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Classical approaches for quantum Hamiltonians
(DMRG, mean-field methods, everything else)

Quantum approaches for quantum Hamiltonians
(e.g. AQC, QAOA for quantum Hamiltonians)

Quantum approaches for 
discrete optimization

(AQC, QAOA for quantum Hamiltonians)

Quantum approaches for 
continuous optimization

Classical optimization
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WHAT IS QUANTUM OPTIMIZATION?



THANKS FOR THE SOAPBOX!

Quantum optimization problems aren’t worlds apart from classical ones

We should exploit connections between them for fun and profit
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Solution: x2



TALE AS OLD AS TIME

Bob
Best-thing finder

Alice
Analyst
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Solution: x3

Bob
Best-thing finder

Alice
Analyst

+Secret Sauce 

Solution: x4



CLASSICAL SPIN ON A QUANTUM HAMILTONIAN
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A CLASSICAL SPIN ON A WELL-KNOWN HAMILTONIAN
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QUANTUM MAX CUT



A WELL UNDERSTOOD PROBLEM

𝐿 𝐺 =

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

Input: Graph G Laplacian of G

𝝀𝒎𝒂𝒙 𝑳(𝑮)

Output: Max eigenvalue to
𝟏

𝐩𝐨𝐥𝐲( 𝐆 ) precision

Complexity: in P
                       

What if G = cycle or complete graph? 



SUCCINCTLY REPRESENTED GRAPHS

Input: Graph G G implicitly represents
exponentially larger G’

𝝀𝒎𝒂𝒙 𝑳(𝑮′)

Output: Max eigenvalue to
𝟏

𝐩𝐨𝐥𝐲( 𝐆 ) precision
                

Complexity: Does succinct description of G’ help or hinder?
                        How about only verifying the answer?



A HOME FOR SUCCINCT EIGENVALUE PROBLEMS

Input: Graph G &
             𝐚 ≤ 𝐛 with
             𝐛 − 𝐚 ≥ 𝟏

𝐩𝐨𝐥𝐲( 𝐆 )

Implicitly represents
exponentially larger G’

𝛌𝐦𝐚𝐱 𝐋(𝐆′) ≥ 𝐛
OR

Output: Decide above,
                promised one holds

𝛌𝐦𝐚𝐱 𝐋(𝐆′) ≤ 𝐚?

Polynomial-
time quantum 
computation

|𝐯⟩
𝐯K𝐋 𝐆L 𝐯 ≥ 𝐛

OR
𝐯K𝐋 𝐆L 𝐯 ≤ 𝐚

https://en.wikipedia.org/wiki/BQP

QMA

Poly-time quantum verifier puts problem in QMA



EXAMPLE: QUANTUM SPIN ON CLASSICAL PROBLEM

{𝟏, 𝟑} {𝟐, 𝟒}{𝟏, 𝟐} {𝟑, 𝟒}

{𝟏, 𝟒}

{𝟐, 𝟑}

1 2

43

𝟐, 𝟑 𝚫 𝟑, 𝟒 = {𝟐, 𝟒}

𝟏, 𝟐 𝚫 𝟏, 𝟒 = {𝟐, 𝟒} 𝟏, 𝟒 𝚫 𝟑, 𝟒 = {𝟏, 𝟑}

𝟏, 𝟐 𝚫 𝟐, 𝟑 = {𝟏, 𝟑}

Generalized Johnson Graph, Gk: Vertices of Gk are 𝐒 ⊂ 𝐕 of size k
{𝐒, 𝐓} is an edge iff 𝐒𝚫𝐓 = 𝐢, 𝐣  is an edge of G 

Quantum Max Cut: 𝐆𝐢𝐯𝐞𝐧	𝐆, 𝐜𝐨𝐦𝐩𝐮𝐭𝐞	
                           𝐌𝐚𝐱𝟏"𝐤"𝐧%𝟏	𝛌𝐦𝐚𝐱(𝐋 𝐆𝐤 ) 

…

𝐋(𝐆𝟏)

𝐋(𝐆𝟐)𝐇 = compute 𝛌𝐦𝐚𝐱(𝐇)

QMA Complete!



(Classical) Max-Cut

Following slides courtesy of John Wright
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(Classical) Max-Cut

𝟏𝟐 edges cut



𝑮 = (𝑽, 𝑬)

(Classical) Max-Cut

𝟏𝟐 edges cut
(the max cut)
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(Classical) Max-Cut
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#
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(Classical) Max-Cut
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𝑮 = (𝑽, 𝑬)

Goal: find partition 𝒇: 𝑽 → +𝟏,−𝟏  
maximizing

#
𝒖,𝒗 	∈	𝑬

𝟏 − 𝒇 𝒖 ⋅ 𝒇 𝒗
𝟐

+𝟏

+𝟏+𝟏

−𝟏 −𝟏−𝟏

−𝟏 −𝟏

−𝟏 −𝟏

(Classical) Max-Cut

NP-hard to solve exactly!

So instead look for 
approximation algorithms.



(QUANTUM) APPROXIMATION ALGORITHMS

𝐕𝐚𝐥𝐮𝐞 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞𝐈
𝐕𝐚𝐥𝐮𝐞(𝐎𝐩𝐭𝐢𝐦𝐚𝐥𝐈)

≥ 𝛂

A  𝛂-approximation algorithm runs in polynomial time, and for any instance I, 
delivers an approximate solution such that: 

𝛂 = largest “gap” between 
optimal and approximate 
solutions over all instances 

solution
quality

Instance 1 Instance 2 Instance 3 …

Optimal value

Approximate
solution value

Approximation
Algorithm

(description of)
state 𝛒

𝐇 = ∑𝐇𝐢𝐣



(QUANTUM) APPROXIMATION ALGORITHMS

𝐕𝐚𝐥𝐮𝐞 𝐀𝐩𝐩𝐫𝐨𝐱𝐢𝐦𝐚𝐭𝐞𝐈
𝐕𝐚𝐥𝐮𝐞(𝐎𝐩𝐭𝐢𝐦𝐚𝐥𝐈)

≥ 𝛂

A  𝛂-approximation algorithm runs in polynomial time, and for any instance I, 
delivers an approximate solution such that: 

Approximation
Algorithm

(description of)
state 𝛒

𝐇 = ∑𝐇𝐢𝐣

Heuristics
§ Guided by intuitive ideas
§ Perform well on practical instances
§ May perform very poorly in worst case
§ Difficult to prove anything about performance

Approximation Algorithms
§ Guided by worst-case performance
§ May perform poorly compared to heuristics
§ Rigorous bound on worst-case 

performance
§ Designed with performance proof in mind



APPROXIMATION ALGORITHMS FOR MAX CUT

How far can we go?

0.87856 + 𝜖 approximations are NP-Hard! (under Unique Games Conjecture)

Turn to approximation algorithms

1
2

Random

1
2 +

1
2𝑚

[Vitányi 1981]

1
2 +

1
2𝑛

[Haglin, Venkatesan 
1991]

1
2 +

1
2Δ

[Hofmeister, Lefmann 1995]

0.87856
[Goemans, Williamson 1995]

1
[Khot, Kindler Mossel, O’Donnell 2007]

ALG(𝐼)
OPT(𝐼)

Slide courtesy of Yeongwoo Hwang



Quantum Max-Cut

Following slides courtesy of John Wright
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Quantum Max-Cut
Special case of 2-local Hamiltonian:

𝐻y = #
",$ ∈'

+
x ⋅ (𝐼	 − 𝑋"𝑋$ 	− 𝑌"𝑌$ 	− 𝑍"𝑍$)

Goal: Output the maximum energy state of 𝑯𝑮

Note: max energy state of 𝑯𝑮

min energy state of  ∑ ",$ ∈' 	(𝑋"𝑋$ + 𝑌"𝑌$ + 𝑍"𝑍$)=

(antiferromagnetic) Heisenberg model
Dates back to [Heisenberg 1928]
Well-studied class of Hamiltonians
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Quantum Max-Cut
Special case of 2-local Hamiltonian:

𝑢
𝑣

Term 1: Does nothing

Term 2: Measure in X basis
• −𝟏	if same (++ or −−)
• +𝟏 if different (+− or −+)

want both different!

𝐻y = #
",$ ∈'

+
x ⋅ (𝐼	 − 𝑋"𝑋$ 	− 𝑌"𝑌$ 	− 𝑍"𝑍$)

Intuition

|𝜓⟩ (𝒏 qubits)

X
X
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Term 1: Does nothing

Term 2:
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+
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Quantum Max-Cut
Special case of 2-local Hamiltonian:

Intuition

𝑢
𝑣

Term 1: Does nothing

Term 2: Should be different in X basis

Term 3: Should be different in Y basis

𝐻y = #
",$ ∈'

+
x ⋅ (𝐼	 − 𝑋"𝑋$ 	− 𝑌"𝑌$ 	− 𝑍"𝑍$)

|𝜓⟩ (𝒏 qubits)



Quantum Max-Cut
Special case of 2-local Hamiltonian:

Intuition

𝑢
𝑣

Term 1: Does nothing

Term 2: Should be different in X basis

Term 3: Should be different in Y basis

Term 4: Should be different in Z basis

𝐻y = #
",$ ∈'

+
x ⋅ (𝐼	 − 𝑋"𝑋$ 	− 𝑌"𝑌$ 	− 𝑍"𝑍$)

|𝜓⟩ (𝒏 qubits)



Quantum Max-Cut
Special case of 2-local Hamiltonian:

Intuition

𝑢
𝑣

Term 1: Does nothing

Term 2: Should be different in X basis

Term 3: Should be different in Y basis

Term 4: Should be different in Z basis

𝐻y = #
",$ ∈'

+
x ⋅ (𝐼	 − 𝑋"𝑋$ 	− 𝑌"𝑌$ 	− 𝑍"𝑍$)

|𝜓⟩ (𝒏 qubits)

Like (classical) Max-Cut
in X, Y, and Z bases!
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Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

|𝝍𝒖⟩ |𝝍𝒗⟩

Product states possess no entanglement

But they can often be
close to the ground state!

[Brandao Harrow 2016]: The ground state is close to product
if 𝑮 is high degree.

𝒏 qubits:



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

|𝝍𝒖⟩ |𝝍𝒗⟩
𝒏 qubits:



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

|𝝍𝒖⟩ |𝝍𝒗⟩
𝒏 qubits:

Useful to look at Bloch sphere representation.



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

|𝝍𝒖⟩ |𝝍𝒗⟩
𝒏 qubits:

Useful to look at Bloch sphere representation.

Bloch sphere: Each single-qubit state 𝝍𝒖  can be 
associated with a real vector 𝒄𝑿, 𝒄𝒀, 𝒄𝒁  
such that 𝒄𝑿𝟐 + 𝒄𝒀𝟐 + 𝒄𝒁𝟐 = 𝟏.



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

|𝝍𝒖⟩ |𝝍𝒗⟩
𝒏 qubits:

Useful to look at Bloch sphere representation.

Bloch sphere: Each single-qubit state 𝝍𝒖  can be 
associated with a real vector 𝒄𝑿, 𝒄𝒀, 𝒄𝒁  
such that 𝒄𝑿𝟐 + 𝒄𝒀𝟐 + 𝒄𝒁𝟐 = 𝟏.

Set 𝒇 𝒖 = 𝒄𝑿, 𝒄𝒀, 𝒄𝒁 . Then 𝒇: 𝑽 → 𝑺𝟐.



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

|𝝍𝒖⟩ |𝝍𝒗⟩
𝒏 qubits:

Useful to look at Bloch sphere representation.

Bloch sphere: Each single-qubit state 𝝍𝒖  can be 
associated with a real vector 𝒄𝑿, 𝒄𝒀, 𝒄𝒁  
such that 𝒄𝑿𝟐 + 𝒄𝒀𝟐 + 𝒄𝒁𝟐 = 𝟏.

Set 𝒇 𝒖 = 𝒄𝑿, 𝒄𝒀, 𝒄𝒁 . Then 𝒇: 𝑽 → 𝑺𝟐.

unit sphere in ℝ~



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

|𝝍𝒖⟩ |𝝍𝒗⟩
𝒏 qubits:

Useful to look at Bloch sphere representation.

𝒇:

Bloch sphere: Each single-qubit state 𝝍𝒖  can be 
associated with a real vector 𝒄𝑿, 𝒄𝒀, 𝒄𝒁  
such that 𝒄𝑿𝟐 + 𝒄𝒀𝟐 + 𝒄𝒁𝟐 = 𝟏.

Set 𝒇 𝒖 = 𝒄𝑿, 𝒄𝒀, 𝒄𝒁 . Then 𝒇: 𝑽 → 𝑺𝟐.

unit sphere in ℝ~



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

Bloch sphere representation: 𝒇: 𝑽 → 𝑺𝟐.
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to point in opposite directions.



Product states for QMax-Cut
States of the form 𝝍 =	⊗𝒖∈𝑽 |𝝍𝒖⟩

Bloch sphere representation: 

⟨𝝍|𝑯𝑮 𝝍 = #
𝒖,𝒗 	∈	𝑬

𝟏 − ⟨𝒇 𝒖 , 𝒇 𝒗 ⟩
𝟒

Product state energy formula:

𝒇: 𝑽 → 𝑺𝟐.

”Want” neighboring 𝒇(𝒖) and 𝒇(𝒗)
to point in opposite directions.

Like (classical) Max-Cut! There, 𝒇: 𝑽 → ±𝟏 = 𝑺𝟎.



APPROXIMATION ALGORITHMS FOR QUANTUM MAX

How far can we go?

0.498 (optimal for basic SDP)
    [Gharibian, P 2019]

0.533 (2nd level SDP)
     [P, Thompson 2021]

0.562 (SDP + Circuit)
[Lee 2022]

0.582 (As Lee, but Δ-free)
[King 2022]

1

Classical Intuition:
Best possible?

0.5 (optimal for product states)
                             [P, Thompson 2022] 0.956

        [Hwang, Neeman, P, Thompson, Wright 
2022]

   NP-hardness Barrier

Slide courtesy of Yeongwoo Hwang

Beyond product states: 0.53
[Anshu, Gossett, Morenz 2020]



First approximations for
Max k-Local Hamiltonian

[Bansal, Bravyi, Terhal  2007: arXiv 0705.1115]

[Gharibian, Kempe  2011: arXiv 1101.3884]

[Brandao, Harrow  2013: arXiv 1310.0017]

[Harrow, Montanaro  2015: arXiv 1507.00739]

              
 

Classical approximation scheme for planar graphs:

First nontrivial general approximations:
Classical approximation scheme for dense instances

Near-optimal product-state approx for special cases:
Uses semidefinite programming (SDP) for bounds

Approximation w.r.t. number of terms and degree:

                   All of these results use product states



QMA-hard 2-LH problem 
class

NP-hard
specialization

P approximation for
NP-hard specialization

(Product-state) Approximation for QMA-
hard 2-LH problem

Max traceless 2-LH:
∑#$𝐻#$,

𝐻#$ traceless

Max Ising:
Max -∑#$ 𝑧#𝑧$ ,
𝑧# ∈ {−1,1}

Ω(1/log 𝑛) 
[Charikar, Wirth ‘04]

Ω(1/log 𝑛)
[Bravyi, Gosset, Koenig, Temme ‘18]
0.184 (bipartite, no 1-local terms)

[P, Thompson ‘20]

Max positive 2-LH:
∑#$𝐻#$,
𝐻#$ ≽ 0

Max 2-CSP 0.874
[Lewin, Livnat, Zwick ’02] 

0.25 [Random assignment]
0.282 [Hallgren, Lee ‘19]

0.328 [Hallgren, Lee, P ‘20]
0.387 / 0.498 (numerical) [P, Thompson ‘20]

0.5 (best possible via product states) 
[P, Thompson ‘21]

Quantum Max Cut:
∑#$ 𝐼 − 𝑋#𝑋$ − 𝑌#𝑌$ − 𝑍#𝑍$ 
(special case of above)

Max Cut:
Max ∑#$ 𝐼 − 𝑧#𝑧$	,
𝑧# ∈ {−1,1}

0.878
[Goemans, Williamson ‘95]

0.498 [Gharibian, P ‘19]
0.5 [P, Thompson ‘22]

0.53* [Anshu, Gosset, Morenz ‘20]
0.533* [P, Thompson ‘21]

0.562* [Lee ‘22] (also [King ‘22])

Max 2-Quantum SAT:
∑#$𝐻#$,

𝐻#$ ≽ 0, rank 3

Max 2-SAT 0.940
[Lewin, Livnat, Zwick ’02] 

0.75 [Random Assignment]
0.764 / 0.821 (numerical) [P, Thompson ‘20]

0.833… best possible via product states

Recent approximations for Max 2-Local Hamiltonian

See [P, Thompson.; arXiv:2012.12347] for table * These results are not product-state based



Quantum Max Cut

Model  2-Local Hamiltonian?

Has driven advances in quantum approximation algorithms,
based on generalizations of classical approaches

QMA-hard and each term is maximally entangled
[Cubitt, Montanaro  2013]

Recent approximation algorithms
[Gharibian and P.  2019], [Anshu, Gosset, Morentz  2020], 
[P. and Thompson  2021, 2021, 2022]

Evidence of unique games hardness
[Hwang, Neeman, P., Thompson, Wright  2021]

Likely that approximation/hardness results transfer to 2-LH with 
positive terms
[P., Thompson  2021, 2022]

 

Instance of 2-Local Hamiltonian
 

Find max eigenvalue of 𝑯 = ∑𝑯𝒊𝒋,

𝑯𝒊𝒋 = 𝑰 − 𝑿𝒊𝑿𝒋 − 𝒀𝒊𝒀𝒋 − 𝒁𝒊𝒁𝒋 /4

maximize overlap with 
singlet  on each edge

Each term is singlet projector:
𝑯𝒊𝒋 = |𝚿(⟩⟨𝚿(|
𝚿( = (|𝟎𝟏⟩ − |𝟏𝟎⟩)/ 𝟐

|𝚿%⟩⟨𝚿%|



Relaxation (upper bound)
𝐌𝐚𝐱	�

𝒊𝒋∈𝑬

(𝟏 − 𝒗𝒊 ⋅ 𝒗𝒋)/𝟐

‖𝒗𝒊‖ = 𝟏, for all 𝒊 ∈ 𝑽
(𝒗𝒊 ∈ ℝ𝒏)

                                                        Rounding

                                            Approximability
 (Product state

Max Cut vs Quantum Max Cut

𝐌𝐚𝐱	�
𝒊𝒋∈𝑬

(𝟏 − 𝟑𝒗𝒊 ⋅ 𝒗𝒋)/𝟒

‖𝒗𝒊‖ = 𝟏, for all 𝒊 ∈ 𝑽
(𝒗𝒊 ∈ ℝ𝒏)

𝒗𝒊 ∈ ℝ𝒏 ⟶ 𝜶𝒊 =
𝒓𝑻𝒗𝒊
𝒓𝑻𝒗𝒊

𝒗𝒊 ∈ ℝ𝟑𝒏 ⟶ (𝜶𝒊, 𝜷𝒊, 𝜸𝒊) =
𝒓𝒙𝑻𝒗𝒊

∥ 𝒓𝒙𝑻𝒗𝒊 ∥
,
𝒓𝒚𝑻𝒗𝒊

∥ 𝒓𝒚𝑻𝒗𝒊 ∥
,
𝒓𝒛𝑻𝒗𝒊

∥ 𝒓𝒛𝑻𝒗𝒊 ∥

0.878 Lasserre 1
(optimal under unique games conjecture)

0.498 Lasserre 1
0.500 Lasserre 2 (optimal using product states)
(0.533 using 1- & 2-qubit ansatz)



To learn more about
Quantum Max Cut…

[P., Thompson  2022: arXiv 2206.08342] (Sections 2,3)

[Anshu, Gosset, Morenz-Korol  2020: arXiv 2003.14394]
[P., Thompson  2021: arXiv 2105.05698]
[Lee  2022: arXiv 2209.00789]
[King  2022: arXiv 2209.02589]

[P., Thompson  2021, 2022 above] 

[Hwang, Neeman, P., Thompson, Wright  2021:
  arXiv 2111.01254] (Start here: intro and Section 7)

[P., Thompson  2022 above, 2020: arXiv 2012.12347]
[Anshu, Gosset, Morenz-Korol, Soleimanifar:
  arXiv 2105.01193]

[Kallaugher, P.  2022: arXiv 2206.00213]

Optimal product-state approximations:

Best-known Quantum Max Cut (QMC) approximations:

Lasserre hierarchy in 2-LH approximations:

Prospects for unique-games hardness:

Connections in approximating QMC and 2-LH:

                   
               Optimal space-bounded QMC approximations:

                    (no quantum advantage possible!)



Quantum Moment Matrices are Positive

⋯
𝑀11 𝑀12 𝑀13

𝑀12
4 𝑀22 𝑀23

𝑀13
4 𝑀23

4 𝑀33

⋮ ⋱

= 𝑉𝑉4 ≽ 0 ⟹ 𝑅𝑒 𝑉𝑉4 ≽ 0

𝑋1
𝑌1
𝑍1
𝑋2
𝑌2
𝑍2
𝑋3
𝑌3
𝑍3

𝑋1    𝑌1	 𝑍1	 𝑋2	 𝑌2	 𝑍2	 𝑋3	 𝑌3	 𝑍3

𝑉 =

⟨𝑥1| = ⟨𝜓|𝑋1
⟨𝑦1| = ⟨𝜓|𝑌1
⟨𝑧1| = ⟨𝜓|𝑍1

⋮
⟨𝑥5| = ⟨𝜓|𝑋5
⟨𝑦5| = ⟨𝜓|𝑌5
⟨𝑧5| = ⟨𝜓|𝑍5

, 𝑀67 =
⟨𝜓|𝑋6𝑋7|𝜓⟩ ⟨𝑥6|𝑦7⟩ ⟨𝑥6|𝑧7⟩
⟨𝑦6|𝑥7⟩ ⟨𝑦6|𝑦7⟩ ⟨𝑦6|𝑧7⟩
⟨𝑧6|𝑥7⟩ ⟨𝑧6|𝑦7⟩ ⟨𝑧6|𝑧7⟩

⟨𝜓| ∈ ℂ2!
State on 𝒏 qubits

Entries of this 3𝑛×3𝑛 
moment matrix are 
expectation values of 
all 2-local Pauli terms



Quantum Max Cut SDP Relaxation

1 0 0 ⋯
0 1 0 𝑀12 𝑀13
0 0 1

1 0 0
𝑀12
8 0 1 0 𝑀23

0 0 1
1 0 0

𝑀13
8 𝑀23

8 0 1 0
0 0 1

⋮ ⋱

≽ 0

𝑋1
𝑌1
𝑍1
𝑋2
𝑌2
𝑍2
𝑋3
𝑌3
𝑍3

𝑋1    𝑌1	 𝑍1	 𝑋2	 𝑌2	 𝑍2	 𝑋3	 𝑌3	 𝑍3

𝑀67 =
𝑥6 ⋅ 𝑥7 𝑥6 ⋅ 𝑦7 𝑥6 ⋅ 𝑧7
𝑦6 ⋅ 𝑥7 𝑦6 ⋅ 𝑦7 𝑦6 ⋅ 𝑧7
𝑧6 ⋅ 𝑥7 𝑧6 ⋅ 𝑦7 𝑧6 ⋅ 𝑧7

  

Quantum Max Cut vector relaxation
 Max	 ∑67∈9(1 − 𝑥6 ⋅ 𝑥7 − 𝑦6 ⋅ 𝑦7 − 𝑧6 ⋅ 𝑧7)/4

𝑥6 , 𝑦6 , ‖𝑧6‖ = 1, for all 𝑖 ∈ 𝑉
𝑥6 ⋅ 𝑦6 = 𝑥6 ⋅ 𝑧6 = 𝑦6 ⋅ 𝑧6 = 0, for all 𝑖 ∈ 𝑉

(𝑣6 ∈ ℝ35)

Max Cut vector relaxation
 Max	 ∑67∈9(1 − 𝑣6 ⋅ 𝑣7)

‖𝑣6‖ = 1, for all 𝑖 ∈ 𝑉
(𝑣6 ∈ ℝ5)

Real part of moment matrix

Max	 �
67∈9

(1 − 3𝑣6 ⋅ 𝑣7)/4

‖𝑣6‖ = 1, for all 𝑖 ∈ 𝑉
(𝑣6 ∈ ℝ5)

𝑣! = (𝑥!⊕𝑦! ⊕𝑧!)/ 3

𝑥! = 𝑣! ⊕0⊕ 0
𝑦! = 0⊕ 𝑣! ⊕0
𝑧! = 0⊕ 0⊕ 𝑣!



Quantum Lasserre Hierachy

1 	
1

1
1

1
⋱

1
1

⋱
1

1
⋱

1

 

𝐼
𝑋1
𝑌1
𝑍1
𝑋2
⋮
𝑍5
𝑋1𝑋2
⋮

𝑍5(1𝑍5
𝑋1𝑋2𝑋3

⋮
𝑍1𝑍2…𝑍5

𝐼 𝑋1 𝑌1 𝑍1 𝑋2 … 𝑍5 𝑋1𝑋2 … 𝑍5(1	𝑍5 𝑋1𝑋2𝑋3 … 𝑍1…𝑍5

𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒1 𝐿𝑎𝑠𝑠𝑒𝑟𝑟𝑒2

Classical 
[Lasserre  2001]
[Parillo 2003]

Non-commutative/Quantum
[Navascués, Pironio, Acìn 2009 (2010 SIAM J Opt)]

𝑴𝒂𝒙	𝑻𝒓 𝑯N𝝆
 𝑻𝒓 N𝝆 = 𝟏 
                     𝑻𝒓 N𝝆	𝑺+𝑺 ≥ 𝟎, ∀ deg-𝒌	𝑺
        

∀ deg-1 𝑺 ∀ deg-2 𝑺 ∀ deg-𝐧	𝑺

N𝝆 is called degree-k pseudo density



Rounding Infeasible Solutions

𝑴𝒂𝒙	𝑻𝒓 𝑯N𝝆
 𝑻𝒓 N𝝆 = 𝟏 
                     𝑻𝒓 N𝝆	𝑺+𝑺 ≥ 𝟎, ∀ deg-𝒌	𝑺
        

∀ deg-1 𝑺 ∀ deg-2 𝑺 ∀ deg-𝐧	𝑺

N𝝆 is called degree-k pseudo density

𝜶-Approximation Algorithm

Round optimal non-positive pseudo-density N𝝆	to sub-
optimal positive density 𝝆 so that:

	𝑻𝒓 𝑯𝝆 ≥ 𝜶	𝑻𝒓 𝑯N𝝆 ≥ 𝜶	𝝀𝒎𝒂𝒙(𝑯)



QUANTUM 
STREAMING
ADVANTAGES



Space Efficiency

We would like algorithms that need very few bits/qubits

0
1
0
1
0

Q

Ideally a number sublinear in the size of the input, e.g. 𝐎 𝒏  or 𝐎 𝐥𝐨𝐠(𝒏)  for a size-n input 



Why Space-Efficient Algorithms?

Qubits are expensive

• Even under the most optimistic assumptions, qubits will continue to be much more expensive 
than classical bits

• Motivates algorithms that use very few qubits, but maybe many classical bits

Qubits can be exponentially more powerful than classical bits

• We know there are problems that require exponentially fewer qubits than bits

• This is provable! (unlike with time complexity)

• Motivates looking at algorithms that use very little total space (bits + qubits) 
(and impossibility results)

Two reasons, pointing to different kinds of algorithm:

Our focus has been on the second case



Streaming Algorithms

When dealing with very small space algorithms, it matters how you receive the input dataset 

Streaming 

• Dataset is built up by a “stream” of small updates 

• Answer is expected at the end of the stream

= + + +

Examples 

• Calculating traffic statistics on a router

• Estimating properties of a large social networking graph given as a sequence of friendships 



QUANTUM STREAMING ADVANTAGES FOR GRAPH PROBLEMS

Exponential advantage for Boolean Hidden Matching
[Gavinsky, Kempe, Kerenidis, Raz, and de Wolf 2008]

First natural problem: polynomial advantage for triangle counting
[Kallaugher 2021]

No quantum advantage possible: Max Cut or Quantum Max Cut
[Kallaugher, P 2022]

Exponential advantage for natural problem: Directed Max Cut
[Kallaugher, P, Voronova 2023]



QUANTUM 
GENERALIZATIONS 
OF VERTEX COVER



VERTEX COVER

𝑮 = (𝑽, 𝑬)

Goal: color minimum number of
           vertices, so each edge has
           at least 1 colored endpoint
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VERTEX COVER

𝑮 = (𝑽, 𝑬)

Goal: color minimum number of
           vertices, so each edge has
           at least 1 colored endpoint

6 vertices colored

Optimal since each 5-cycle needed 3!



VERTEX COVER

𝑮 = (𝑽, 𝑬)

Goal: color minimum number of
           vertices, so each edge has
           at least 1 colored endpoint

NP-hard: one of Karp’s original 21 problems

Several 2-approximations known
e.g. [Bar-Yehuda, Bendel, Freund, Rawitz 2004]

Best possible under Unique Games Conjecture
[Khot, Regev 2008]



VERTEX COVER AS CONSTRAINED LOCAL HAMILTONIAN

min
|[⟩

𝜓 ∑] |1⟩⟨1|] 𝜓

𝜓 |00⟩⟨00|]^ 𝜓 = 0  for all edges (u,v)  

00
01
10
11

Unhappy edge

Happy edge



PUT A TRANSVERSE FIELD ON IT

min
|[⟩

𝜓 ∑](𝐼 − 𝑍])/2 𝜓

𝜓 (𝐼 + 𝑍])(𝐼 + 𝑍^)/4 𝜓 = 0  for all edges (u,v)  

;]

𝑋
]

Bob
Best-thing finder

AliceAnalyst

+Secret SauceSolution: x4



PUT A TRANSVERSE FIELD ON IT

min
|[⟩

𝜓 ∑](𝐼 − 𝑍])/2 𝜓

𝜓 (𝐼 + 𝑍])(𝐼 + 𝑍^)/4 𝜓 = 0  for all edges (u,v)  

+;
]

𝑋]

Equivalent to PXP model (Rydberg blockade interactions)

We show Transverse Vertex Cover/PXP are StoqMA-complete

Simple (𝟐 + 𝟐)-approximation via quantum version of local ratio

[P, Rayudu, Thompson 2023]



QUANTUM SCARS



Thanks for staying awake to read this!


