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Quantum State Tomography

Input: Black-box access to copies of |)).
Output: Approximation [¢)') ~ |¢)) as a classical
description.

Provably hard!
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Efficient Quantum State Tomography

How do we get around this exponential barrier?
The same way we do in classical learning!

o Move the goal post:
O PAC learning [Aar07]
[0 Shadow tomography [Aar18, HKP20]
O Distinguishing/property testing [GNW21, GIKL23d]
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Efficient Quantum State Tomography

How do we get around this exponential barrier?
The same way we do in classical learning!

o Move the goal post:

O PAC learning [Aar07]

[0 Shadow tomography [Aar18, HKP20]

O Distinguishing/property testing [GNW21, GIKL23d]
o Restrict the states:

[0 Free-fermion states [AG23]

[0 Low-Degree Phase states [ABDY23]
[J Stabilizer States [Mon17]

Grewal, lyer, Kretschmer Liang



Stabilizer States & Clifford Unitaries

Definition
A Clifford unitary is any unitary generated by H, S, and
CNOT.

111 10
H.:E[l _J S.:[ Z] CNOT :=

o O O
o O = O
_— o O O
o = O O
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Stabilizer States & Clifford Unitaries

Definition
A Clifford unitary is any unitary generated by H, S, and
CNOT.

I {1 1 10
H.:E[l 1} S = [0 z] CNOT =

o O O
o O = O
_— o O O
o = O O

Definition
A stabilizer state is a state generated by a Clifford unitary
on |0™).
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Stabilizer States & Clifford Unitaries

A Clifford unitary is any unitary generated by H, S, and
CNOT.
1 0 00
1 11 1 10 01 00
H.:E{1 _1} S = [0 Z] CNOT = 00 0 1
0010
A stabilizer state is a state generated by a Clifford unitary
on |0™).

Not a universal gate set!
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Applications

Error-correcting Codes
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Applications

Error-correcting Codes
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And more! Unitary Designs, Quantum Money, Classical
Simulation, ...
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Algebraic Structure of Stabilizer States
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Algebraic Structure of Stabilizer States

_[to o1 o —i 1o
1._{0 J X._L 0} Y"L‘ O} z._{o _J
P, = {I,X,Y, Z}*"

Stabo(|1})) — {W € P [ = 1}.
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Algebraic Structure of Stabilizer States

1o 10
r=[) 0] xe
P

= {1, X,Y, Z}®"

Stabo(|1})) — {W € P [ = 1}.

Fact: |Stab(|v))| = 2™ if and only if |¢) is a stabilizer state.
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Learning Stabilizer States: A Warmup

Lemma ([AG04])
Given Stab(|y)), there exists a Clifford circuit C' such that

Clp) = |z)

for some x € {0,1}".

Moreover, C can be computed in time O(n?).
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Learning Stabilizer States: A Warmup (cont.)

Lemma ([Mon17])

Given copies of a stabilizer state |p), there exists a
measurement to efficiently sample from the uniform
distribution over Stab(|y)).

Algorithm: Sample O(n) times and output the group
generated by the samples.
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Learning Beyond Stabilizer States

Various generalizations of stabilizer states:
o Low-stabilizer-rank states
o Low-degree phase states
o Clifford + T states

Can we learn any of them efficiently?
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(3.2

Clifford unitaries are not universal for computation, but
Clifford + T is!
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(3.2

Clifford unitaries are not universal for computation, but
Clifford + T is!

T gates take us further and further from the nice algebraic
properties of stabilizer states:
o Classical simulation algorithms run in time
poly(n) exp(k).
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Our Work

Theorem ([GIKL23a, LOH23, HG23])

Can learn any state produced by k T gates in time
poly(n) exp(k).
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Our Work

Theorem ([GIKL23a, LOH23, HG23])

Can learn any state produced by k T gates in time
poly(n) exp(k).

Other results:
o Pseudorandom state distinguisher': [GIKL23c].

o First non-trivial estimator of stabilizer fidelity:
[GIKL23c].

o Improved (tolerant) property tester for stabilizer
states: [GIKL23c].

o Single-copy learning algorithm: [GIKL23b, CLL23].

'See Simons Talk for more information!
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Learning States with Many Stabilizers

Lemma

Let 1)) be produced by Clifford gates and at most k T
gates. Then |Stab(|+)))| > 2"*.

Grewal, lyer, Kretschmer Liang



Learning States with Many Stabilizers

Lemma

Let 1)) be produced by Clifford gates and at most k T
gates. Then |Stab(|+)))| > 2"*.

Suffices to consider the set of states such that Stab(|v))
is large!
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Learning States with Many Stabilizers

Lemma

Let 1)) be produced by Clifford gates and at most k T
gates. Then |Stab(|+)))| > 2"*.

Suffices to consider the set of states such that Stab(|v))
is large!
Theorem ([GIKL23a])

Can learn any state such that |Stab(|+)))| > 2"* in time
poly(n) exp(k).
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A Compression Scheme

Critical Observation

Let |Stab(|w))| > 2"~*. Then learning Stab(]+/)) is enough
to learn |¢) in time poly(n) exp(k).
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A Compression Scheme

Critical Observation
Let |Stab(|w))| > 2"~*. Then learning Stab(]+/)) is enough
to learn |¢) in time poly(n) exp(k).

Given Stab(])), there exists a Clifford circuit C' such that

Cly)=lr)® |p)

~—~—

k qubits

for some x € {0, 1}"*.
Moreover, C' can be computed in time O(n?).
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Initial Algorithm

Algorithm 1: First Approach

Input: Copies of |¢/) and description of Stab(|«))
Promise: |Stab(|¢))| > 2nF

~

Output: [¢) ~ [¢)
1 Find C such that C |[¢)) = |z) |¢).
2 Measure first register of C'|¢) to learn z.
3 Perform pure state tomography on second register to
get o) ~ |p).
4 Output CT |z) |P).
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Initial Algorithm

Algorithm 1: First Approach

Input: Copies of |¢/) and description of Stab(|«))
Promise: |Stab(|¢))| > 2nF

~

Output: [¢) ~ [¢)
1 Find C such that C |[¢)) = |z) |¢).
2 Measure first register of C'|¢) to learn z.
3 Perform pure state tomography on second register to
get o) ~ |p).
4 Output CT |z) |P).

How do we find Stab(|))?
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Characteristic Distribution p,,

Forw e {I,X,Y, Z}®",

po(W) = o (BIW14)*.

Grewal, lyer, Kretschmer Liang



Characteristic Distribution p,,

Forw e {I, XY, Z}®",

po(IW) = o (W),

@ p, is a distribution [Mon17]

o Can sample from ¢, = p, * p,, via Bell difference
sampling [GNW21]
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A Fourier Duality Theorem

Theorem ([GIKL23c])
Given a subgroup G C {I, X,Y, Z}*":

> peW) = 3

WeG WweGt
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A Fourier Duality Theorem

Theorem ([GIKL23c])
Given a subgroup G C {I, X,Y, Z}*":
G
> p) = 91 S )

WeG WweGt

Definition
G+ C{I,X,Y, Z}®" is the set of Pauli matrices that
commutes with all of G.

Claim: (G)" = G.
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Corollary

The support of py lies in Stab(|y))*.
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Corollary

The support of py lies in Stab(|y))*.

By duality theorem:

> pw(W)Z‘StaZM > p(W).

W eStab(|1)) WeStab(|i))+
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Corollary

The support of py lies in Stab(|y))*.

By duality theorem:

> pw(W)Z‘StaZM > p(W).

W eStab(|1)) WeStab(|i))+

By definition of Stab(|)):

Y n= Y o iy = PR

W eStab(|1))) w eStab(Iw>)
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How to learn Stab(|¢)))

Algorithm 2: Learning Algorithm v2
Input: Copies of |¢)
Promise: |Stab(|¢))| > 2n*

~

Output: [1)) ~ |)
1 Draw m = O(n) samples: Wy, Wy, - -- W, ~ py.

2 Compute St£(|\¢>) = (W, Wo, -+, W,)t.
3

Claim: Given G, G+ can be computed in time O(n?).
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How to learn Stab(|¢)))

Algorithm 2: Learning Algorithm v2
Input: Copies of |¢)
Promise: |Stab(|¢))| > 2n*

~

Output: [1)) ~ |)
1 Draw m = O(n) samples: Wy, Wy, - -- W, ~ py.

—

2 Compute Stab(|))) = (W, Wa, -, W, )*.
3 Run compression scheme from previous algorithm.

Claim: Given G, G+ can be computed in time O(n?).

Grewal, lyer, Kretschmer Liang



A More Robust Algorithm

Problem: Cannot always learn the support of p,, exactly.
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A More Robust Algorithm

Problem: Cannot always learn the support of p,, exactly.

G ¢ Stab(|v))" <= G* 2 Stab(|v)).

Solution: Learning almost all of the support is sufficient!
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Robustness Lemma

Solution: Learning almost all of the support is sufficient!
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Robustness Lemma

Solution: Learning almost all of the support is sufficient!

Lemma ([GIKL23a])
Let G C Stab(|)))* such that

D (W) =1-¢%

weaG

Then |v) ~. |p) such that Stab(|p)) = G*.
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Robustness Lemma

Solution: Learning almost all of the support is sufficient!
Lemma ([GIKL23a])
Let G C Stab(|)))* such that

D (W) =1-¢%

weaG

Then |v) ~. |p) such that Stab(|p)) = G*.

Can learn such a subgroup with O(n/c*) samples.

Grewal, lyer, Kretschmer Liang



The Learning Algorithm

Algorithm 3: Tomography of States with many Stabi-
lizers

Input: Copies of |¢)

Promise: |Stab(|y))| > 2"~*

Output: [¢) ~. [¢)
1 Perform draw m = O(n/c?) samples: Wy, Wy, - - W,,.
2 Compute (Wy, Wy, -+, W,,)*.
3 Apply C such that C'|¢y) =~ |z) |p).
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The Learning Algorithm

Algorithm 3: Tomography of States with many Stabi-
lizers

Input: Copies of |¢)
Promise: |Stab(|y))| > 2"~*
Output: [¢) ~. |¢)
1 Perform draw m = O(n/c?) samples: Wy, Ws, - - - W,,.
2 Compute (Wy, Wy, -+, W,,)*.
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The Learning Algorithm

Algorithm 3: Tomography of States with many Stabi-
lizers

Input: Copies of |¢)
Promise: |Stab(|y))| > 2"~*
Output: [¢) ~. |¢)
1 Perform draw m = O(n/c?) samples: Wy, Wy, - - W,,.
2 Compute (Wy, Wy, -+, W,,)*.
3 Apply C such that C'|¢) ~. |z) |p).
4
5

Measure first register of C |¢)) O(1) times to learn z.
Post-select on measuring |z) then run pure state
tomography on |y).

Grewal, lyer, Kretschmer Liang



The Learning Algorithm

Algorithm 3: Tomography of States with many Stabi-
lizers

Input: Copies of |¢)
Promise: |Stab(|y))| > 2"~*
Output: [¢) ~. |¢)
1 Perform draw m = O(n/c?) samples: Wy, Wy, - - W,,.
2 Compute (Wy, Wy, -+, W,,)*.
3 Apply C such that C'|¢) ~. |z) |p).
4
5

Measure first register of C |¢)) O(1) times to learn z.
Post-select on measuring |z) then run pure state
tomography on |y).

Return CT 0" ® |3).

[+;]
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Proof of Robustness Lemma

Lemma ([GIKL23a])
Let G C Stab(|y)))* such that

> p(W)=1-¢

weaG

Then |v) ~. |p) such that Stab(|p)) = G*+.
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Proof of Robustness Lemma

Lemma ([GIKL23a])
Let G C Stab(|y)))* such that

> p(W)=1-¢

weaG

Then |v) ~. |p) such that Stab(|p)) = G*+.

Goal:
) =C" Y alz) @)

ze{0,1}7—!

max |a,[? >1—¢&”
ze{0,1}—!
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Collision Probability and p,,

Zt — {[, Z}®t ® [®n—t
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Collision Probability and p,,

Zt — {[, Z}®t ® [®n—t

Then the collision probability of the first register is:

D loaf

ze{0,1}—!
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Collision Probability and p,,

Zt — {[, Z}®t ® [®n—t

Then the collision probability of the first register is:

> aut= 30 T | (el @ 1) 2]

ze{0,1}—! z€{0,1}
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Collision Probability and p,,

Zt — {[, Z}®t ® [®n—t

Then the collision probability of the first register is:
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Collision Probability and p,,

Zt — {[, Z}®t ® [®n—t

Then the collision probability of the first register is:

ze{0,1}—! z€{0,1}
=21 > py(W)
Wezn-l
max |a,|°= max |og|*-1
z€{0,1}—! €{0,1}—!
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Collision Probability and p,,

Zt — {[, Z}®t ® [®n—t

Then the collision probability of the first register is:

max o, = max Ja,|* Z | |
ze{0,1}—! ze{0,1}—!
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Collision Probability and p,,

Zt — {[, Z}®t ® [®n—t

Then the collision probability of the first register is:

max |a,[* = max |a,|* Z o |? > Z | [*
€01} e{0.1pn ze{0,1}n-1 ze{0,1}n—1
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Proof (cont.)

Zt — {],Z}®t ® ]®n—t
Let G C {I,X,Y, Z}®" such that G+ = 2"
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Proof (cont.)

Zt — {],Z}®t ® ]®n—t
Let G C {I,X,Y, Z}®" such that G+ = 2"

1<) py(W)

weG
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Proof (cont.)

Zt — {],Z}®t ® ]®n—t
Let G C {I,X,Y, Z}®" such that G+ = 2"

1<) py(W)

weG

- |%| S p(W)

weG+
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Proof (cont.)

Zt — {],Z}®t ® ]®n—t
Let G C {I,X,Y, Z}®" such that G+ = 2"

1<) py(W)

weG

- |%| S p(W)

weG+

=20 > pu(W)

WezZn-l
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Proof (cont.)

Zt — {],Z}®t ® ]®n—t
Let G C {I,X,Y, Z}®" such that G+ = 2"

1<) py(W)

weG

2n
= @ Z W(W)
WeGt
=20 > pu(W)
WwezZn-l
< max |agl|%.

ze{0,1}—!
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Proof (cont.)

Zt — {]7z}®t ® ]®n—t
Let G C {I,X,Y, Z}®" such that G+ = 2"

1<) py(W)

weG

- |%| S p(W)

WweG+
=20 > pu(W)
WezZn-l

< max o,

ze{0,1}—!

|’¢]> s |xmax> |90$max>
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Finding C'

Lemma ([GIKL23a])
LetG C{I,X,Y, Z}*" such that

> pp(W) > 2-

weG

Then there exists a Clifford circuit C' such that
C(Gt) = zn L,
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Finding C'

Lemma ([GIKL23a])
LetG C{I,X,Y, Z}*" such that

> pp(W) > 2-

weG

Then there exists a Clifford circuit C' such that
C(Gt) = zn L,

Let [¢) = C'|¢):
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Finding C'

Lemma ([GIKL23a])
LetG C{I,X,Y, Z}*" such that

> pp(W) > 2-

weG

Then there exists a Clifford circuit C' such that
C(Gt) = zn L,

Let [¢) = C'|¢):

D )= D> pplx)

zeG zeC(Q)
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Algorithm Overview

Lete € (0,1):
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Algorithm Overview

Lete € (0,1):
@ Draw m = O (n/e*) samples from p,: Wi, Wy, - - W,,.
o Let G = (Wy,Wa,---W,,). Then w.h.p.

> pyp(W) >1-£/4

weG
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Algorithm Overview

Lete € (0,1):
@ Draw m = O (n/e*) samples from p,: Wi, Wy, - - W,,.
o Let G = (Wy,Wa,---W,,). Then w.h.p.

> pyp(W) >1-£/4

weG

@ Compute G*.
o G+ D Stab(|y)).
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Algorithm Overview

Lete € (0,1):
@ Draw m = O (n/e*) samples from p,: Wi, Wy, - - W,,.
o Let G = (Wy,Wa,---W,,). Then w.h.p.

> pp(W) > 1-¢%/4
WeG
@ Compute G*.
o G+ D Stab(|y))).
@ Apply C such that C(G*) = {I, Z}*"t @ I¥,
o Clp) =3 cr01yn-1 @ |7) ) such that

max |2 > 1 —£%/4.
ze{0,1}—!
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Algorithm Overview (cont.)

@ Measure first register of C' 1)) O(1) times, to learn
Tmax W.D.p.

o Probability of measuring zmax is |y, |2 > 3/4.
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Algorithm Overview (cont.)

@ Measure first register of C' 1)) O(1) times, to learn
Tmax W.D.p.

o Probability of measuring zmax is |y, |2 > 3/4.
@ Post-select on measuring |Tmax)-

o Left with |n) == |zmax) |¢©).
o dr (Cly),|m)) < /2.
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Algorithm Overview (cont.)

@ Measure first register of C' 1)) O(1) times, to learn
Tmax W.D.p.

o Probability of measuring zmax is |y, |2 > 3/4.
@ Post-select on measuring |Tmax)-
o Left with [) = |zmax) ).
o dr (ClY),|m) <e/2.
@ Run pure state tomography on second register such
that dr. (le) , [)) < /2.

o Total trace distance is at most £/2 + ¢/2 via triangle
inequality.
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Algorithm Overview (cont.)

@ Measure first register of C' 1)) O(1) times, to learn
Tmax W.D.p.

o Probability of measuring zmax is |y, |2 > 3/4.
@ Post-select on measuring |Tmax)-
o Left with |n) = |zmax) |©)-
o dr (ClY),|m) <e/2.
@ Run pure state tomography on second register such
that dr (@) @) < /2.
o Total trace distance is at most £/2 + ¢/2 via triangle
inequality.
@ Output CT |zmax) |P).
o Trace distance preserved by unitaries.
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Open Questions

Current best-known lower bounds are ~ Q(v/k), due to
unitary ¢-designs [HMMH*23].
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Open Questions

Current best-known lower bounds are ~ Q(v/k), due to
unitary ¢-designs [HMMH*23].

Proper Learning

Output state is not necessarily produced by O(logn)
T-gates, can be as many as poly(n).
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Thank You!
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