QUANTUM APPROXIMATION ALGORITHMS

Ojas Parekh (Quantum Algorithms and Applications Collaboratory
Sevag Gharibian (U Paderborn)
Yeongwoo Hwang (Harvard)
John Kallaugher (Sandia)
Joe Neeman (UT Austin)
Chaithanya Rayudu (U New Mexico)
Kevin Thompson (Sandia)
John Wright (UC Berkeley)

i \cap m
 Many-body Quantum Systems via Classical and Quantum Computation

WHAT IS QUANTUM OPTIMIZATION?

THANKS FOR THE SOAPBOX!

Quantum optimization problems aren't worlds apart from classical ones

We should exploit connections between them for fun and profit

TALE AS OLD AS TIME

TALE AS OLD AS TIME

TALE AS OLD AS TIME

CLASSICAL SPIN ON A QUANTUM HAMILTONIAN

Transverse-field Ising Model: $H=\sum_{(u, v) \in E} Z_{u} Z_{v}-g \sum_{u \in V} X_{u}$
Ground state is a classical distribution: $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \sqrt{p_{x}}|x\rangle$

CLASSICAL SPIN ON A QUANTUM HAMILTONIAN

Transverse-field Ising Model: $H=\sum_{(u, v) \in E} Z_{u} Z_{v}-g \sum_{u \in V} X_{u}$
Ground state is a classical distribution: $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \sqrt{p_{x}}|x\rangle$

$$
\langle\psi| \sum_{(u, v)} Z_{u} Z_{v}|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \sqrt{p_{x}}\langle x| Z_{u} Z_{v}|x\rangle=\sum_{z \in\{-1,1\}^{n}} \sqrt{p_{z}} z_{u} z_{v}=\mathbb{E}_{z}\left[z_{u} z_{v}\right]
$$

CLASSICAL SPIN ON A QUANTUM HAMILTONIAN

Transverse-field Ising Model: $H=\sum_{(u, v) \in E} Z_{u} Z_{v}-g \sum_{u \in V} X_{u}$
Ground state is a classical distribution: $|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \sqrt{p_{x}}|x\rangle$

$$
\begin{aligned}
& \langle\psi| \sum_{(u, v)} z_{u} z_{v}|\psi\rangle=\sum_{x \in\{0,1\}^{n}} \sqrt{p_{x}}\langle x| z_{u} z_{v}|x\rangle=\sum_{z \in\{-1,1\}^{n}} \sqrt{p_{z}} z_{u} z_{v}=\mathbb{E}_{z}\left[z_{u} z_{v}\right] \\
& \langle\psi| \sum_{u} X_{u}|\psi\rangle=\sum_{x, y \in\{0,1\}^{n}} \sqrt{p_{x} p_{y}}\langle x| \Sigma_{u} X_{u}|y\rangle=\sum_{x, y \text { differ in } 1 \text { bit }} \sqrt{p_{x} p_{y}}
\end{aligned}
$$

A CLASSICAL SPIN ON A WELL-KNOWN HAMILTONIAN

$$
H=\sum_{(u, v) \in E} Z_{u} Z_{v}-g \sum_{u \in V} X_{u} \quad \square \min _{\left\{z \in\{-1,1\}^{n}{ }_{\text {w.p. } \left.p_{z}\right\}} \mathbb{E}_{z}\left[z_{u} z_{v}\right]-g \sum_{z, w \text { differ in } 1 \text { bit }} \sqrt{p_{z} p_{w}}\right.}^{\text {Quality }}
$$

QUANTUM MAX CUT

A WELL UNDERSTOOD PROBLEM

$$
\begin{aligned}
& \square L(G)=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \square \lambda_{\max }(L(G)) \\
& \text { Input: Graph G } \\
& \text { Output: Max eigenvalue to } \\
& \frac{1}{\text { poly }(|G|)} \text { precision }
\end{aligned}
$$

Complexity: in P
What if $G=$ cycle or complete graph?

SUCCINCTLY REPRESENTED GRAPHS

$$
\lambda_{\max }\left(L\left(G^{\prime}\right)\right)
$$

Input: Graph G

G implicitly represents exponentially larger G'

Output: Max eigenvalue to $\frac{1}{\text { poly }(|G|)}$ precision

Complexity: Does succinct description of \mathbf{G}^{\prime} help or hinder?
How about only verifying the answer?

A HOME FOR SUCCINCT EIGENVALUE PROBLEMS

Input: Graph G \& $\mathbf{a} \leq \mathbf{b}$ with
$\mathbf{b}-\mathbf{a} \geq \frac{1}{\operatorname{poly}(|G|)}$

Poly-time quantum verifier puts problem in QMA

$$
\begin{gathered}
\lambda_{\max }\left(\mathrm{L}\left(\mathrm{G}^{\prime}\right)\right) \geq \mathbf{b} \\
\mathrm{OR} \\
\lambda_{\max }\left(\mathrm{L}\left(\mathrm{G}^{\prime}\right)\right) \leq \mathbf{a} ?
\end{gathered}
$$

Output: Decide above, promised one holds

https://en.wikipedia.org/wiki/BQP

EXAMPLE: QUANTUM SPIN ON CLASSICAL PROBLEM

Generalized Johnson Graph, \mathbf{G}^{k} : Vertices of \mathbf{G}^{k} are $\mathbf{S} \subset \mathbf{V}$ of size k $\{S, T\}$ is an edge iff $S \Delta T=\{i, j\}$ is an edge of G

Quantum Max Cut: Given G, compute

$$
\operatorname{Max}_{1 \leq k \leq n-1} \lambda_{\max }\left(\mathrm{L}\left(\mathbf{G}^{\mathrm{k}}\right)\right)
$$

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

(Classical) Max-Cut

Goal: find partition $\boldsymbol{f}: V \rightarrow\{\square, \square\}$ maximizing

(Classical) Max-Cut

Goal: find partition $\boldsymbol{f}: \boldsymbol{V} \rightarrow\{\square, \square\}$ maximizing

$$
\sum_{(u, v) \in E} 1[f(u) \neq f(v)]
$$

(Classical) Max-Cut

Goal: find partition $f: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E} 1[f(u) \neq f(v)]
$$

(Classical) Max-Cut

Goal: find partition $f: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E} 1[f(u) \neq f(v)]
$$

(Classical) Max-Cut

Goal: find partition $\boldsymbol{f}: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E} 1[f(u) \neq f(v)]
$$

(Classical) Max-Cut

Goal: find partition $\boldsymbol{f}: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E}\left(\frac{1-f(u) \cdot f(v)}{2}\right)
$$

(Classical) Max-Cut

Goal: find partition $f: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E} \underbrace{\left.\frac{1-f(u) \cdot f(v)}{2}\right)}_{1 \text { if } f(u) \neq f(v)}
$$

(Classical) Max-Cut

Goal: find partition $\boldsymbol{f}: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E}\left(\frac{1-f(u) \cdot f(v)}{2}\right)
$$

(Classical) Max-Cut

Goal: find partition $\boldsymbol{f}: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E}\left(\frac{1-f(u) \cdot f(v)}{2}\right)
$$

NP-hard to solve exactly!

(Classical) Max-Cut

Goal: find partition $f: V \rightarrow\{+\mathbb{1},-\mathbb{1}\}$ maximizing

$$
\sum_{(u, v) \in E}\left(\frac{1-f(u) \cdot f(v)}{2}\right)
$$

NP-hard to solve exactly!
So instead look for approximation algorithms.
(QUANTUM) APPROXIMATION ALGORITHMS

A α-approximation algorithm runs in polynomial time, and for any instance I, delivers an approximate solution such that:

$$
\frac{\text { Value }\left(\text { Approximate }_{\mathrm{I}}\right)}{\text { Value }\left(\text { Optimal }_{\mathrm{I}}\right)} \geq \boldsymbol{\alpha}
$$

$$
\text { Instance } 1 \quad \text { Instance } 2 \quad \text { Instance } 3 \ldots
$$

(QUANTUM) APPROXIMATION ALGORITHMS

A α-approximation algorithm runs in polynomial time, and for any instance I, delivers an approximate solution such that:

$$
\frac{\text { Value }^{\left(\text {Approximate }_{\mathrm{I}}\right)}}{\text { Value }^{(\text {Optimal }} \text { I }} \text {) } \boldsymbol{\alpha}
$$

Heuristics

- Guided by intuitive ideas
- Perform well on practical instances
- May perform very poorly in worst case
- Difficult to prove anything about performance

Approximation Algorithms

- Guided by worst-case performance
- May perform poorly compared to heuristics
- Rigorous bound on worst-case performance
- Designed with performance proof in mind

APPROXIMATION ALGORITHMS FOR MAX CUT

How faraqaoravègetion algorithms

$0.87856+\epsilon$ approximations are NP-Hard! (under Unique Games Conjecture)

Quantum Max-Cut

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H=\sum_{(u, v) \in E} h_{u v}
$$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H=\sum_{(u, v) \in E} h_{u v}, \text { where } h=\frac{1}{4} \cdot(I-X X-Y Y-Z Z)
$$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H=\sum_{(u, v) \in E} h_{u v}, \text { where } h=\frac{1}{4} \cdot(I-X X-Y Y-Z Z)
$$

only depends on \boldsymbol{G}

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} h_{u v}, \text { where } h=\frac{1}{4} \cdot(I-X X-Y Y-Z Z)
$$

only depends on \boldsymbol{G}

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} h_{u v}, \text { where } h=\frac{1}{4} \cdot(I-X X-Y Y-Z Z)
$$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Goal: Output the maximum energy state of $\boldsymbol{H}_{\boldsymbol{G}}$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Goal: Output the maximum energy state of $\boldsymbol{H}_{\boldsymbol{G}}$
Note: max energy state of $\boldsymbol{H}_{\boldsymbol{G}}$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Goal: Output the maximum energy state of $\boldsymbol{H}_{\boldsymbol{G}}$
Note: max energy state of $\boldsymbol{H}_{\boldsymbol{G}}$
$=\mathbf{m i n}$ energy state of $\sum_{(u, v) \in E}\left(X_{u} X_{v}+Y_{u} Y_{v}+Z_{u} Z_{v}\right)$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Goal: Output the maximum energy state of $\boldsymbol{H}_{\boldsymbol{G}}$
Note: max energy state of $\boldsymbol{H}_{\boldsymbol{G}}$

(antiferromagnetic) Heisenberg model

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Goal: Output the maximum energy state of $\boldsymbol{H}_{\boldsymbol{G}}$
Note: max energy state of $\boldsymbol{H}_{\boldsymbol{G}}$

(antiferromagnetic) Heisenberg model
Dates back to [Heisenberg 1928]
Well-studied class of Hamiltonians

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Intuition

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Intuition

$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Intuition

$|\psi\rangle$ (n qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Intuition

$|\psi\rangle$ (n qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Intuition
Term 1: Does nothing

$|\psi\rangle$ (n qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Intuition
Term 1: Does nothing

$|\psi\rangle$ (n qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Measure in \mathbf{X} basis
$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Measure in \mathbf{X} basis
$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Measure in \mathbf{X} basis

- - $\mathbf{1}$ if same (+ + or - -)
$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Measure in \mathbf{X} basis

- - $\mathbf{1}$ if same (++ or -)
- $+\mathbf{1}$ if different (+ - or -+)
$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Measure in \mathbf{X} basis

- - $\mathbf{1}$ if same (++ or -)
- $+\mathbf{1}$ if different (+ - or -+)
\longrightarrow want both different!
$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Should be different in \mathbf{X} basis
$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Should be different in \mathbf{X} basis
Term 3: Should be different in \mathbf{Y} basis
$|\psi\rangle$ (\boldsymbol{n} qubits)

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Quantum Max-Cut

Special case of 2-local Hamiltonian:

$$
H_{G}=\sum_{(u, v) \in E} \frac{1}{4} \cdot\left(I-X_{u} X_{v}-Y_{u} Y_{v}-Z_{u} Z_{v}\right)
$$

Term 1: Does nothing
Term 2: Should be different in \mathbf{X} basis
Term 3: Should be different in \mathbf{Y} basis
Term 4: Should be different in \mathbf{Z} basis
Like (classical) Max-Cut in \mathbf{X}, \mathbf{Y}, and \mathbf{Z} bases!
$|\psi\rangle$ (\boldsymbol{n} qubits)

Product states for QMax-Cut

Product states for QMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{\boldsymbol{u}}\right\rangle$

Product states for OMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$
n qubits: $\mathrm{O} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Product states for OMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$

n qubits: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\left|\psi_{u}\right\rangle \quad\left|\psi_{v}\right\rangle$

Product states for OMax-Cut

States of the form $|\boldsymbol{\psi}\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$
 n qubits: $\bigcirc \bigcirc \bigcirc \bigcirc \underset{\left|\psi_{u}\right\rangle}{\bigcirc} \bigcirc \bigcirc \bigcirc\left|\psi_{v}\right\rangle$ ○

Product states possess no entanglement

Product states for OMax-Cut

States of the form $|\boldsymbol{\psi}\rangle=\otimes_{\boldsymbol{u} \in V}\left|\psi_{\boldsymbol{u}}\right\rangle$
 n qubits: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $\left|\psi_{u}\right\rangle \quad\left|\psi_{v}\right\rangle$

Product states possess no entanglement
But they can often be close to the ground state!

Product states for OMax-Cut

$$
\begin{array}{r}
\text { States of the form }|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle \\
\left.\left.n \text { qubits: } \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc\left|\psi_{u}\right\rangle \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc\right\rangle_{v}\right\rangle
\end{array}
$$

Product states possess no entanglement
But they can often be close to the ground state!
[Brandao Harrow 2016]: The ground state is close to product if \boldsymbol{G} is high degree.

Product states for OMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$

n qubits: $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
$\left|\psi_{u}\right\rangle \quad\left|\psi_{v}\right\rangle$

Product states for QMax-Cut

States of the form $|\boldsymbol{\psi}\rangle=\otimes_{\boldsymbol{u} \in \boldsymbol{V}}\left|\psi_{\boldsymbol{u}}\right\rangle$

n qubits: $\bigcirc \bigcirc \bigcirc \underset{\left|\psi_{u}\right\rangle}{\bigcirc \bigcirc \bigcirc \bigcirc\left|\psi_{v}\right\rangle} \bigcirc \bigcirc \bigcirc$
Useful to look at Bloch sphere representation.

Product states for OMax-Cut

$$
\text { States of the form }|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle
$$

Useful to look at Bloch sphere representation.
Bloch sphere: Each single-qubit state $\left|\boldsymbol{\psi}_{u}\right\rangle$ can be associated with a real vector $\left(\boldsymbol{c}_{X}, \boldsymbol{c}_{Y}, \boldsymbol{c}_{Z}\right)$ such that $c_{X}^{2}+c_{Y}^{2}+c_{Z}^{2}=\mathbf{1}$.

Product states for OMax-Cut

$$
\text { States of the form }|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle
$$

n qubits: $\bigcirc \bigcirc \bigcirc \bigcirc \underset{\left|\psi_{u}\right\rangle}{\bigcirc} \bigcirc \bigcirc \bigcirc\left|\psi_{v}\right\rangle$ ○
Useful to look at Bloch sphere representation.
Bloch sphere: Each single-qubit state $\left|\psi_{u}\right\rangle$ can be associated with a real vector $\left(\boldsymbol{c}_{X}, \boldsymbol{c}_{Y}, \boldsymbol{c}_{Z}\right)$ such that $c_{X}^{2}+c_{Y}^{2}+c_{Z}^{2}=1$.

$$
\text { Set } \boldsymbol{f}(\boldsymbol{u})=\left(\boldsymbol{c}_{X}, \boldsymbol{c}_{Y}, \boldsymbol{c}_{Z}\right) \text {. Then } \boldsymbol{f}: \boldsymbol{V} \rightarrow \boldsymbol{S}^{2} \text {. }
$$

Product states for OMax-Cut

$$
\text { States of the form }|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle
$$

Useful to look at Bloch sphere representation.
Bloch sphere: Each single-qubit state $\left|\psi_{u}\right\rangle$ can be associated with a real vector $\left(\boldsymbol{c}_{\boldsymbol{X}}, \boldsymbol{c}_{Y}, \boldsymbol{c}_{Z}\right)$ such that $c_{X}^{2}+c_{Y}^{2}+c_{Z}^{2}=1$.

$$
\text { Set } \boldsymbol{f}(\boldsymbol{u})=\left(\boldsymbol{c}_{X}, \boldsymbol{c}_{Y}, \boldsymbol{c}_{Z}\right) \text {. Then } \boldsymbol{f}: \boldsymbol{V} \rightarrow \boldsymbol{S}^{2} \text {. }
$$

Product states for OMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$

Useful to look at Bloch sphere representation.
Bloch sphere: Each single-qubit state $\left|\psi_{u}\right\rangle$ can be associated with a real vector $\left(\boldsymbol{c}_{\boldsymbol{X}}, \boldsymbol{c}_{Y}, \boldsymbol{c}_{Z}\right)$ such that $c_{X}^{2}+c_{Y}^{2}+c_{Z}^{2}=1$.

$$
\text { Set } \boldsymbol{f}(\boldsymbol{u})=\left(\boldsymbol{c}_{X}, \boldsymbol{c}_{Y}, \boldsymbol{c}_{Z}\right) \text {. Then } \boldsymbol{f}: \boldsymbol{V} \rightarrow \boldsymbol{S}^{2} \text {. }
$$

Product states for QMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{\boldsymbol{u}}\right\rangle$

Product states for OMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$
Bloch sphere representation: $f: V \rightarrow S^{2}$.

Product states for OMax-Cut

States of the form $|\boldsymbol{\psi}\rangle=\otimes_{\boldsymbol{u} \in \boldsymbol{V}}\left|\boldsymbol{\psi}_{\boldsymbol{u}}\right\rangle$
Bloch sphere representation: $f: V \rightarrow S^{2}$.
Product state energy formula:

$$
\langle\psi| H_{G}|\psi\rangle=\sum_{(u, v) \in E}\left(\frac{1-\langle f(u), f(v)\rangle}{4}\right)
$$

Product states for OMax-Cut

States of the form $|\psi\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$
Bloch sphere representation: $f: V \rightarrow S^{2}$.

Product state energy formula:

$$
\langle\psi| H_{G}|\psi\rangle=\sum_{(u, v) \in E}\left(\frac{1-\langle f(u), f(v)\rangle}{4}\right)
$$

"Want" neighboring $\boldsymbol{f}(\boldsymbol{u})$ and $\boldsymbol{f}(\boldsymbol{v})$ to point in opposite directions.

Product states for OMax-Cut

States of the form $|\boldsymbol{\psi}\rangle=\otimes_{u \in V}\left|\psi_{u}\right\rangle$
Bloch sphere representation: $f: V \rightarrow S^{2}$.

Product state energy formula:

$$
\langle\psi| H_{G}|\psi\rangle=\sum_{(u, v) \in E}\left(\frac{1-\langle f(u), f(v)\rangle}{4}\right)
$$

"Want" neighboring $\boldsymbol{f}(\boldsymbol{u})$ and $\boldsymbol{f}(\boldsymbol{v})$ to point in opposite directions.

Like (classical) Max-Cut! There, $\boldsymbol{f}: \boldsymbol{V} \rightarrow\{ \pm \mathbf{1}\}=\boldsymbol{S}^{\mathbf{0}}$.

APPROXIMATION ALGORITHMS FOR QUANTUM MAX

How far can we go?

> 0.533 (2 $2^{\text {nd }}$ level SDP)
> $[$ P, Thompson 2021]

First approximations for Max k-Local Hamiltonian

Classical approximation scheme for planar graphs:

First nontrivial general approximations: Classical approximation scheme for dense instances

Near-optimal product-state approx for special cases: Uses semidefinite programming (SDP) for bounds

Approximation w.r.t. number of terms and degree:
[Bansal, Bravyi, Terhal 2007: arXiv 0705.1115]
[Gharibian, Kempe 2011: arXiv 1101.3884]
[Brandao, Harrow 2013: arXiv 1310.0017]
[Harrow, Montanaro 2015: arXiv 1507.00739]

All of these results use product states

Recent approximations for Max 2-Local Hamiltonian

QMA-hard 2-LH problem class	NP-hard specialization	P approximation for NP-hard specialization	(Product-state) Approximation for QMAhard 2-LH problem
Max traceless 2-LH: $\begin{gathered} \sum_{i j} H_{i j} \\ H_{i j} \text { traceless } \end{gathered}$	Max Ising: $\begin{gathered} \operatorname{Max}-\sum_{i j} z_{i} z_{j} \\ z_{i} \in\{-1,1\} \end{gathered}$	$\Omega(1 / \log n)$ [Charikar, Wirth '04]	$\Omega(1 / \log n)$ [Bravyi, Gosset, Koenig, Temme '18] 0.184 (bipartite, no 1-local terms) [P , Thompson '20]
Max positive 2-LH: $\begin{aligned} & \sum_{i j} H_{i j}, \\ & H_{i j} \succcurlyeq 0 \end{aligned}$	Max 2-CSP	0.874 [Lewin, Livnat, Zwick '02]	0.25 [Random assignment] 0.282 [Hallgren, Lee '19] 0.328 [Hallgren, Lee, P^{\prime} '20] 0.387 / 0.498 (numerical) [P, Thompson '20] 0.5 (best possible via product states) [P , Thompson '21]
Quantum Max Cut: $\sum_{i j} I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}$ (special case of above)	Max Cut: $\begin{gathered} \operatorname{Max} \sum_{i j} I-z_{i} z_{j}, \\ \quad z_{i} \in\{-1,1\} \end{gathered}$	0.878 [Goemans, Williamson '95]	0.498 [Gharibian, P '19] 0.5 [P, Thompson '22] 0.53* [Anshu, Gosset, Morenz '20] 0.533* [P, Thompson '21] 0.562* [Lee '22] (also [King '22])
Max 2-Quantum SAT: $\begin{gathered} \sum_{i j} H_{i j}, \\ H_{i j} \succcurlyeq 0, \text { rank } 3 \end{gathered}$	Max 2-SAT	0.940 [Lewin, Livnat, Zwick '02]	0.75 [Random Assignment] 0.764 / 0.821 (numerical) [P, Thompson '20] 0.833 ... best possible via product states
See [P, Thompson.; arXiv:2012.12347] for table			* These results are not product-state based

Quantum Max Cut

Instance of 2-Local Hamiltonian

Find max eigenvalue of $H=\sum \boldsymbol{H}_{i j}$,

$$
H_{i j}=\left(I-X_{i} X_{j}-Y_{i} Y_{j}-Z_{i} Z_{j}\right) / 4
$$

Each term is singlet projector:
$\boldsymbol{H}_{i j}=\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|$
$\left|\Psi^{-}\right\rangle=(|01\rangle-|10\rangle) / \sqrt{2}$

Model 2-Local Hamiltonian?

Has driven advances in quantum approximation algorithms, based on generalizations of classical approaches

QMA-hard and each term is maximally entangled
[Cubitt, Montanaro 2013]
Recent approximation algorithms
[Gharibian and P. 2019], [Anshu, Gosset, Morentz 2020],
[P. and Thompson 2021, 2021, 2022]

Evidence of unique games hardness

[Hwang, Neeman, P., Thompson, Wright 2021]
Likely that approximation/hardness results transfer to 2-LH with positive terms
[P., Thompson 2021, 2022]

Relaxation (upper bound)

$$
\begin{array}{r}
\operatorname{Max} \sum_{i j \in E}\left(1-v_{i} \cdot v_{j}\right) / 2 \\
\left\|v_{i}\right\|=1, \text { for all } i \in V \\
\left(v_{i} \in \mathbb{R}^{n}\right)
\end{array}
$$

$\operatorname{Max} \sum_{i j \in E}\left(1-3 v_{i} \cdot v_{j}\right) / 4$

$$
\begin{aligned}
& \left\|v_{i}\right\|=1, \text { for all } i \in V \\
& \quad\left(v_{i} \in \mathbb{R}^{n}\right)
\end{aligned}
$$

Rounding

$$
v_{i} \in \mathbb{R}^{n} \rightarrow \alpha_{i}=\frac{r^{T} v_{i}}{\left|r^{T} v_{i}\right|}
$$

$$
v_{i} \in \mathbb{R}^{3 n} \rightarrow\left(\alpha_{i}, \beta_{i}, \gamma_{i}\right)=\left(\frac{r_{x}^{T} v_{i}}{\left\|r_{x}^{T} v_{i}\right\|}, \frac{r_{y}^{T} v_{i}}{\left\|r_{y}^{T} v_{i}\right\|}, \frac{r_{z}^{T} v_{i}}{\left\|r_{z}^{T} v_{i}\right\|}\right)
$$

Approximability

$$
0.878 \text { Lasserre } 1
$$

(optimal under unique games conjecture)
0.498 Lasserre 1
0.5 Lasserre 2 (optimal using product states) (0.533 using 1- \& 2-qubit ansatz)

To learn more about Quantum Max Cut...

Optimal product-state approximations:
[P., Thompson 2022: arXiv 2206.08342] (Sections 2,3)
[Anshu, Gosset, Morenz-Korol 2020: arXiv 2003.14394] [P., Thompson 2021: arXiv 2105.05698]
[Lee 2022: arXiv 2209.00789]
[King 2022: arXiv 2209.02589]
Lasserre hierarchy in 2-LH approximations:
[P., Thompson 2021, 2022 above]
Prospects for unique-games hardness:
[Hwang, Neeman, P., Thompson, Wright 2021: arXiv 2111.01254] (Start here: intro and Section 7)

Connections in approximating QMC and 2-LH:
[P., Thompson 2022 above, 2020: arXiv 2012.12347]
[Anshu, Gosset, Morenz-Korol, Soleimanifar: arXiv 2105.01193]

Optimal space-bounded QMC approximations:
[Kallaugher, P. 2022: arXiv 2206.00213]
(no quantum advantage possible!)

Quantum Moment Matrices are Positive

State on n qubits
$\langle\psi\| \in \mathbb{C}^{2^{n}}$

\left\langle y_{1}\right|=\langle\psi| Y_{1}

\left\langle z_{1}\right|=\langle\psi| Z_{1}

\vdots

\left\langle x_{n}\right|=\langle\psi| X_{n}

\left\langle y_{n}\right|=\langle\psi| Y_{n}

\left\langle z_{n}\right|=\langle\psi| Z_{n}\end{array}\right], M_{i j}=\left[$$
\begin{array}{ccc}\langle\psi| X_{i} X_{j}|\psi\rangle & \left\langle x_{i} \mid y_{j}\right\rangle & \left\langle x_{i} \mid z_{j}\right\rangle \\
\left\langle y_{i} \mid x_{j}\right\rangle & \left\langle y_{i} \mid y_{j}\right\rangle & \left\langle y_{i} \mid z_{j}\right\rangle \\
\left\langle z_{i} \mid x_{j}\right\rangle & \left\langle z_{i} \mid y_{j}\right\rangle & \left\langle z_{i} \mid z_{j}\right\rangle\end{array}
$$\right]\)

Quantum Max Cut SDP Relaxation

Real part of moment matrix

Quantum Max Cut vector relaxation

$\operatorname{Max} \sum_{i j \in E}\left(1-x_{i} \cdot x_{j}-y_{i} \cdot y_{j}-z_{i} \cdot z_{j}\right) / 4$
$\left\|x_{i}\right\|,\left\|y_{i}\right\|,\left\|z_{i}\right\|=1$, for all $i \in V$ $x_{i} \cdot y_{i}=x_{i} \cdot z_{i}=y_{i} \cdot z_{i}=0$, for all $i \in V$ $\left(v_{i} \in \mathbb{R}^{3 n}\right)$

$$
\begin{array}{cc}
v_{i}=\left(x_{i} \oplus y_{i} \oplus z_{i}\right) / \sqrt{3} & \text { Max } \sum_{i j \in E}\left(1-3 v_{i} \cdot v_{j}\right) / 4 \\
x_{i}=v_{i} \oplus 0 \oplus 0 & \\
y_{i}=0 \oplus v_{i} \oplus 0 & \left\|v_{i}\right\|=1, \text { for all } i \in V \\
z_{i}=0 \oplus 0 \oplus v_{i} & \left(v_{i} \in \mathbb{R}^{n}\right)
\end{array}
$$

Max Cut vector relaxation
$\operatorname{Max} \sum_{i j \in E}\left(1-v_{i} \cdot v_{j}\right)$
$\left\|v_{i}\right\|=1$, for all $i \in V$
$\left(v_{i} \in \mathbb{R}^{n}\right)$

Quantum Lasserre Hierachy

$\widetilde{\boldsymbol{\rho}}$ is called degree-k pseudo density

Classical

Rounding Infeasible Solutions

QUANTUM STREAMING ADVANTAGES

Space Efficiency

We would like algorithms that need very few bits/qubits

Ideally a number sublinear in the size of the input, e.g. $\mathbf{O}(\sqrt{n})$ or $\mathbf{O}(\log (n))$ for a size-n input

Why Space-Efficient Algorithms?

Two reasons, pointing to different kinds of algorithm:

Qubits are expensive

- Even under the most optimistic assumptions, qubits will continue to be much more expensive than classical bits
- Motivates algorithms that use very few qubits, but maybe many classical bits

Qubits can be exponentially more powerful than classical bits

- We know there are problems that require exponentially fewer qubits than bits
- This is provable! (unlike with time complexity)
- Motivates looking at algorithms that use very little total space (bits + qubits) (and impossibility results)

Our focus has been on the second case

Streaming Algorithms

When dealing with very small space algorithms, it matters how you receive the input dataset

Streaming

- Dataset is built up by a "stream" of small updates
- Answer is expected at the end of the stream

Examples

- Calculating traffic statistics on a router
- Estimating properties of a large social networking graph given as a sequence of friendships

QUANTUM STREAMING ADVANTAGES FOR GRAPH PROBLEMS

Exponential advantage for Boolean Hidden Matching [Gavinsky, Kempe, Kerenidis, Raz, and de Wolf 2008]

First natural problem: polynomial advantage for triangle counting [Kallaugher 2021]

No quantum advantage possible: Max Cut or Quantum Max Cut [Kallaugher, P 2022]

Exponential advantage for natural problem: Directed Max Cut [Kallaugher, P, Voronova 2023]

QUANTUM GENERALIZATIONS OF VERTEX COVER

VERTEX COVER

Goal: color minimum number of vertices, so each edge has at least 1 colored endpoint

$$
G=(V, E)
$$

VERTEX COVER

Goal: color minimum number of vertices, so each edge has at least 1 colored endpoint

$$
G=(V, E)
$$

VERTEX COVER

Goal: color minimum number of vertices, so each edge has at least 1 colored endpoint

$$
G=(V, E)
$$

VERTEX COVER

Goal: color minimum number of vertices, so each edge has at least 1 colored endpoint

$$
G=(V, E)
$$

VERTEX COVER

Goal: color minimum number of vertices, so each edge has at least 1 colored endpoint

$$
G=(V, E)
$$

VERTEX COVER

6 vertices colored

$$
G=(V, E)
$$

Optimal since each 5-cycle needed 3!

Goal: color minimum number of vertices, so each edge has at least 1 colored endpoint

VERTEX COVER

$$
G=(V, E)
$$

Goal: color minimum number of vertices, so each edge has at least 1 colored endpoint

NP-hard: one of Karp's original 21 problems

Several 2-approximations known e.g. [Bar-Yehuda, Bendel, Freund, Rawitz 2004]

Best possible under Unique Games Conjecture [Khot, Regev 2008]

VERTEX COVER AS CONSTRAINED LOCAL HAMILTONIAN

```
mi\psi\rangle
\langle\psi||00\rangle\langle00| |vv }|\psi\rangle=0 for all edges(u,v
O-O |00\rangle Unhappy edge
O-O |01\rangle
O-O |10\rangle Happy edge
O-O |11\rangle
```

$$
7^{0}
$$

PUT A TRANSVERSE FIELD ON IT

$4 / 4 / i_{2}$

$$
\begin{aligned}
& \left.\langle\psi| S_{0} Z_{u}\right)\left(I r_{i}\right) / 4|\psi\rangle=0 \text { for all edges }(u, v)
\end{aligned}
$$

PUT A TRANSVERSE FIELD ON IT

$$
\begin{aligned}
& \min _{|\psi\rangle}\langle\psi| \sum_{u}\left(I-Z_{u}\right) / 2|\psi\rangle+\sum_{u} X_{u} \\
& \langle\psi|\left(I+Z_{u}\right)\left(I+Z_{v}\right) / 4|\psi\rangle=0 \text { for all edges }(u, v)
\end{aligned}
$$

Equivalent to PXP model (Rydberg blockade interactions)
We show Transverse Vertex Cover/PXP are StoqMA-complete
Simple $(2+\sqrt{2})$-approximation via quantum version of local ratio
[P, Rayudu, Thompson 2023]

QUANTUM SCARS

Thanks for staying awake to read this!

