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Quantum State Tomography

→ |ψ⟩

Input: Black-box access to copies of |ψ⟩.

Output: Approximation |ψ′⟩ ≈ |ψ⟩ as a classical
description.

Provably hard!
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Efficient Quantum State Tomography

How do we get around this exponential barrier?

The same way we do in classical learning!

Solution
Move the goal post:
□ PAC learning [Aar07]
□ Shadow tomography [Aar18, HKP20]
□ Distinguishing/property testing [GNW21, GIKL23d]

Restrict the states:
□ Free-fermion states [AG23]
□ Low-Degree Phase states [ABDY23]
□ Stabilizer States [Mon17]
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Stabilizer States & Clifford Unitaries

Definition
A Clifford unitary is any unitary generated by H, S, and
CNOT.

H :=
1√
2

[
1 1
1 −1

]
S :=

[
1 0
0 i

]
CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Definition
A stabilizer state is a state generated by a Clifford unitary
on |0n⟩.

Not a universal gate set!
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Applications

Error-correcting Codes
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Applications
Error-correcting Codes

Quantum Key Distribution Learning Algorithms

And more! Unitary Designs, Quantum Money, Classical
Simulation, ...
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Algebraic Structure of Stabilizer States

I :=

[
1 0
0 1

]
X :=

[
0 1
1 0

]
Y :=

[
0 −i
i 0

]
Z :=

[
1 0
0 −1

]
Pn := {I,X, Y, Z}⊗n

Definition

Stab(|ψ⟩) :=
{
W ∈ Pn : |⟨ψ|W |ψ⟩|2 = 1

}
.

Fact: |Stab(|ψ⟩)| = 2n if and only if |ψ⟩ is a stabilizer state.
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Learning Stabilizer States: A Warmup

Lemma ([AG04])
Given Stab(|φ⟩), there exists a Clifford circuit C such that

C |φ⟩ = |x⟩

for some x ∈ {0, 1}n.

Moreover, C can be computed in time O(n2).
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Learning Stabilizer States: A Warmup (cont.)

Lemma ([Mon17])
Given copies of a stabilizer state |φ⟩, there exists a
measurement to efficiently sample from the uniform
distribution over Stab(|φ⟩).

Algorithm: Sample O(n) times and output the group
generated by the samples.

RICE Grewal, Iyer, Kretschmer Liang 8



Learning Beyond Stabilizer States

Question
Various generalizations of stabilizer states:

Low-stabilizer-rank states
Low-degree phase states
Clifford + T states

Can we learn any of them efficiently?

RICE Grewal, Iyer, Kretschmer Liang 9



Clifford + T

T =

(
1 0
0 eiπ/4

)

Clifford unitaries are not universal for computation, but
Clifford + T is!

T gates take us further and further from the nice algebraic
properties of stabilizer states:

Classical simulation algorithms run in time
poly(n) exp(k).
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Our Work

Theorem ([GIKL23a, LOH23, HG23])
Can learn any state produced by k T gates in time
poly(n) exp(k).

Other results:
Pseudorandom state distinguisher1: [GIKL23c].
First non-trivial estimator of stabilizer fidelity:
[GIKL23c].
Improved (tolerant) property tester for stabilizer
states: [GIKL23c].
Single-copy learning algorithm: [GIKL23b, CLL23].

1
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Learning States with Many Stabilizers

Lemma
Let |ψ⟩ be produced by Clifford gates and at most k T
gates. Then |Stab(|ψ⟩)| ≥ 2n−k.

Suffices to consider the set of states such that Stab(|ψ⟩)
is large!

Theorem ([GIKL23a])

Can learn any state such that |Stab(|ψ⟩)| ≥ 2n−k in time
poly(n) exp(k).
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A Compression Scheme

Critical Observation
Let |Stab(|ψ⟩)| ≥ 2n−k. Then learning Stab(|ψ⟩) is enough
to learn |ψ⟩ in time poly(n) exp(k).

Given Stab(|ψ⟩), there exists a Clifford circuit C such that

C |ψ⟩ = |x⟩ ⊗ |φ⟩︸︷︷︸
k qubits

for some x ∈ {0, 1}n−k.

Moreover, C can be computed in time O(n2).
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Initial Algorithm

Algorithm 1: First Approach
Input: Copies of |ψ⟩ and description of Stab(|ψ⟩)
Promise: |Stab(|ψ⟩)| ≥ 2n−k

Output: |ψ̂⟩ ≈ |ψ⟩
1 Find C such that C |ψ⟩ = |x⟩ |φ⟩.
2 Measure first register of C |ψ⟩ to learn x.
3 Perform pure state tomography on second register to

get |φ̂⟩ ≈ |φ⟩.
4 Output C† |x⟩ |φ̂⟩.

How do we find Stab(|ψ⟩)?
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Characteristic Distribution pψ

For W ∈ {I,X, Y, Z}⊗n,

pψ(W ) :=
1

2n
⟨ψ|W |ψ⟩2 .

pψ is a distribution [Mon17]
Can sample from qψ = pψ ∗ pψ via Bell difference
sampling [GNW21]
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A Fourier Duality Theorem

Theorem ([GIKL23c])
Given a subgroup G ⊆ {I,X, Y, Z}⊗n:∑

W∈G

pψ(W ) =
|G|
2n

∑
W∈G⊥

pψ(W )

Definition
G⊥ ⊆ {I,X, Y, Z}⊗n is the set of Pauli matrices that
commutes with all of G.

Claim:
(
G⊥)⊥ = G.
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Corollary

The support of pψ lies in Stab(|ψ⟩)⊥.

Proof.

By duality theorem:∑
W∈Stab(|ψ⟩)

pψ(W ) =
|Stab(|ψ⟩)|

2n

∑
W∈Stab(|ψ⟩)⊥

pψ(W ).

By definition of Stab(|ψ⟩):∑
W∈Stab(|ψ⟩)

pψ(W ) =
∑

W∈Stab(|ψ⟩)

1

2n
⟨ψ|W |ψ⟩2 = |Stab(|ψ⟩)|

2n
.

RICE Grewal, Iyer, Kretschmer Liang 17



Corollary

The support of pψ lies in Stab(|ψ⟩)⊥.

Proof.
By duality theorem:∑

W∈Stab(|ψ⟩)

pψ(W ) =
|Stab(|ψ⟩)|

2n

∑
W∈Stab(|ψ⟩)⊥

pψ(W ).

By definition of Stab(|ψ⟩):∑
W∈Stab(|ψ⟩)

pψ(W ) =
∑

W∈Stab(|ψ⟩)

1

2n
⟨ψ|W |ψ⟩2 = |Stab(|ψ⟩)|

2n
.

RICE Grewal, Iyer, Kretschmer Liang 17



Corollary

The support of pψ lies in Stab(|ψ⟩)⊥.

Proof.
By duality theorem:∑

W∈Stab(|ψ⟩)

pψ(W ) =
|Stab(|ψ⟩)|

2n

∑
W∈Stab(|ψ⟩)⊥

pψ(W ).

By definition of Stab(|ψ⟩):∑
W∈Stab(|ψ⟩)

pψ(W ) =
∑

W∈Stab(|ψ⟩)

1

2n
⟨ψ|W |ψ⟩2 = |Stab(|ψ⟩)|

2n
.

RICE Grewal, Iyer, Kretschmer Liang 17



How to learn Stab(|ψ⟩)

Algorithm 2: Learning Algorithm v2
Input: Copies of |ψ⟩
Promise: |Stab(|ψ⟩)| ≥ 2n−k

Output: |ψ̂⟩ ≈ |ψ⟩
1 Draw m = O(n) samples: W1,W2, · · ·Wm ∼ pψ.

2 Compute ̂Stab(|ψ⟩) := ⟨W1,W2, · · · ,Wm⟩⊥.
3

Claim: Given G, G⊥ can be computed in time O(n3).

RICE Grewal, Iyer, Kretschmer Liang 18
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A More Robust Algorithm

Problem: Cannot always learn the support of pψ exactly.

G ⊊ Stab(|ψ⟩)⊥ ⇐⇒ G⊥ ⊋ Stab(|ψ⟩).

Solution: Learning almost all of the support is sufficient!

RICE Grewal, Iyer, Kretschmer Liang 19
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Robustness Lemma

Solution: Learning almost all of the support is sufficient!

Lemma ([GIKL23a])

Let G ⊆ Stab(|ψ⟩)⊥ such that∑
W∈G

pψ(W ) = 1− ε2.

Then |ψ⟩ ≈ε |φ⟩ such that Stab(|φ⟩) = G⊥.

Can learn such a subgroup with O(n/ε2) samples.
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The Learning Algorithm

Algorithm 3: Tomography of States with many Stabi-
lizers

Input: Copies of |ψ⟩
Promise: |Stab(|ψ⟩)| ≥ 2n−k

Output: |ψ̂⟩ ≈ε |ψ⟩
1 Perform draw m = O(n/ε2) samples: W1,W2, · · ·Wm.
2 Compute ⟨W1,W2, · · · ,Wm⟩⊥.
3 Apply C such that C |ψ⟩ ≈ε |x⟩ |φ⟩.

4 Measure first register of C |ψ⟩ O(1) times to learn x.
5 Post-select on measuring |x⟩ then run pure state

tomography on |φ⟩.
6 Return C† |0n−k′⟩ ⊗ |φ̂⟩.

RICE Grewal, Iyer, Kretschmer Liang 21
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Proof of Robustness Lemma

Lemma ([GIKL23a])

Let G ⊆ Stab(|ψ⟩)⊥ such that∑
W∈G

pψ(W ) = 1− ε2.

Then |ψ⟩ ≈ε |φ⟩ such that Stab(|φ⟩) = G⊥.

Goal:
|ψ⟩ := C†

∑
x∈{0,1}n−l

αx |x⟩ ⊗ |φx⟩ .

max
x∈{0,1}n−l

|αx|2 ≥ 1− ε2

RICE Grewal, Iyer, Kretschmer Liang 22
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Collision Probability and pψ

Z t := {I, Z}⊗t ⊗ I⊗n−t

Then the collision probability of the first register is:∑
x∈{0,1}n−l

|αx|4 =
∑

x∈{0,1}l
Tr

[(
|x⟩⟨x| ⊗ I l

)⊗2 |ψ⟩⟨ψ|⊗2
]

= 2l ·
∑

W∈Zn−l

pψ(W )

max
x∈{0,1}n−l

|αx|2 = max
x∈{0,1}n−l

|αx|2 · ≥
∑

x∈{0,1}n−l

|αx|4
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Proof (cont.)

Z t := {I, Z}⊗t ⊗ I⊗n−t

Let G ⊂ {I,X, Y, Z}⊗n such that G⊥ = Zn−l.

1− ε2 ≤
∑
W∈G

pψ(W )

=
2n

|G|
∑
W∈G⊥

pψ(W )

= 2l ·
∑

W∈Zn−l

pψ(W )

≤ max
x∈{0,1}n−l

|αx|2.

|ψ⟩ ≈ε |xmax⟩ |φxmax⟩
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Finding C

Lemma ([GIKL23a])
Let G ⊆ {I,X, Y, Z}⊗n such that∑

W∈G

pψ(W ) >
3

4
.

Then there exists a Clifford circuit C such that
C(G⊥) = Zn−l.

Let |ψ′⟩ := C |ψ⟩: ∑
x∈G

pψ(x) =
∑

x∈C(G)

pψ′(x)
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Algorithm Overview

Let ε ∈ (0, 1):

1 Draw m = O (n/ε2) samples from pψ: W1,W2, · · ·Wm.
Let G := ⟨W1,W2, · · ·Wm⟩. Then w.h.p.∑

W∈G
pψ(W ) ≥ 1− ε2/4

2 Compute G⊥.
G⊥ ⊇ Stab(|ψ⟩).

3 Apply C such that C(G⊥) = {I, Z}⊗n−l ⊗ I⊗l.
C |ψ⟩ =

∑
x∈{0,1}n−l αx |x⟩ |φx⟩ such that

max
x∈{0,1}n−l

|αx|2 ≥ 1− ε2/4.
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Algorithm Overview (cont.)

4 Measure first register of C |ψ⟩ O(1) times, to learn
xmax w.h.p.

Probability of measuring xmax is |αxmax |2 > 3/4.

5 Post-select on measuring |xmax⟩.
Left with |η⟩ := |xmax⟩ |φ⟩.
dTr (C |ψ⟩ , |η⟩) ≤ ε/2.

6 Run pure state tomography on second register such
that dTr (|φ⟩ , |φ̂⟩) ≤ ε/2.

Total trace distance is at most ε/2 + ε/2 via triangle
inequality.

7 Output C† |xmax⟩ |φ̂⟩.
Trace distance preserved by unitaries.
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Open Questions

Lower Bounds

Current best-known lower bounds are ≈ Ω( 4
√
k), due to

unitary t-designs [HMMH+23].

Proper Learning
Output state is not necessarily produced by O(log n)
T -gates, can be as many as poly(n).
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Thank You!
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