle=\left|z^{\prime}\right\rangle(\neq|z\rangle)$.
- $P_{0}=\mathbb{I}$ making D_{0}, the "classical"/diagonal Hamiltonian.
\square Rest of permutations P_{j} have no fixed points.
- E.g., for spin models, P_{j}^{\prime} s would be $\mathbb{I}, X_{1}, X_{2}, \ldots, X_{1} X_{2}, \ldots$
-The D_{j} 's are generally non-local diagonal operators.

The off-diagonal series expansion

- Expand the partition function $\mathrm{Z}=\operatorname{Tr}\left[e^{-\beta H}\right]$ in a Taylor series substituting $\operatorname{Tr}[\cdot]=\sum\langle z| \cdot|z\rangle$:

$$
\mathrm{Z}=\sum\langle Z| \sum \frac{(-\beta)^{n}}{n!}\left(D_{0}+\sum D_{j} P_{j}\right)^{n}|z\rangle .
$$

\square Expanding, we get
$\mathrm{Z}=\sum \sum \frac{(-\beta)^{n}}{n!}\langle z| \begin{gathered}\text { sum of all possible products } \\ \text { of length } n \text { of } D_{0} \text { and } D_{j} P_{j}\end{gathered}|z\rangle$.
T.Albash, G.Wagenbreth and I. Hen,"Off-Diagonal Expansion Quantum Monte Carlo", Phys. Rev. E 96, 063309 (20I7).

The off-diagonal series expansion

- Take one such product for example:

$$
\begin{aligned}
& \langle z| D_{0} \cdot D_{0} \cdot D_{1} P_{1} \cdot D_{0} \cdot D_{1} P_{1} \cdot D_{0} \cdot D_{0} \cdot D_{2} P_{2} \cdot D_{0}|z\rangle \\
& =\quad \quad \nabla^{|z\rangle} \\
& \langle z| D_{0} \cdot D_{0} \cdot D_{1} P_{1} \cdot D_{0} \cdot D_{1} P_{1} \cdot D_{0} \cdot D_{0} \cdot D_{2} P_{2}|z\rangle \cdot E(z) \\
& =\quad\left|Z^{\prime}\right\rangle \\
& \langle z| D_{0} \cdot D_{0} \cdot D_{1} P_{1} \cdot D_{0} \cdot D_{1} P_{1} \cdot D_{0} \cdot D_{0} P_{2}|z\rangle \cdot d_{2}\left(z^{\prime}\right) E(z) \\
& \|^{\left|z^{\prime}\right\rangle} \\
& \langle z| D_{0} \cdot D_{0} \cdot D_{1} P_{1} \cdot H_{c} \cdot D_{1} P_{1} P_{2}|z\rangle \cdot E^{2}\left(z^{\prime}\right) d_{2}\left(z^{\prime}\right) E(z) \\
& \left.\| z^{\prime \prime \prime}\right\rangle \\
& \underbrace{\langle z| P_{1} P_{1} P_{2}|z\rangle} \cdot E^{2}\left(z^{\prime \prime \prime}\right) d_{1}\left(z^{\prime \prime \prime}\right) E\left(z^{\prime \prime}\right) d_{1}\left(z^{\prime \prime}\right) E^{2}\left(z^{\prime}\right) d_{2}\left(z^{\prime}\right) E(z)
\end{aligned}
$$

This is the "off-diagonal core" consisting of a unique product of permutation matrices. Evaluates either to 0 or to 1.

The off-diagonal series expansion

-There is an infinite number of terms that share the same off-diagonal core $\langle z| P_{i_{q}} \ldots P_{i_{2}} P_{i_{1}}|z\rangle$. We group them together. - Each pair $\left\{|z\rangle, S_{\vec{l}_{q}}=P_{i_{q}} \ldots P_{i_{2}} P_{i_{1}}\right\}$ defines a closed walk on the Hamiltonian graph (where basis states are nodes, off-diagonal elements are edges):

$$
|z\rangle=\left|z_{0}\right\rangle \xrightarrow{P_{i_{1}}}\left|P_{i_{1}}\right\rangle \xrightarrow{i_{2}} \xrightarrow{P_{i_{q}}}\left|z_{q}\right\rangle=|z\rangle
$$

- This path "induces" a sequence of classical energies $D_{0}|z\rangle=E_{z}|z\rangle: E_{Z_{0}}, E_{z_{1}}, \ldots, E_{z_{q}}$.

\square And accompanying $d_{i_{1}}\left(z_{1}\right), d_{i_{2}}\left(z_{2}\right), \ldots \quad\left|z_{2}\right\rangle$

Grouping with divided differences

\square Summing the contributions of all terms that share the same off-diagonal core, we get the infinite sum

$$
\left(\sum_{n=q}^{\infty} \frac{\beta^{n}(-1)^{n-q}}{n!} \sum_{\sum k_{i}=n-q} E_{c}^{k_{0}}\left(z_{0}\right) \cdot \ldots \cdot E_{c}^{k_{q}}\left(z_{q}\right)\right)
$$

\square As it turns out, this sum can be neatly evaluated to the easily computable

$$
e^{-\beta\left[E_{Z_{0}}, E_{Z_{1}}, \ldots, E_{Z_{q}}\right]}
$$

This is the divided difference of the Boltzmann factors of sequences (multi-sets) of intermediate classical energies along the imaginary time direction.

Digression: divided differences

Digression: divided differences

- The divided differences of a function $F(x)$ with respect to the input multiset $\left[x_{0}, \ldots x_{q}\right]$ is given by:

$$
\begin{aligned}
& \text { by: } \\
& F\left(\left[x_{0}, \ldots, x_{q}\right]\right) \equiv \sum_{j=0}^{q} \frac{F\left(x_{j}\right)}{\prod_{k \neq j}\left(x_{j}-x_{k}\right)}
\end{aligned}
$$

a The divided difference of a function with an input multi-set of size one, is simply

$$
F\left[x_{0}\right]=F\left(x_{0}\right)
$$

Digression: divided differences

- The divided differences of a function taking as input a multi set with two elements is:

$$
F\left[x_{0}, x_{1}\right]=\frac{F\left(x_{1}\right)-F\left(x_{0}\right)}{x_{1}-x_{0}} \approx F^{\prime}(\xi)
$$

Digression: divided differences

The divided differences of a function taking as input a multi set with three elements is:

$$
F\left[x_{0}, x_{1}, x_{2}\right]=\frac{F\left[x_{0}, x_{1}\right]-F\left[x_{1}, x_{2}\right]}{x_{0}-x_{2}} \approx \frac{1}{2} F^{\prime \prime}(\xi)
$$

Digression: divided differences

- In the general case, the evaluation of the divided differences of a function with $q+1$ inputs

$$
F\left(\left[x_{0}, \ldots, x_{q}\right]\right) \equiv \sum_{j=0}^{q} \frac{F\left(x_{j}\right)}{\prod_{k \neq j}\left(x_{j}-x_{k}\right)}
$$

is done via the recursion relation:
$F\left[x_{0}, \ldots, x_{q}\right]=\frac{F\left[x_{0}, \ldots, x_{q-1}\right]-F\left[x_{1}, \ldots, x_{q}\right]}{x_{0}-x_{q}}$

- Also:

$$
F\left[x_{0}, \ldots, x_{q}\right]=\frac{F^{(n)}(\xi)}{n!}
$$

- The computational cost of calculating divided differences scales as q^{2} in the worst case.

The partition function

- Grouping all terms together, we end up with the final form

Z is a sum over all basis states $\{|z\rangle\}$ and all the $D_{\left(z, S_{i_{q}}\right)}$ is a product combinations of products of q off-diagonal of P_{j} operators matrix elements

This is the divideddifference exponential whose inputs are the classical energies along the walk. Its sign is $(-1)^{q}$.
$S_{\vec{i}_{q}}=P_{i_{q}} \ldots P_{i_{2}} P_{i_{1}}$ (with q
the size of the sequence) Each summand is a "generalized that evaluate to $S_{\vec{\imath}_{q}}=\mathbb{I}$. Boltzmann weight" $W=D_{\left(z, S_{q}\right)} e^{-\beta\left[E_{z_{0}}, E_{z_{1}}, \ldots, E_{z_{q}}\right]}$.

Provably ergodic QMC for arbitrary spin $1 / 2$ systems

Guaranteeing ergodicity

- Recall we have a Markov chain to sample each \mathcal{C} with probability $p_{\mathcal{C}}=\frac{W_{\mathcal{C}}}{Z}$.
- Here, \mathcal{C} is a pair $\left\{|z\rangle, S_{\vec{l}_{q}}=P_{i_{q}} \ldots P_{i_{2}} P_{i_{1}}(=\mathbb{I})\right\}$.
a Covering the $|z\rangle$ space is easy "classical moves", e.g., spin flips.

Markov Chain Monte Carlo (MCMC) in QMC configuration space
aWe must also make sure the process is ergodic for any set of $\left\{P_{i}\right\}$ appearing in H.
-This becomes an interesting problem in theory.
\square Can we produce a finite set of moves that can generate all sequences $S_{\vec{l}_{q}}$ that evaluate to \mathbb{I} ? Yes.

Guaranteeing ergodicity

- Take for example, spin $1 / 2$ systems. Here the $\left\{P_{i}\right\}$ are Pauli- X strings.
\square As group elements, they obey $P_{i}=P_{i}^{-1},\left[P_{i}, P_{j}\right]=0$.
-We were able to prove that all $S_{\vec{i}_{q}}$ can be generated with:
\square Operator swapping, e.g., $P_{3} P_{1} P_{2} P_{3} \rightarrow P_{3} P_{2} P_{1} P_{3}$
- Pair insertion/deletion, e.g., $P_{2} P_{1} \rightarrow P_{2} P_{3} P_{3} P_{1}$
- Insertion and deletion of the "fundamental cycles" of the model, e.g., $P_{1} P_{2} \rightarrow P_{2} P_{4} P_{5} P_{6} P_{1}$
- These are products of distinct P_{i} 's that evaluate to II.

Markov Chain Monte Carlo (MCMC) in QMC configuration space

Guaranteeing ergodicity

- On a triangular lattice, we may have:

$$
P_{1}=X_{2} X_{3}, P_{2}=X_{1} X_{3} \text { and } P_{3}=X_{1} X_{2} .
$$

\square Here a fundamental cycle is $P_{1} P_{2} P_{3}=\mathbb{I}$.
-Why? Denote:

$$
P_{1} \equiv[0,1,1], P_{2} \equiv[1,0,1], P_{3} \equiv[1,1,0]
$$

\square Products of permutations correspond to mod- 2 addition of these vectors.

XY model on the triangular lattice.
-The fundamental cycles corresponds to the null-space vectors of the P matrices: $[0,1,1] \oplus[1,0,1] \oplus[1,1,0]=[0,0,0]$.

- All fundamental cycles may be found automatically and efficiently!

Guaranteeing ergodicity

- On a triangular lattice, we may have:

$$
P_{1}=X_{2} X_{3}, P_{2}=X_{1} X_{3} \text { and } P_{3}=X_{1} X_{2}
$$

\square Here a fundamental cycle is $P_{1} P_{2} P_{3}=\mathbb{I}$.
\square E.g., the sequence $P_{2} P_{1} P_{2} P_{1} P_{3} P_{1} P_{2}$.
\square Via local swaps: $P_{1} P_{1} P_{1} P_{2} P_{2} P_{2} P_{3}$.
\square Pair deletions: $P_{1} P_{2} P_{3}$.

$X Y$ model on the triangular lattice.

- Fundamental cycle deletion: II.
aThis leads to update moves with verified ergodicity for any and all spin $1 / 2$ systems!

Generalization to higher-spin particles, fermions and bosons

Other types of systems?

\square What about fermions?
Can be mapped via a Jordan-Wigner transformation to spin $1 / 2$ particles.
aWhat about higher spin particles? Slightly less trivial group structure: $P_{i}=P_{i}^{-1} \rightarrow P_{i}^{2 s}=P_{i}^{-1}$ but just as doable. $\bmod 2 \rightarrow \bmod 2 s+1$.
-What about bosons?
Can be treated as infinitely-high-spin

Particles of the standard model particles.
\square We thus have a method that automatically simulates essentially all condensed matter models.

PMR in quantum computing

Same expansion but for quantum circuits

- In the context of quantum Hamiltonian simulation algorithms:

$$
e^{-i H t}|z\rangle=\underbrace{\sum_{q=0}^{\infty} \sum_{\mathbf{i}_{q}}} \underbrace{e^{-i t\left[E_{z}, \ldots, E_{z_{q}}\right]}} \underbrace{D_{\mathbf{i}_{q}}} P_{\mathbf{i}_{q}}|z\rangle
$$

Sum over all the combinations of products of P_{j} operators

$$
P_{i_{q}}=P_{i_{q}} \ldots P_{i_{2}} P_{i_{1}} \text { (with }
$$

q the size of the sequence)

This is the divided-
difference exponential whose inputs are the classical energies along the path.
$D_{i_{q}}$ is the product of all
$d_{i_{j}}\left(z_{j}\right)$ along path. One for each permutation operator.

- $\boldsymbol{i}_{q}=\left(i_{1}, i_{2}, \ldots, i_{q}\right)$ is a multi-index. Each index $i_{j}=1 \ldots M$ picks an off-diagonal permutation.

Off-diagonal time evolution

- Consider from now on the short-time evolution operator

$$
U=e^{-i H \Delta t}
$$

- Using the off-diagonal series expansion we can write U as:

$$
U=U \sum_{z}|z\rangle\langle z|=\sum_{z} U|z\rangle\langle z|=\sum_{z} V_{z}|z\rangle\langle z|
$$

- Explicitly:

$$
\begin{aligned}
U & =\sum_{z} e^{-i \Delta t E_{z}} \sum_{q=0}^{\infty} \sum_{\mathbf{i}_{q}} e^{-i \Delta t\left[\Delta_{z}, \ldots, \Delta_{z_{q}}\right]} D_{\mathbf{i}_{q}} P_{\mathbf{i}_{q}}|z\rangle\langle z| \\
& =\underbrace{\left(\sum_{z} \sum_{q=0}^{\infty} \sum_{\mathbf{i}_{q}} e^{-i \Delta t\left[\Delta_{z}, \ldots, \Delta_{z_{q}}\right]} D_{\mathbf{i}_{q}} P_{\mathbf{i}_{q}}|z\rangle\langle z|\right.}_{\text {The off-diagonal evolution } U_{O D}}) e^{-i \Delta t D_{0}}
\end{aligned}
$$

The circuit

-Write the time-evolution operator as a product of shorttime evolution operators.

$$
e^{-i H t}=\underbrace{e^{-i H \Delta t} e^{-i H \Delta t} \cdots e^{-i H \Delta t}}_{r \text { times }}
$$

- Time step is set to $\Delta t=\ln 2 / \sum_{i=1} \Gamma_{i}$.
- Important: $r=t / \Delta t$, number of repetitions is proportional to the "dimensionless time" $T=t \sum_{i=1} \Gamma_{i}$ where $\Gamma_{i}=\left|D_{i}\right|$ are the norms of the non-local offdiagonal operators.
a Diagonal part has been "integrated out".

Comparison with Taylor-based LCU

\square Comparison with truncated Taylor series method is warranted.

- Gate cost of both algorithms scales linearly with their respective "dimensionless times" T. Qubit cost scales with their respective expansion orders $Q \sim \log T$ and respective number of operators M to which the Hamiltonian is decomposed.
\square These
numbers are very different.

Hamiltonian	$H=\sum_{i j} J_{i j} Z_{i} Z_{j}$	
Method	this paper	Taylor series LCU [1]
No. of LCU unitaries	0	N^{2}
Dimensionless time (T)	0	$t \sum_{i j}\left\|J_{i j}\right\|$
Comments	H is diagonal	-

- Examples:

Hamiltonian	$H=\sum_{i j} J_{i j} Z_{i} Z_{j}+\sum_{i j} \tilde{J}_{i j} Z_{i} X_{j}$	
Method	this paper	Taylor series LCU [1]
No. of LCU unitaries	$N+1$	$2 N^{2}$
Dimensionless time (T)	$t \sum_{j}\left\|\sum_{i} \tilde{J}_{i j}\right\|$	$t \sum_{i j}\left(\left\|J_{i j}\right\|+\left\|\tilde{J}_{i j}\right\|\right)$
Comments	$0=\sum_{i j} J_{i j} Z_{i} Z_{j}$ $D_{j}=\sum_{i} J_{i j} Z_{i}$	-

Summary and conclusions

Summary and conclusions

\square We developed a very powerful classical simulation tool: one algorithm to fit them all...
\square We have not solved the sign problem (but are working on it...).

- Haven't discussed measurements: We can show (paper in preparation) that essentially any conceivable physical operator may be measured, including integrated observables.
- Method can be successfully ported to quantum computers.

QMC of everything: A universal algorithm for simulating arbitrary quantum many-body systems

Itay Hen

Information Sciences Institute, USC
Based partly on: arXiv:2307.06503, arXiv:2006.02539 IPAM workshop: Many-body Quantum Systems via Classical and Quantum Computation

November 7, 2023

