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Google is building an error-corrected
quantum computer

Targeting a device with ~1M physical qubits 
that can execute billions, or trillions of gates

This is a challenging and expensive endeavor!

→ We hope these devices will solve important and otherwise intractable problems!

Y?
● There are some use cases for 1M physical qubits, but fewer than we would hope

This talk is about research into the resources required for promising applications

● We need more researchers to study practical applications of small fault-tolerant devices!



Outline

1. Quick review of modern fault-tolerant quantum algorithms for chemistry

2. Results on identifying and assessing viability of valuable chemical applications

3. Quick survey of some recent non-electronic structure applications in chemistry



Part I: a review of modern fault-tolerant 
quantum algorithms for chemistry



Representing η electrons in N spin-orbitals
Second quantization requires N qubits First quantization requires η log N qubits

● Anti-symmetry is “encoded in the operators”
● Decomposition into local operators = NISQy
● Good near half filling or with compact basis

η registers of size log N index 
which orbital the particle occupies

● Anti-symmetry is “explicit in the state”
● Operators sparse but not local ≠ NISQy
● Ideal for high precision calculations
● Low overhead for including nuclei,

e.g. for performing dynamics



Methods for quantum simulation and their cost
Each step of a product formula (Trotter) usually scales linearly in the Hamiltonian sparsity

Linear combination of unitaries (1202.5822) methods need not scale this way

Can perform phase estimation directly on quantum walk (1711.11025)

Or, we can synthesize e-i H t via quantum signal processing (1606.02685)

Qubitized quantum walks (1610.06546) act as                                               where 



But how does the quantum walk scale?
SELECT can be implemented at O(η) cost in first quantization, O(N) cost in second quantization

PREPARE is hard part, scaling as “cost of computing Hamiltonian coefficients from index”
● O(sqrt(Γ)) gates and ancilla where Γ is “amount of information to specify Hamiltonian”
● relies on “coherent alias sampling” (1805.03662) and “dirty QROM” (1812.00954)

Γ = O(N4)
PEA cost = O(N4 / 𝛜) 

(1902.02134)

Γ = O(L N2) = O(N3)
PEA cost = O(N7/2 / 𝛜) 

(1902.02134)

Γ = O(N2)
PEA cost = O(N3 / 𝛜) 

(2011.03494)

no factorization Cholesky factorization Tensor hypercontraction

Recall total PEA cost = O(λ sqrt(Γ) / 𝛜) and for these systems λ = O(N2)



Simple basis sets like grids, plane 
waves lead to analytic integrals!
Γ = O(1) - no QROM needed!

First quantization and simple basis sets

But molecules need 100X - 1,000X more plane waves than MOs to reach chemical accuracy

● In second quantization, space complexity is O(N)

● Would need 100k logical qubits instead of 100!

#particles with 300k plane waves
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● 60 electrons in 100k PWs needs ~1k logical qubits

● 1807.09802 + 2105.12767 scale as low as O(η8/3 N1/3)

● Particularly attractive for non-BO dynamics



Part II: the search for applications



Anybody tired of FeMoCo yet?
● Most studied quantum application is PEA applied to 2nd quantized MO-basis Hamiltonian

● Critical to flesh out more specifically what valuable technological problems might 
be practically solved with a few thousand logical qubits and < 1012 Toffoli gates

● Claims of quantum advantage are easiest to assess for highly specific proposals 
(e.g. compute this observable of this system to enough precision to resolve this)



Assessing quantum/classical boundary for P450
PNAS 119, 2203533119 (2022)

P450 is strongly correlated 
iron-porphyrin / drug anti-target
(kind of like FeMoCo!)

We observe onset of quantum advantage for 
active space sizes near 80 qubits

Chemically relevant (and classically intractable) 
calculations would require ~3k qubits, ~1010 Toffolis



Ab initio materials simulation is still very costly
PRX Quantum 4, 040303 (2023)

Want to get Co out of batteries, LNO is good candidate, why not Jahn-Teller distorted?

● 340 basis functions (3x FeMoCo)
● 132 electrons in primitive cell (2x FeMoCo)
● Classical many-body methods unreliable for metals
● Embedding difficult to converge finite size
● DFT disagrees between functionals

Q algorithms must further improve for viability

recent work symmetry adapts qubitization

Gives linearly reduced scaling in number of k-points



Are only the most highly entangled systems 
promising applications of quantum simulation?

FeMoCo (fertilizer catalyst)
PRX Quantum 2, 030305 (2021)

P450 (drug anti-target)
PNAS 119, 2203533119 (2022)

LiNiO2 (battery cathode)
PRX Quantum 4, 040303 (2023)

most chemical computations do not require accurate treatment of strong correlation

● “classical competition” is highly efficient/approximate classical methods (e.g. mean-field, DFT)

● “classical competition” is only the most costly/accurate methods (e.g. AFQMC, DMRG)

● super-quadratic quantum advantage over mean-field would dramatically broaden applications



On the importance of super-quadratic speedups
PRX Quantum 2, 010103 (2021)

quantum
advantage

PRX Quantum 2, 010103 (2021) argues quadratic speedups will not enable 
error-corrected advantage until devices MUCH larger than 1MM physical qubits

classical NAND gate (CMOS)
<10-9 “transistorseconds”

“quantum NAND” gate (distillation of Toffoli state) >10 “qubitseconds”



Super-quadratic quantum advantage over classical 
mean-field methods possible for electron dynamics
Nat. Comm 14, 4058 (2023)

N = number of basis functions (e.g. plane waves, grid points)      η = number of electrons << N        

Usual quantum simulation advantage is resolution of entanglement between particles
● storing arbitrary wavefunction classically requires O(N choose η) bits
● mean-field has no particle correlation, only requires O(N η) bits and gate complexity:

first quantized quantum simulations need only O(η log N) qubits rather than O(N)

or, for
very large N

or, for
high temp



η = number of electrons
N = number of basis functions = η𝛼    

Prospects for super-quadratic speedup over mean-field
Nat. Comm 14, 4058 (2023)

prospects much better when systems 
require at least some correlation,
or for systems at finite temperature

Estimates below for sampling from dynamics; 
additional costs from state prep, measurement



Quantum simulating heating processes of pre-ignition ICF
“The essence of controlled laboratory thermonuclear fusion is to use the fusion product’s 
kinetic energy to self-heat the plasma, accelerating and perpetuating the burn”
- Phys. Plasmas 26, 062701 (2019) 

Drag of on-transport through in the 
pre-ignition plasma leads to heating

Difficult regime because electron 
correlation and temperature are 
about equal contributions

Multiscale ICF modeling depends 
sensitively on stopping power as a 
function of temperature, velocity



Classically computing stopping power
arXiv:2308.12352

● DOE spends billions of CPU-hours 
computing stopping power with TDDFT

● TDDFT not very accurate but no other 
choice - difficult to measure via experiment

● Our collaborators alone use 10% of Trinity 
Supercomputer (~$200 mil) for this, annually

https://docs.google.com/file/d/1ZlnjlSdxkn36jgoTMZ4j7O63_yZ3PZrx/preview


Resource estimates for stopping power
arXiv:2308.12352

t = 10
ε=0.001
N ~ 260k
rs ~ 0.8

reference benchmarks

● FeMoCO: 2100 Qubits, 3.2 x 1010 Toffoli
● P450: 1500 Qubits, 7.0 x 109 Toffoli



Part III: various interesting 
non-electronic structure but 
chemistry adjacent things to explore 
with quantum computers



Exponential speedup in simulating classical oscillators
arXiv:2303.13012, accepted PRX + FOCS

Hooke’s Law for coupled oscillators can be expressed as: 

Adding                       to both sides gives Schrodinger equation:

● If spring constants/masses efficiently computable, can simulate N oscillators in O(polylog(N))

● We show problem is BQP-Complete and prove relativized exponential speedup

● Many potential applications: modeling electrical grids, mechanical engineering, classical 

wave equation, molecular vibrations, statistical mechanics of fields, etc.



Quantum algorithm for difficult NMR spectra
PRX Quantum 3, 030345 (2022)

Inverse problem: infer molecular structure (spin Hamiltonian) 
from nuclear magnetic resonance data

Hard to solve classically when dipolar coupling is strong (e.g. 
when protein confined to surface)

Easy to solve on quantum device potentially enabling new 
and more powerful forms of NMR experiments

protein

Time-dependent 

magnetic field

NMR spectrometer

quantum spin model

Response



Quantum enhanced experiments

By entangling two copies of N qubit state (e.g. from a sensor), we can learn properties 
with 2N fewer queries vs single copy

With limited data, one can achieve quantum advantage with very few qubits; achieved 
on our chips!

Science 376, 1182-1186 (2022)

Many possibilities here for more sensitive probes of chemistry



Talk summary
● Critical to identify chemical problems where quantum advantage would be impactful

● We have a few examples in strongly correlated molecules but could use more; 
many examples in ab initio materials but quantum algorithms must improve

● Quantum algorithms for electron dynamics are sometimes even faster than classical 
mean-field methods, especially when needing to resolve correlation or temperature

● Computing stopping power of pre-ignition fusion fuels has decisive quantum 
advantage, corresponds to relevant real-world experiments for 1012 - 1013 Toffoli gates

● Interesting frontiers outside of electronic structure in helping to interpret NMR spectra 
(maybe even NISQ-viable), molecular vibrations, machine learning of quantum data



Thank you!

Dominic Berry (Macquarie)
Nicholas Rubin (Google)
Joonho Lee (Harvard)
Andrew Baczewski (Sandia)

and many others!



Appendix: Galerkin discretizations

Second quantization        space = O(N) First quantization        space = O(η log N)

sparsity
=O(N4)

sparsity
=O(η2N2)

sparsity
=O(N2)

sparsity
=O(N2)

sparsity
=O(ηN)

sparsity
=O(ηN)


