

By Gary J Mooney

Large-Scale Entanglement on Physical Quantum Computers

IBM Quantum Network Hub at the University of Melbourne

Overview

Benchmarking quantum devices

Forms of Multipartite Entanglement

• Bipartite and Genuine Multipartite entanglement

Detecting **Bipartite entanglement**

• By preparing Graph states on *IBM Quantum* devices

Detecting Genuine multipartite entanglement

- By preparing GHZ states
- GHZ decoherence rates

Bell state teleportation

 2π

Angle ϕ

0

 2π

Angle ϕ

0

 2π

Angle ϕ

0

Overview

Benchmarking quantum devices

Forms of Multipartite Entanglement

• Bipartite and Genuine Multipartite entanglement

Detecting **Bipartite entanglement**

• By preparing Graph states on *IBM Quantum* devices

- Detecting Genuine multipartite entanglement
- By preparing GHZ states
- GHZ decoherence rates

Bell state teleportation

Pure State Entanglement - Definitions

- Entanglement
 - Non-classical correlations
 - ▶ State is not separable: $|\psi\rangle \neq |\phi_1\rangle \otimes |\phi_2\rangle$, for any $|\phi_1\rangle$ and $|\phi_2\rangle$
 - State is entangled

- Multiqubit Entanglement
 - A multiqubit state either:
 - "is fully bipartite entangled"
 - (aka "is entangled")
 - "contains bipartite entanglement"

What is Mixed State Entanglement?

Overlapping regions of

Entanglement across all gubits

entanglement.

Real quantum device \rightarrow Noise

- Quantum state is a Mixed state: probabilistic mixture of pure states
- More complicated than pure states

Density matrix ρ Pro Quantum Theory: Concepts and Methods, (1993)

Bipartite Entangled (or just Entangled)

- State is **not separable**, i.e. $\rho \neq \rho^A \otimes \rho^B$, for all bipartitions A and B
- Although, individual pure states ho_i might be separable

Mooney, Hill and Hollenberg, Sci. Rep. (2019)

Separable

Genuine Multipartite Entangled (GME)

- Stronger form of entanglement
- There is always a fully entangled pure state

GME states are always fully bipartite entangled

Overview

Benchmarking quantum devices

- Forms of Multipartite Entanglement
- Bipartite and Genuine Multipartite entanglement

Detecting **Bipartite entanglement**

• By preparing Graph states on *IBM Quantum* devices

- Detecting Genuine multipartite entanglement
- By preparing GHZ states
- GHZ decoherence rates

Bell state teleportation

q U $\mathrm{CZ}^{\alpha}_{\beta}|+\rangle^{\otimes \mathrm{n}}$ $|G_n\rangle =$ Choose a quantum state to prepare q $(\alpha,\beta) \in E$ Controlled-phase gate E := (edge set)a3Graph State (Cluster State) q4 Robust to noise Briegel and Raussendorf, Phys. Rev. Lett. (2001) q9Requires n/2 local measurements to disentangle q8Low circuit depth • Defined on a graph q7 Convenient for detecting bipartite entanglement q_{6} q_5 q10Applications • q11Raussendorf and Briegel, Phys. Rev. Lett. (2001) Kitaev, arXiv. (1997) One-way quantum computing Graph representation q12Raussendorf, Harrington, Goyal, Fault-tolerant error correction q13New Journal of Physics. (2007) Measurement-Based variational guantum eigensolver Preparation q14Ferguson, Phys. Rev. Lett. (2021) q19q18q17How do we detect entanglement? q16

20-qubit line graph state

Circuit representation

q15

Full Quantum State Tomography

Quantum State Tomography (QST)

- Get a density matrix, encapsulating noise
 - $2^N \times 2^N$ complex matrix
- Analyse entanglement properties

Full quantum state information

- Can be overkill for measuring a particular property
- Use a detection strategy

Focus on bipartite entanglement

Detection Strategy

- State is **not separable**
 - \Rightarrow State is at least **bipartite entangled**
- 1. Generate entanglement graph
 - Measure entanglement between qubit pairs
- 2. Is entanglement graph connected?

Entanglement Graph

So if **connected**, then **entangled**

On Quantum Devices To show: entanglement graph is connected

Detecting 2-Qubit Entanglement

One of 4 Bell states (up to local operations)

Perform state tomography on qubit pair and their neighbours

Graph State Property:

Project neighbouring qubits to Z-basis states → Bell state (up to local operations)

• Bell states produced from combinations of states {0, 1}^{#(neighbours)}:

 $\begin{array}{l} H \otimes I | \Phi^+ \rangle &= (|00\rangle + |01\rangle + |10\rangle - |11\rangle) / 2 \\ H \otimes X | \Phi^+ \rangle &= (|00\rangle + |01\rangle - |10\rangle + |11\rangle) / 2 \\ XH \otimes I | \Phi^+ \rangle &= (|00\rangle - |01\rangle + |10\rangle + |11\rangle) / 2 \\ XH \otimes X | \Phi^+ \rangle &= (|00\rangle - |01\rangle - |10\rangle - |11\rangle) / 2 \end{array}$

Calculate entanglement for each set of states $\{0, 1\}^{#(neighbours)}$

Negativity of partial transpose

- Calculate \rightarrow Sum over magnitudes of negative eigenvalues of $\rho_{3,4}^{T_4}$
- For Two Qubits: Non-zero negativity is necessary and sufficient
 - Negativity is non-zero ↔ Entanglement
 Horodecki, Horodecki and Horodecki, Phys. Lett. A. (1996)

Measure negativity for all neighbour states: $\{0, 1\}^{#(neighbours)}$

 \rightarrow Extent of entanglement is the largest negativity (among the combinations)

<u>Example</u>

Entanglement detection between qubits 3 and 4

Negativity

Error rates:

 $T_2 = \sim 100 \ \mu s$ (dephasing)

Results: Negativities on an *IBM Quantum* device

Apply these techniques on an IBM Quantum computer: the **20-qubit** *ibmg poughkeepsie* device

- \rightarrow Embed a line graph state
- \rightarrow Generate entanglement graph

- Whole device is bipartite entangled
- At the time \rightarrow largest quantum entangled state (on a universal quantum computer)
- Previous record was 16 qubits Wang et. al. npj Quantum Information (2018)

Native Graph State

Native graph state: match the hardware layout

- Benchmark qubit pairs
- More connected cycles
 - Requires more separable pairs to break connectedness
- Still constant circuit depth
 - Depth = largest neighbour count of qubits

3 Layers of 2-qubit gates

Constant depth \rightarrow largest neighbour count of qubits

Quantum Readout-Error Mitigation (QREM)

- Readout assignment errors:
 - Obfuscates quantum data
 - State appears less entangled than it is

Calibrate readout-errors with stochastic matrix *A*:

 $A\vec{p} = \vec{p}_{\text{noisy}}$ $\rightarrow \vec{p} = A^{-1}\vec{p}_{\text{noisy}}$ $A = \bigotimes_{i=1}^{N} A_{i} \qquad A_{i} = \begin{pmatrix} p_{i}(0|0) & p_{i}(0|1) \\ p_{i}(1|0) & p_{i}(1|1) \end{pmatrix}$ Calibration matrix for qubit *i*

Requires only 2 measurements $\{|00 \dots 0\rangle, |11 \dots 1\rangle\}$

$$A^{-1} = \bigotimes_{i=1}^N A_i^{-1}$$

- Efficient application
 - Apply each qubit calibration matrix separately, zeroing small probabilities Mooney, White, Hill and Hollenberg, J. Phys. Commun (2021)
 - M3 python package Nation et al. PRX Quantum (2021)
- Make physical Smolin et al. Phys. Rev. Lett. (2012)

Results: Newer IBM Quantum devices

53-qubit ibmg rochester device

Error Rates:

- Readout: 12.6%, $\sigma = 9.3\%$
- CNOT: 4.6%, $\sigma = 2.4\%$ •

Decoherence Times:

- $T_1 = \sim 53 \ \mu s$ (relaxation) •
- $T_2 = \sim 53 \ \mu s$ (dephasing) •

65-qubit ibmq manhattan device

Error Rates:

- Readout: 2.1%, $\sigma = 1.5\%$
- CNOT: 1.5%, $\sigma = 0.6\%$.

Decoherence Times:

- $T_1 = \sim 60 \ \mu s$ (relaxation)
- $T_2 = \sim 78 \ \mu s$ (dephasing) •

QREM

No QREM

0.45

0.4

0.35

0.3

Quantum Readout-Error Mitigation (QREM)

Results: Entanglement Graphs

Mooney, White, Hill and Hollenberg, Adv. Quantum Technol (2021)

MELBOURNI

Let's Look at the Required Resources

Quantum State Tomography on Each Pair

Requires 3^N N = 4 qubits $\rightarrow 3^4 = 81$ circuits (~350k shots*) N = 5 qubits $\rightarrow 3^5 = 243$ circuits (~1 Million shots*) * at ~4000 shots each

53-qubit Rochester:

- - ➢ Or ∼44 Million shots

65-qubit Manhattan:

72 qubit pairs
~14,000 circuits!

➢ Or ~56 Million shots!

Could take a whole day to complete

• Was barely executing within device calibration cycles

We need to go higher

Target: 127-qubit *ibm_washington* device

127-qubit Washington:

- 142 pairs of qubits
 - ➤ ~28,000 circuits
 - ➢ Or ~112 Million shots!
 - Error bars: x8 more

How to reduce this?

Two Optimisation Techniques

- 1. Neighbour-state bucketing
- 2. Parallel Quantum State Tomography

127-qubit *ibm_washington* device

Error Rates:

- Readout: 2.3%, $\sigma = 2.8\%$
- CNOT: 0.8%

Decoherence Times:

- $T_1 = \sim 240 \ \mu s$ (relaxation)
- $T_2 = \sim 142 \ \mu s$ (dephasing)

Optimisation 1: Neighbour-State Bucketing

Currently

- Tomography on qubit pair and neighbours (4 or 5 qubits)
- > 5 qubits \rightarrow requires $3^5 = 243$ circuits per pair

However

• Projecting neighbours only ever results in 1 of 4 Bell state variations

1.
$$|\Phi^{BS1}\rangle \equiv H \otimes I |\Phi^+\rangle = (|00\rangle + |01\rangle + |10\rangle - |11\rangle) / 2$$

2. $|\Phi^{BS2}\rangle \equiv H \otimes X |\Phi^+\rangle = (|00\rangle + |01\rangle - |10\rangle + |11\rangle) / 2$
3. $|\Phi^{BS3}\rangle \equiv XH \otimes I |\Phi^+\rangle = (|00\rangle - |01\rangle + |10\rangle + |11\rangle) / 2$

4.
$$|\Phi^{BS4}\rangle \equiv XH \otimes X|\Phi^+\rangle = (|00\rangle - |01\rangle - |10\rangle - |11\rangle)/2$$

- Bucket based on obtained Bell state
- Perform 2-qubit tomography
- Requires only $3^2 = 9$ circuits per pair

• 127-qubit Washington:

- From ~28,000 circuits
 - down to 1, 278 circuits!
 - A factor of 22 saving

John F. Kam, et. al., paper in preparation

Each bucket: State tomography and Calculate negativity

Optimisation 2: Parallel Quantum State Tomography

Currently

• Tomography on each qubit pair separately

Instead

- Perform in parallel on non-overlapping sets of qubitpairs and their neighbours
- Only need up to 8 rounds for IBM Quantum heavyhexagonal layouts
 - Using layout-agnostic greedy algorithm
- Can reduce to **4 rounds** when sharing neighbours
- 127-qubit Washington:
 - Originally ~28,000 circuits
 - Then 1,278 circuits (neighbour-state bucketing)
 - down to constant 36 circuits! (Parallel-QST)
- 36 circuits for all heavy hex layouts

non-overlapping regions performed in parallel

Results: 127-qubit *ibm_washington* **Device** MELBOURNI

Negativity

Latest: 433-qubit *ibm_seattle* Device

Device (*ibm_seattle*):

- 19 inactive qubits
- $433 \rightarrow 414$ active qubits

Error rates (mean):

- Readout: 7.6%, $\sigma = 7.4\%$
- CNOT: 2.9%, $\sigma = 3.4\%$

Decoherence times:

- $T_1 = \sim 90 \ \mu s$ (relaxation)
- $T_2 = \sim 60 \ \mu s$ (dephasing)

Experiment:

Originally ~100,000 circuits → down to **36 circuits!**

Result:

- Graph state is bipartite entangled
- All active qubits

John Fidel Kam *et al.,* (paper in production)

Relation to physical device

Benchmark: how does it relate to device?

All Device Errors vs. Entanglement

Device Negativities (readout-error mitigated)

Device	Qubits	QV	$\operatorname{Mean} \mathcal{N}$	Whole-Device
lima	5	8	0.470 ± 0.011	\checkmark
belem	5	16	0.427 ± 0.010	\checkmark
quito	5	16	0.486 ± 0.010	\checkmark
manila	5	32	0.487 ± 0.003	\checkmark
jakarta	7	16	0.482 ± 0.007	\checkmark
oslo	7	32	0.488 ± 0.010	\checkmark
nairobi	7	32	0.488 ± 0.004	\checkmark
lagos	7	32	0.466 ± 0.008	\checkmark
perth	7	32	0.482 ± 0.011	\checkmark
guadalupe	16	32	0.447 ± 0.032	\checkmark
toronto	27	32	0.403 ± 0.075	\checkmark
geneva	27	32	0.461 ± 0.089	\checkmark
hanoi	27	64	0.467 ± 0.026	\checkmark
auckland	27	64	0.437 ± 0.060	\checkmark
cairo	27	64	0.455 ± 0.026	\checkmark
mumbai	27	128	0.460 ± 0.078	\checkmark
montreal	27	128	0.424 ± 0.055	\checkmark
kolkata	27	128	0.407 ± 0.134	\checkmark
washington	127	64	0.403 ± 0.125	\checkmark
Seattle	433	-	0.340	🗸 (active)

Qubit Pairs

0.00

185755555

Qubit Pairs

24

25623

2251

Overview

Benchmarking quantum devices

Forms of Multipartite Entanglement

• Bipartite and Genuine Multipartite entanglement

- Detecting **Bipartite entanglement**
- By preparing Graph states on *IBM Quantum* devices

Detecting Genuine multipartite entanglement

- By preparing GHZ states
- GHZ decoherence rates

Bell state teleportation

• GHZ State \rightarrow generalisation of Bell state to more qubits

$$|Bell\rangle = \frac{|0\rangle^{\otimes 2} + |1\rangle^{\otimes 2}}{\sqrt{2}} \rightarrow |GHZ\rangle_N = \frac{|0\rangle^{\otimes N} + |1\rangle^{\otimes N}}{\sqrt{2}}$$

- Conveniently sparse density matrix
- Sensitive to noise
 - Disentangled after only 1 local measurement

$$\frac{000\rangle + |111\rangle}{\sqrt{2}} \rightarrow \{|000\rangle, |111\rangle\}$$

GHZ State density matrix (4-qubit)

Density matrix (2 qubits)

0 0

0 0

0 0

Coherence

Population

 $\frac{1}{2}$

0

1

Genuine Multipartite Entanglement (GME) in GHZ states

GHZ Fidelity (> 0.5) \rightarrow GME

Multiple Quantum Coherences (MQC)

Fidelity = (Population)/2 + (Coherence)/2

- Population: Occupancies of $|00 \ ... \ 0\rangle$ and $|11 \ ... \ 1\rangle$
- Coherence: Multiple Quantum Coherences (MQC) Wei et al., Phys. Rev. A (2020)

Mooney, White, Hill and Hollenberg, J. Phys. Commun (2021)

Results: On the 27-qubit *ibmq_montreal device*

- Prepare on device
- Add parity verification
 → effects on fidelity
 - \rightarrow discard when measure 1

- 27-qubit GME, whole device!
- Next: Scale to larger devices

Fidelity with 2 parity checker qubits (q2 and q24)

QREM : Quantum Readout-Error Mitigation

GHZ Embedding Algorithm

GHZ State embedding algorithm

- Select a qubit 1.
 - Breadth first search a)
 - Preference CNOTs with low error b)
- Repeat 1. for each qubit and choose the best embedding 2.

127-qubit Ibm_Washington device

John F. Kam, et. al., paper in preparation

Results: ibm_washington

The 32-qubit GHZ is genuine multipartite entangled!

John F. Kam, et. al., paper in preparation

History of Genuine Multipartite Entanglement

Experimentally prepared states shown to exhibit GME

Mario Krenn, mariokrenn.wordpress.com

Preserving the GHZ State Fidelity

Wait after preparation

- Spin Echo
 - One π pulses
- Dynamical Decoupling
 - A series of pulses
- Periodic Dynamical Decoupling
 - A series of π pulses

Free Delay Circuits

Results: GHZ State Decay Curves

- Decay curves for 7-qubit state
- Measured Population
 - No real improvement
 - PDD gates introduce errors
- Measured Coherence
 - Big improvement
 - Idle phase are being cancelled
- Measured Fidelity
 - Big Improvement

• Plot GHZ decoherence vs qubit count

$$C^{(N)}(t) = C_0^{(N)} e^{-\alpha^{(N)}t}$$

 α : GHZ decoherence rate

- Qubit decoherence rates scale with system size
 - When qubits are coupled to the same reservoir
- Previous work

Superdecoherence

- An Ion trap system $ightarrow N^2$ GHZ decoherence rate scaling
 - Superdecoherence
 - Up to 6-qubit GHZ states
- IBM Quantum device $\rightarrow N$ GHZ decoherence rate scaling
 - No Superdecoherence
 - Up to 8-qubit GHZ states Ozaeta and McMahon, Quantum Sci. Technol. (2019)
- Test on current IBM Quantum device

27-qubit ibm hanoi

N = 31.0 N = 5N = 7C N = 98.0 Coherence 9.0 Coherence N = 11N = 13N = 15Normalized (7.0 0.2 10 20 30 40 Delay t (µs) 0.35 $\alpha(N) = 0.00716N + 0.00539$ $\alpha(N) = 0.02319N - 0.00855$ (Ozaeta et al.) 0.30 Bate a 0.20 0.15 0.10 0.20 **Parity Oscillations** 0.05 with Spin Echo 0.00 11 13 15 9 GHZ Size N

John F. Kam, et. al., paper in preparation

(CNOT gate time) ≈ 400 ns

Monz, et. al., Phys Rev Lett (2011)

16-qubit ibmq_melbourne

27-qubit ibm_hanoi device

Overview

Benchmarking quantum devices

Forms of Multipartite Entanglement

• Bipartite and Genuine Multipartite entanglement

Detecting **Bipartite entanglement**

• By preparing Graph states on *IBM Quantum* devices

- Detecting Genuine multipartite entanglement
- By preparing GHZ states
- GHZ decoherence rates

Bell state teleportation

One-Way Quantum Computation

Time

- Start with 2 entangled qubit states $|lpha
 angle_0$ and $|meta
 angle_1$
- Challenge: **Teleport** (or move) $|\beta\rangle_1$ across a chain of qubits
 - $\circ \ \ {\rm Keeping} \ |\alpha\rangle_0 \\ {\rm and} \ |\beta\rangle_1 \ {\rm entangled}$
- Compare 3 approaches
 - Swap gates

MELBOURN

- Teleportation: Dynamic circuits
- Teleportation: Postselection

- Start with 2-qubit Bell state
- Use SWAP gates to transport the state along a chain
- Circuit depth scales with chain length

- Corrections are applied after each measurement
- Depth grows with qubit-measurement count

- Bucket the teleported qubits into four possible Bell state variations
- Only 4 combinations → repeat until success

Post Select

Forms of Multipartite Entanglement

- Bipartite entanglement
- Genuine multipartite entanglement

Bipartite entanglement in graph states

- Constant 36-circuit algorithm
- Whole-device entanglement on up to 414-qubits
- Negativity correlated with CNOT fidelities Mooney, Hill and Hollenberg, Sci. Rep. (2019) Mooney, White, Hill and Hollenberg, Adv. Quantum Technol (2021) John F Kam et. al. paper in preparation

Genuine multipartite entanglement in GHZ state

- GME across **32** qubits on *ibm_washington* device
- Looked at GHZ decoherence times
 - No superdecoherence John F Kam et. al. paper in preparation

Bell state teleportation

• Post-selected teleportation easily hopped over 11 qubits Haiyue Kang, et. al. paper in preparation

IBM Quantum Network Hub at the University of Melbourne

414-Qubit Entanglement Graph

Pure states ρ_i

Probabilities p_i

Thank you

Dr Gary J Mooney

Dr Gregory A L White

Contributors

John F Kam

A/Prof Charles D Hill

Haiyue Kang

Prof Lloyd C L Hollenberg

IBM Quantum Network Hub at the University of Melbourne