Learning Beyond Stabilizer States Based on: arXiv:2305.13409

Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang

Rice University Department of Computer Science

October 18th, 2023

Quantum State Tomography

Input: Black-box access to copies of $|\psi\rangle$.

Quantum State Tomography

Input: Black-box access to copies of $|\psi\rangle$. **Output**: Approximation $|\psi'\rangle \approx |\psi\rangle$ as a classical description.

Quantum State Tomography

Input: Black-box access to copies of $|\psi\rangle$. **Output**: Approximation $|\psi'\rangle \approx |\psi\rangle$ as a classical description.

Provably hard!

Efficient Quantum State Tomography

How do we get around this exponential barrier?

Efficient Quantum State Tomography

How do we get around this exponential barrier? The same way we do in classical learning!

Solution

- Move the goal post:
 - □ PAC learning [Aar07]
 - Shadow tomography [Aar18, HKP20]
 - Distinguishing/property testing [GNW21, GIKL23d]

Efficient Quantum State Tomography

How do we get around this exponential barrier? The same way we do in classical learning!

Solution

- Move the goal post:
 - □ PAC learning [Aar07]
 - □ Shadow tomography [Aar18, HKP20]
 - Distinguishing/property testing [GNW21, GIKL23d]
- Restrict the states:
 - □ Free-fermion states [AG23]
 - Low-Degree Phase states [ABDY23]
 - Stabilizer States [Mon17]

Stabilizer States & Clifford Unitaries

Definition

A *Clifford unitary* is any unitary generated by H, S, and CNOT.

$$H \coloneqq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \qquad S \coloneqq \begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix} \qquad \text{CNOT} \coloneqq \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Stabilizer States & Clifford Unitaries

Definition

A *Clifford unitary* is any unitary generated by H, S, and CNOT.

$$H \coloneqq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \qquad S \coloneqq \begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix} \qquad \text{CNOT} \coloneqq \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Definition

A *stabilizer state* is a state generated by a Clifford unitary on $|0^n\rangle$.

Stabilizer States & Clifford Unitaries

Definition

A *Clifford unitary* is any unitary generated by H, S, and CNOT.

$$H \coloneqq \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ 1 & -1 \end{bmatrix} \qquad S \coloneqq \begin{bmatrix} 1 & 0\\ 0 & i \end{bmatrix} \qquad \text{CNOT} \coloneqq \begin{bmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Definition

A *stabilizer state* is a state generated by a Clifford unitary on $|0^n\rangle$.

Not a universal gate set!

Quantum Key Distribution

Quantum Key Distribution

Learning Algorithms

RICE

Error-correcting Codes

And more! Unitary Designs, Quantum Money, Classical Simulation, ...

Algebraic Structure of Stabilizer States

$$\begin{split} I \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad X \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Y \coloneqq \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad Z \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \\ \mathcal{P}_n \coloneqq \{I, X, Y, Z\}^{\otimes n} \end{split}$$

Algebraic Structure of Stabilizer States

$$I \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad X \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Y \coloneqq \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad Z \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\mathcal{P}_n \coloneqq \{I, X, Y, Z\}^{\otimes n}$$

Definition

$$\mathsf{Stab}(|\psi\rangle) \coloneqq \left\{ W \in \mathcal{P}_n : |\langle \psi | W | \psi \rangle|^2 = 1 \right\}$$

Algebraic Structure of Stabilizer States

$$I \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad X \coloneqq \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad Y \coloneqq \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \quad Z \coloneqq \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\mathcal{P}_n \coloneqq \{I, X, Y, Z\}^{\otimes n}$$

Definition

$$\mathsf{Stab}(|\psi\rangle) \coloneqq \bigg\{ W \in \mathcal{P}_n : |\langle \psi | W | \psi \rangle|^2 = 1 \bigg\}.$$

Fact: $|\text{Stab}(|\psi\rangle)| = 2^n$ if and only if $|\psi\rangle$ is a stabilizer state.

Learning Stabilizer States: A Warmup

Lemma ([AG04])

Given $Stab(|\varphi\rangle)$, there exists a Clifford circuit *C* such that

$$C \left| \varphi \right\rangle = \left| x \right\rangle$$

for some $x \in \{0, 1\}^n$.

Moreover, *C* can be computed in time $O(n^2)$.

Learning Stabilizer States: A Warmup (cont.)

Lemma ([Mon17])

Given copies of a stabilizer state $|\varphi\rangle$, there exists a measurement to efficiently sample from the uniform distribution over $Stab(|\varphi\rangle)$.

Algorithm: Sample O(n) times and output the group generated by the samples.

Learning Beyond Stabilizer States

Question

Various generalizations of stabilizer states:

- Low-stabilizer-rank states
- Low-degree phase states
- Clifford + T states

Can we learn any of them efficiently?

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

Clifford unitaries are not universal for computation, but Clifford + T is!

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

Clifford unitaries are not universal for computation, but Clifford + T is!

T gates take us further and further from the nice algebraic properties of stabilizer states:

• Classical simulation algorithms run in time poly(n) exp(k).

Can learn any state produced by k T gates in time poly(n) exp(k).

Can learn any state produced by k T gates in time poly(n) exp(k).

Other results:

• Pseudorandom state distinguisher¹: [GIKL23c].

Can learn any state produced by k T gates in time poly(n) exp(k).

Other results:

- Pseudorandom state distinguisher¹: [GIKL23c].
- First non-trivial estimator of stabilizer fidelity: [GIKL23c].

¹See Simons Talk for more information!

Can learn any state produced by k T gates in time poly(n) exp(k).

Other results:

- Pseudorandom state distinguisher¹: [GIKL23c].
- First non-trivial estimator of stabilizer fidelity: [GIKL23c].
- Improved (tolerant) property tester for stabilizer states: [GIKL23c].

¹See Simons Talk for more information!

Can learn any state produced by k T gates in time poly(n) exp(k).

Other results:

- Pseudorandom state distinguisher¹: [GIKL23c].
- First non-trivial estimator of stabilizer fidelity: [GIKL23c].
- Improved (tolerant) property tester for stabilizer states: [GIKL23c].
- Single-copy learning algorithm: [GIKL23b, CLL23].

¹See Simons Talk for more information!

Learning States with Many Stabilizers

Lemma

Let $|\psi\rangle$ be produced by Clifford gates and at most k T gates. Then $|Stab(|\psi\rangle)| \ge 2^{n-k}$.

Learning States with Many Stabilizers

Lemma

Let $|\psi\rangle$ be produced by Clifford gates and at most k T gates. Then $|Stab(|\psi\rangle)| \ge 2^{n-k}$.

Suffices to consider the set of states such that $\mathrm{Stab}(|\psi\rangle)$ is large!

Learning States with Many Stabilizers

Lemma

Let $|\psi\rangle$ be produced by Clifford gates and at most k T gates. Then $|Stab(|\psi\rangle)| \ge 2^{n-k}$.

Suffices to consider the set of states such that $\mathrm{Stab}(|\psi\rangle)$ is large!

Theorem ([GIKL23a])

Can learn any state such that $|Stab(|\psi\rangle)| \ge 2^{n-k}$ in time $poly(n) \exp(k)$.

Critical Observation

Let $|\text{Stab}(|\psi\rangle)| \ge 2^{n-k}$. Then learning $\text{Stab}(|\psi\rangle)$ is enough to learn $|\psi\rangle$ in time $\text{poly}(n) \exp(k)$.

Critical Observation

Let $|\text{Stab}(|\psi\rangle)| \ge 2^{n-k}$. Then learning $\text{Stab}(|\psi\rangle)$ is enough to learn $|\psi\rangle$ in time $\text{poly}(n) \exp(k)$.

Given $\operatorname{Stab}(|\psi\rangle)$, there exists a Clifford circuit C such that

$$C \left| \psi \right\rangle = \left| x \right\rangle \otimes \underbrace{\left| \varphi \right\rangle}_{k \text{ qubits}}$$

for some $x \in \{0, 1\}^{n-k}$.

Moreover, *C* can be computed in time $O(n^2)$.

Algorithm 1: First Approach

Input: Copies of $|\psi\rangle$ and description of Stab $(|\psi\rangle)$ **Promise:** $|\text{Stab}(|\psi\rangle)| \ge 2^{n-k}$

Output: $|\widehat{\psi}\rangle \approx |\psi\rangle$

- 1 Find *C* such that $C |\psi\rangle = |x\rangle |\varphi\rangle$.
- ² Measure first register of $C |\psi\rangle$ to learn x.
- ³ Perform pure state tomography on second register to get $|\widehat{\varphi}\rangle \approx |\varphi\rangle$.
- 4 Output $C^{\dagger} |x\rangle |\hat{\varphi}\rangle$.

Algorithm 1: First Approach

Input: Copies of $|\psi\rangle$ and description of Stab $(|\psi\rangle)$ **Promise:** $|\text{Stab}(|\psi\rangle)| > 2^{n-k}$

Output:
$$|\widehat{\psi}
angle pprox |\psi
angle$$

- 1 Find *C* such that $C |\psi\rangle = |x\rangle |\varphi\rangle$.
- ² Measure first register of $C |\psi\rangle$ to learn x.
- 3 Perform pure state tomography on second register to get |φ⟩ ≈ |φ⟩.
 Cuthant C^t | w⟩ | ∞⟩
- 4 Output $C^{\dagger} |x\rangle |\hat{\varphi}\rangle$.

How do we find $Stab(|\psi\rangle)$?

Characteristic Distribution p_{ψ}

For
$$W \in \{I, X, Y, Z\}^{\otimes n}$$
,

$$p_{\psi}(W) \coloneqq \frac{1}{2^n} \langle \psi | W | \psi \rangle^2.$$

For $W \in \{I, X, Y, Z\}^{\otimes n}$,

$$p_{\psi}(W) \coloneqq \frac{1}{2^n} \langle \psi | W | \psi \rangle^2.$$

- p_{ψ} is a distribution [Mon17]
- Can sample from $q_{\psi} = p_{\psi} * p_{\psi}$ via Bell difference sampling [GNW21]

Theorem ([GIKL23c])

Given a subgroup $G \subseteq \{I, X, Y, Z\}^{\otimes n}$:

$$\sum_{W \in G} p_{\psi}(W) = \frac{|G|}{2^n} \sum_{W \in G^{\perp}} p_{\psi}(W)$$

Theorem ([GIKL23c])

Given a subgroup $G \subseteq \{I, X, Y, Z\}^{\otimes n}$:

$$\sum_{W \in G} p_{\psi}(W) = \frac{|G|}{2^n} \sum_{W \in G^{\perp}} p_{\psi}(W)$$

Definition

 $G^{\perp} \subseteq \{I, X, Y, Z\}^{\otimes n}$ is the set of Pauli matrices that commutes with all of G.

Claim:
$$(G^{\perp})^{\perp} = G.$$

Corollary

The support of p_{ψ} lies in Stab $(|\psi\rangle)^{\perp}$.

Proof.

Corollary

The support of p_{ψ} lies in Stab $(|\psi\rangle)^{\perp}$.

Proof.

By duality theorem:

$$\sum_{W \in \mathsf{Stab}(|\psi\rangle)} p_{\psi}(W) = \frac{|\mathsf{Stab}(|\psi\rangle)|}{2^n} \sum_{W \in \mathsf{Stab}(|\psi\rangle)^{\perp}} p_{\psi}(W).$$

Corollary

The support of p_{ψ} lies in Stab $(|\psi\rangle)^{\perp}$.

Proof.

By duality theorem:

$$\sum_{W \in \mathsf{Stab}(|\psi\rangle)} p_{\psi}(W) = \frac{|\mathsf{Stab}(|\psi\rangle)|}{2^n} \sum_{W \in \mathsf{Stab}(|\psi\rangle)^{\perp}} p_{\psi}(W).$$

By definition of $\mathrm{Stab}(|\psi\rangle)$:

$$\sum_{W \in \mathsf{Stab}(|\psi\rangle)} p_{\psi}(W) = \sum_{W \in \mathsf{Stab}(|\psi\rangle)} \frac{1}{2^n} \left\langle \psi | W | \psi \right\rangle^2 = \frac{|\mathsf{Stab}(|\psi\rangle)|}{2^n}.$$

Algorithm 2: Learning Algorithm v2

Input: Copies of $|\psi\rangle$ Promise: $|\text{Stab}(|\psi\rangle)| \ge 2^{n-k}$ Output: $|\widehat{\psi}\rangle \approx |\psi\rangle$ 1 Draw m = O(n) samples: $W_1, W_2, \cdots W_m \sim p_{\psi}$.

- 2 Compute $\widehat{\mathsf{Stab}}(|\psi\rangle) \coloneqq \langle W_1, W_2, \cdots, W_m \rangle^{\perp}$.
- 3

Claim: Given G, G^{\perp} can be computed in time $O(n^3)$.

Algorithm 2: Learning Algorithm v2

Input: Copies of $|\psi\rangle$ Promise: $|Stab(|\psi\rangle)| \ge 2^{n-k}$ Output: $|\widehat{\psi}\rangle \approx |\psi\rangle$

- 1 Draw m = O(n) samples: $W_1, W_2, \cdots W_m \sim p_{\psi}$.
- 2 Compute $\widehat{\mathsf{Stab}}(|\psi\rangle) \coloneqq \langle W_1, W_2, \cdots, W_m \rangle^{\perp}$.
- ³ Run compression scheme from previous algorithm.

Claim: Given G, G^{\perp} can be computed in time $O(n^3)$.

Problem: Cannot always learn the support of p_{ψ} exactly.

Problem: Cannot always learn the support of p_{ψ} exactly.

$$G \subsetneq \mathsf{Stab}(|\psi\rangle)^{\perp} \Longleftrightarrow G^{\perp} \supsetneq \mathsf{Stab}(|\psi\rangle).$$

Problem: Cannot always learn the support of p_{ψ} exactly.

$$G \subsetneq \mathsf{Stab}(|\psi\rangle)^{\perp} \Longleftrightarrow G^{\perp} \supsetneq \mathsf{Stab}(|\psi\rangle).$$

Solution: Learning almost all of the support is sufficient!

Solution: Learning *almost* all of the support is sufficient!

Solution: Learning *almost* all of the support is sufficient!

Lemma ([GIKL23a])

Let $G \subseteq Stab(|\psi\rangle)^{\perp}$ such that

$$\sum_{W \in G} p_{\psi}(W) = 1 - \varepsilon^2.$$

Then $|\psi\rangle \approx_{\varepsilon} |\varphi\rangle$ such that $Stab(|\varphi\rangle) = G^{\perp}$.

Solution: Learning *almost* all of the support is sufficient!

Lemma ([GIKL23a])

Let $G \subseteq Stab(|\psi\rangle)^{\perp}$ such that

$$\sum_{W \in G} p_{\psi}(W) = 1 - \varepsilon^2.$$

 $\textit{Then } |\psi\rangle \approx_{\varepsilon} |\varphi\rangle \textit{ such that }\textit{Stab}(|\varphi\rangle) = G^{\perp}.$

Can learn such a subgroup with $O(n/\varepsilon^2)$ samples.

Input: Copies of $|\psi\rangle$ Promise: $|\text{Stab}(|\psi\rangle)| \ge 2^{n-k}$ Output: $|\widehat{\psi}\rangle \approx_{\varepsilon} |\psi\rangle$

- 1 Perform draw $m = O(n/\varepsilon^2)$ samples: $W_1, W_2, \cdots W_m$.
- 2 Compute $\langle W_1, W_2, \cdots, W_m \rangle^{\perp}$.
- 3 Apply C such that $C |\psi\rangle \approx_{\varepsilon} |x\rangle |\varphi\rangle$.

Input: Copies of $|\psi\rangle$ Promise: $|Stab(|\psi\rangle)| \ge 2^{n-k}$ Output: $|\widehat{\psi}\rangle \approx_{\varepsilon} |\psi\rangle$

- 1 Perform draw $m = O(n/\varepsilon^2)$ samples: $W_1, W_2, \cdots W_m$.
- 2 Compute $\langle W_1, W_2, \cdots, W_m \rangle^{\perp}$.
- 3 Apply C such that $C |\psi\rangle \approx_{\varepsilon} |x\rangle |\varphi\rangle$.
- 4 Measure first register of $C |\psi\rangle O(1)$ times to learn x.

Input: Copies of $|\psi\rangle$ Promise: $|\text{Stab}(|\psi\rangle)| \ge 2^{n-k}$ Output: $|\widehat{\psi}\rangle \approx_{\varepsilon} |\psi\rangle$

- 1 Perform draw $m = O(n/\varepsilon^2)$ samples: $W_1, W_2, \cdots W_m$.
- 2 Compute $\langle W_1, W_2, \cdots, W_m \rangle^{\perp}$.
- 3 Apply C such that $C |\psi\rangle \approx_{\varepsilon} |x\rangle |\varphi\rangle$.
- 4 Measure first register of $C |\psi\rangle O(1)$ times to learn x.
- ⁵ Post-select on measuring $|x\rangle$ then run pure state tomography on $|\varphi\rangle$.

Input: Copies of $|\psi\rangle$ Promise: $|\text{Stab}(|\psi\rangle)| \ge 2^{n-k}$ Output: $|\widehat{\psi}\rangle \approx_{\varepsilon} |\psi\rangle$

- 1 Perform draw $m = O(n/\varepsilon^2)$ samples: $W_1, W_2, \cdots W_m$.
- 2 Compute $\langle W_1, W_2, \cdots, W_m \rangle^{\perp}$.
- 3 Apply C such that $C |\psi\rangle \approx_{\varepsilon} |x\rangle |\varphi\rangle$.
- 4 Measure first register of $C |\psi\rangle O(1)$ times to learn x.
- ⁵ Post-select on measuring $|x\rangle$ then run pure state tomography on $|\varphi\rangle$.
- 6 Return $C^{\dagger} | 0^{n-k'} \rangle \otimes | \widehat{\varphi} \rangle$.

Proof of Robustness Lemma

Lemma ([GIKL23a])

Let $G \subseteq Stab(|\psi\rangle)^{\perp}$ such that

$$\sum_{W \in G} p_{\psi}(W) = 1 - \varepsilon^2.$$

Then $|\psi\rangle \approx_{\varepsilon} |\varphi\rangle$ such that $Stab(|\varphi\rangle) = G^{\perp}$.

Proof of Robustness Lemma

Lemma ([GIKL23a])

Let $G \subseteq Stab(|\psi\rangle)^{\perp}$ such that

$$\sum_{W \in G} p_{\psi}(W) = 1 - \varepsilon^2.$$

 $\textit{Then } |\psi\rangle \approx_{\varepsilon} |\varphi\rangle \textit{ such that }\textit{Stab}(|\varphi\rangle) = G^{\perp}.$

Goal:

$$\begin{split} |\psi\rangle &\coloneqq C^{\dagger} \sum_{x \in \{0,1\}^{n-l}} \alpha_x \, |x\rangle \otimes |\varphi_x\rangle \, .\\ \max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 \geq 1 - \varepsilon^2 \end{split}$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\sum_{x \in \{0,1\}^{n-l}} |\alpha_x|^4$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\sum_{x \in \{0,1\}^{n-l}} |\alpha_x|^4 = \sum_{x \in \{0,1\}^l} \operatorname{Tr}\left[\left(|x\rangle \langle x| \otimes I^l \right)^{\otimes 2} |\psi\rangle \langle \psi|^{\otimes 2} \right]$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\sum_{x \in \{0,1\}^{n-l}} |\alpha_x|^4 = \sum_{x \in \{0,1\}^l} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^l\right)^{\otimes 2} |\psi\rangle\langle\psi|^{\otimes 2}\right]$$
$$= 2^l \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\sum_{x \in \{0,1\}^{n-l}} |\alpha_x|^4 = \sum_{x \in \{0,1\}^l} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^l\right)^{\otimes 2} |\psi\rangle\langle\psi|^{\otimes 2}\right]$$
$$= 2^l \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)$$

$$\max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 = \max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 \cdot 1$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\sum_{x \in \{0,1\}^{n-l}} |\alpha_x|^4 = \sum_{x \in \{0,1\}^l} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^l\right)^{\otimes 2} |\psi\rangle\langle\psi|^{\otimes 2}\right]$$
$$= 2^l \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)$$

$$\max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 = \max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 \cdot \sum_{x \in \{0,1\}^{n-1}} |\alpha_x|^2$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\sum_{x \in \{0,1\}^{n-l}} |\alpha_x|^4 = \sum_{x \in \{0,1\}^l} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^l\right)^{\otimes 2} |\psi\rangle\langle\psi|^{\otimes 2}\right]$$
$$= 2^l \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)$$

$$\max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 = \max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 \cdot \sum_{x \in \{0,1\}^{n-1}} |\alpha_x|^2 \ge \sum_{x \in \{0,1\}^{n-l}} |\alpha_x|^4$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$1 - \varepsilon^2 \le \sum_{W \in G} p_{\psi}(W)$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$1 - \varepsilon^{2} \leq \sum_{W \in G} p_{\psi}(W)$$
$$= \frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W)$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$1 - \varepsilon^{2} \leq \sum_{W \in G} p_{\psi}(W)$$
$$= \frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W)$$
$$= 2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$1 - \varepsilon^{2} \leq \sum_{W \in G} p_{\psi}(W)$$

$$= \frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W)$$

$$= 2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)$$

$$\leq \max_{x \in \{0,1\}^{n-l}} |\alpha_{x}|^{2}.$$

$$\mathcal{Z}^t \coloneqq \{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}$$

$$1 - \varepsilon^{2} \leq \sum_{W \in G} p_{\psi}(W)$$

= $\frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W)$
= $2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)$
 $\leq \max_{x \in \{0,1\}^{n-l}} |\alpha_{x}|^{2}.$

$$|\psi\rangle \approx_{\varepsilon} |x_{\max}\rangle |\varphi_{x_{\max}}\rangle$$

Finding C

Lemma ([GIKL23a])

Let $G \subseteq \{I, X, Y, Z\}^{\otimes n}$ such that

$$\sum_{W \in G} p_{\psi}(W) > \frac{3}{4}.$$

Then there exists a Clifford circuit C such that $C(G^{\perp}) = \mathcal{Z}^{n-l}$.

Finding C

Lemma ([GIKL23a])

Let $G \subseteq \{I, X, Y, Z\}^{\otimes n}$ such that

$$\sum_{W \in G} p_{\psi}(W) > \frac{3}{4}.$$

Then there exists a Clifford circuit C such that $C(G^{\perp}) = \mathcal{Z}^{n-l}$.

Let $|\psi'\rangle \coloneqq C |\psi\rangle$:

Finding C

Lemma ([GIKL23a])

Let $G \subseteq \{I, X, Y, Z\}^{\otimes n}$ such that

$$\sum_{W \in G} p_{\psi}(W) > \frac{3}{4}.$$

Then there exists a Clifford circuit C such that $C(G^{\perp}) = \mathcal{Z}^{n-l}$.

Let $|\psi'\rangle \coloneqq C |\psi\rangle$:

$$\sum_{x \in G} p_{\psi}(x) = \sum_{x \in C(G)} p_{\psi'}(x)$$

Let
$$\varepsilon \in (0, 1)$$
:

Let $\varepsilon \in (0, 1)$: 1 Draw $m = O(n/\varepsilon^2)$ samples from p_{ψ} : $W_1, W_2, \cdots W_m$. • Let $G := \langle W_1, W_2, \cdots W_m \rangle$. Then w.h.p.

$$\sum_{W \in G} p_{\psi}(W) \ge 1 - \varepsilon^2/4$$

Let
$$\varepsilon \in (0, 1)$$
:
1 Draw $m = O(n/\varepsilon^2)$ samples from p_{ψ} : $W_1, W_2, \dots W_m$.
• Let $G \coloneqq \langle W_1, W_2, \dots W_m \rangle$. Then w.h.p.

$$\sum_{W \in G} p_{\psi}(W) \ge 1 - \varepsilon^2/4$$

2 Compute G^{\perp} .

• $G^{\perp} \supseteq \operatorname{Stab}(|\psi\rangle).$

Let
$$\varepsilon \in (0, 1)$$
:
1 Draw $m = O(n/\varepsilon^2)$ samples from p_{ψ} : $W_1, W_2, \cdots W_m$.
• Let $G := \langle W_1, W_2, \cdots W_m \rangle$. Then w.h.p.

$$\sum_{W \in G} p_{\psi}(W) \ge 1 - \varepsilon^2/4$$

(2) Compute G^{\perp} .

• $G^{\perp} \supseteq \operatorname{Stab}(|\psi\rangle).$

3 Apply C such that $C(G^{\perp}) = \{I, Z\}^{\otimes n-l} \otimes I^{\otimes l}$.
• $C |\psi\rangle = \sum_{x \in \{0,1\}^{n-l}} \alpha_x |x\rangle |\varphi_x\rangle$ such that $\max_{x \in \{0,1\}^{n-l}} |\alpha_x|^2 \ge 1 - \varepsilon^2/4.$

4 Measure first register of $C |\psi\rangle O(1)$ times, to learn x_{\max} w.h.p.

• Probability of measuring x_{max} is $|\alpha_{x_{\text{max}}}|^2 > 3/4$.

4 Measure first register of $C |\psi\rangle O(1)$ times, to learn x_{\max} w.h.p.

• Probability of measuring x_{max} is $|\alpha_{x_{\text{max}}}|^2 > 3/4$.

5 Post-select on measuring $|x_{max}\rangle$.

• Left with
$$|\eta\rangle \coloneqq |x_{\max}\rangle |\varphi\rangle$$
.

•
$$d_{\mathrm{Tr}}(C |\psi\rangle, |\eta\rangle) \leq \varepsilon/2.$$

Measure first register of $C |\psi\rangle O(1)$ times, to learn x_{\max} w.h.p.

• Probability of measuring x_{max} is $|\alpha_{x_{\text{max}}}|^2 > 3/4$.

- **5** Post-select on measuring $|x_{max}\rangle$.
 - Left with $|\eta\rangle \coloneqq |x_{\max}\rangle |\varphi\rangle$.
 - $d_{\mathrm{Tr}}(C |\psi\rangle, |\eta\rangle) \leq \varepsilon/2.$
- 6 Run pure state tomography on second register such that $d_{\text{Tr}}(|\varphi\rangle, |\widehat{\varphi}\rangle) \leq \varepsilon/2$.
 - Total trace distance is at most $\varepsilon/2 + \varepsilon/2$ via triangle inequality.

Measure first register of $C |\psi\rangle O(1)$ times, to learn x_{\max} w.h.p.

• Probability of measuring x_{max} is $|\alpha_{x_{\text{max}}}|^2 > 3/4$.

- **5** Post-select on measuring $|x_{max}\rangle$.
 - Left with $|\eta\rangle \coloneqq |x_{\max}\rangle |\varphi\rangle$.
 - $d_{\mathrm{Tr}}(C |\psi\rangle, |\eta\rangle) \leq \varepsilon/2.$
- 6 Run pure state tomography on second register such that $d_{\text{Tr}}(|\varphi\rangle, |\widehat{\varphi}\rangle) \leq \varepsilon/2$.
 - Total trace distance is at most $\varepsilon/2 + \varepsilon/2$ via triangle inequality.
- Output $C^{\dagger} |x_{\max}\rangle |\hat{\varphi}\rangle$.
 - Trace distance preserved by unitaries.

Lower Bounds

Current best-known lower bounds are $\approx \Omega(\sqrt[4]{k})$, due to unitary *t*-designs [HMMH⁺23].

Lower Bounds

Current best-known lower bounds are $\approx \Omega(\sqrt[4]{k})$, due to unitary *t*-designs [HMMH⁺23].

Proper Learning

Output state is not necessarily produced by $O(\log n)$ *T*-gates, can be as many as poly(n).

Thank You!

