Learning Beyond Stabilizer States Based on: arXiv:2305.13409

Sabee Grewal, Vishnu Iyer, William Kretschmer, Daniel Liang

Rice University Department of Computer Science

October $18^{\text {th }}, 2023$

Quantum State Tomography

Input: Black-box access to copies of $|\psi\rangle$.

Quantum State Tomography

Input: Black-box access to copies of $|\psi\rangle$.
Output: Approximation $\left|\psi^{\prime}\right\rangle \approx|\psi\rangle$ as a classical description.

Quantum State Tomography

Input: Black-box access to copies of $|\psi\rangle$.
Output: Approximation $\left|\psi^{\prime}\right\rangle \approx|\psi\rangle$ as a classical description.

Provably hard!

Efficient Quantum State Tomography

How do we get around this exponential barrier?

Efficient Quantum State Tomography

How do we get around this exponential barrier?
The same way we do in classical learning!

Solution

- Move the goal post:
\square PAC learning [Aar07]
\square Shadow tomography [Aar18, HKP20]
\square Distinguishing/property testing [GNW21, GIKL23d]

Efficient Quantum State Tomography

How do we get around this exponential barrier?
The same way we do in classical learning!

Solution

- Move the goal post:
\square PAC learning [Aar07]
\square Shadow tomography [Aar18, HKP20]
\square Distinguishing/property testing [GNW21, GIKL23d]
- Restrict the states:
\square Free-fermion states [AG23]
\square Low-Degree Phase states [ABDY23]
\square Stabilizer States [Mon17]

Stabilizer States \& Clifford Unitaries

Definition

A Clifford unitary is any unitary generated by H, S, and CNOT.

$$
H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad S:=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \quad \mathrm{CNOT}:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Stabilizer States \& Clifford Unitaries

Definition

A Clifford unitary is any unitary generated by H, S, and CNOT.

$$
H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad S:=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \quad \mathrm{CNOT}:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Definition

A stabilizer state is a state generated by a Clifford unitary on $\left|0^{n}\right\rangle$.

Stabilizer States \& Clifford Unitaries

Definition

A Clifford unitary is any unitary generated by H, S, and CNOT.

$$
H:=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad S:=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right] \quad \mathrm{CNOT}:=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Definition

A stabilizer state is a state generated by a Clifford unitary on $\left|0^{n}\right\rangle$.

Not a universal gate set!

Applications

Error-correcting Codes

Applications

Error-correcting Codes

Quantum Key Distribution

Applications

Error-correcting Codes

Quantum Key Distribution

Learning Algorithms

Applications

Error-correcting Codes

Quantum Key Distribution

Learning Algorithms

Data Acquisition Phase

And more! Unitary Designs, Quantum Money, Classical Simulation, ...

Algebraic Structure of Stabilizer States

$$
\begin{gathered}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y:=\left[\begin{array}{cc}
0 & -i \\
1 & 0
\end{array}\right] \quad Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
\mathcal{P}_{n}:=\{I, X, Y, Z\}^{8 n}
\end{gathered}
$$

Algebraic Structure of Stabilizer States

$$
\begin{gathered}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y:=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
\mathcal{P}_{n}:=\{I, X, Y, Z\}^{\otimes n}
\end{gathered}
$$

Definition

$$
\left.\operatorname{Stab}(|\psi\rangle):=\left.\left\{W \in \mathcal{P}_{n}:|\langle\psi| W| \psi\right\rangle\right|^{2}=1\right\} .
$$

Algebraic Structure of Stabilizer States

$$
\begin{gathered}
I:=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad X:=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad Y:=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] \quad Z:=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \\
\mathcal{P}_{n}:=\{I, X, Y, Z\}^{\otimes n}
\end{gathered}
$$

Definition

$$
\left.\operatorname{Stab}(|\psi\rangle):=\left.\left\{W \in \mathcal{P}_{n}:|\langle\psi| W| \psi\right\rangle\right|^{2}=1\right\} .
$$

Fact: $\mid \operatorname{Stab}(|\psi\rangle) \mid=2^{n}$ if and only if $|\psi\rangle$ is a stabilizer state.

Learning Stabilizer States: A Warmup

Lemma ([AG04])

Given Stab(| $|\varphi\rangle)$, there exists a Clifford circuit C such that

$$
C|\varphi\rangle=|x\rangle
$$

for some $x \in\{0,1\}^{n}$.

Moreover, C can be computed in time $O\left(n^{2}\right)$.

Learning Stabilizer States: A Warmup (cont.)

Lemma ([Mon17])

Given copies of a stabilizer state $|\varphi\rangle$, there exists a measurement to efficiently sample from the uniform distribution over Stab $(|\varphi\rangle)$.

Algorithm: Sample $O(n)$ times and output the group generated by the samples.

Learning Beyond Stabilizer States

Question

Various generalizations of stabilizer states:

- Low-stabilizer-rank states
- Low-degree phase states
- Clifford + T states

Can we learn any of them efficiently?

Clifford + T

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
$$

Clifford unitaries are not universal for computation, but Clifford $+T$ is!

Clifford + T

$$
T=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right)
$$

Clifford unitaries are not universal for computation, but Clifford $+T$ is!
T gates take us further and further from the nice algebraic properties of stabilizer states:

- Classical simulation algorithms run in time $\operatorname{poly}(n) \exp (k)$.

Our Work

Theorem ([GIKL23a, LOH23, HG23])

Can learn any state produced by $k T$ gates in time $\operatorname{poly}(n) \exp (k)$.

Our Work

Theorem ([GIKL23a, LOH23, HG23])

Can learn any state produced by $k T$ gates in time poly $(n) \exp (k)$.

Other results:

- Pseudorandom state distinguisher ${ }^{1}$: [GIKL23c].

[^0]
Our Work

Theorem ([GIKL23a, LOH23, HG23])

Can learn any state produced by $k T$ gates in time poly $(n) \exp (k)$.

Other results:

- Pseudorandom state distinguisher ${ }^{1}$: [GIKL23c].
- First non-trivial estimator of stabilizer fidelity: [GIKL23c].

[^1]
Our Work

Theorem ([GIKL23a, LOH23, HG23])

Can learn any state produced by $k T$ gates in time poly $(n) \exp (k)$.

Other results:

- Pseudorandom state distinguisher ${ }^{1}$: [GIKL23c].
- First non-trivial estimator of stabilizer fidelity: [GIKL23c].
- Improved (tolerant) property tester for stabilizer states: [GIKL23c].

[^2]
Our Work

Theorem ([GIKL23a, LOH23, HG23])

Can learn any state produced by $k T$ gates in time poly $(n) \exp (k)$.

Other results:

- Pseudorandom state distinguisher ${ }^{1}$: [GIKL23c].
- First non-trivial estimator of stabilizer fidelity: [GIKL23c].
- Improved (tolerant) property tester for stabilizer states: [GIKL23c].
- Single-copy learning algorithm: [GIKL23b, CLL23].

[^3]
Learning States with Many Stabilizers

Lemma

Let $|\psi\rangle$ be produced by Clifford gates and at most $k T$ gates. Then $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$.

Learning States with Many Stabilizers

Lemma

Let $|\psi\rangle$ be produced by Clifford gates and at most $k T$ gates. Then $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$.

Suffices to consider the set of states such that $\operatorname{Stab}(|\psi\rangle)$ is large!

Learning States with Many Stabilizers

Lemma

Let $|\psi\rangle$ be produced by Clifford gates and at most $k T$ gates. Then $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$.

Suffices to consider the set of states such that $\operatorname{Stab}(|\psi\rangle)$ is large!

Theorem ([GIKL23a])

Can learn any state such that $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$ in time poly $(n) \exp (k)$.

A Compression Scheme

Critical Observation

Let $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$. Then learning $\operatorname{Stab}(|\psi\rangle)$ is enough to learn $|\psi\rangle$ in time poly $(n) \exp (k)$.

A Compression Scheme

Critical Observation

Let $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$. Then learning $\operatorname{Stab}(|\psi\rangle)$ is enough to learn $|\psi\rangle$ in time poly $(n) \exp (k)$.

Given $\operatorname{Stab}(|\psi\rangle)$, there exists a Clifford circuit C such that

$$
C|\psi\rangle=|x\rangle \otimes \underbrace{|\varphi\rangle}_{k \text { qubits }}
$$

for some $x \in\{0,1\}^{n-k}$.
Moreover, C can be computed in time $O\left(n^{2}\right)$.

Initial Algorithm

Algorithm 1: First Approach

 Input: Copies of $|\psi\rangle$ and description of $\operatorname{Stab}(|\psi\rangle)$Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx|\psi\rangle$
1 Find C such that $C|\psi\rangle=|x\rangle|\varphi\rangle$.
2 Measure first register of $C|\psi\rangle$ to learn x.
3 Perform pure state tomography on second register to get $|\widehat{\varphi}\rangle \approx|\varphi\rangle$.
4 Output $C^{\dagger}|x\rangle|\widehat{\varphi}\rangle$.

Initial Algorithm

Algorithm 1: First Approach

 Input: Copies of $|\psi\rangle$ and description of Stab $(|\psi\rangle)$Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx|\psi\rangle$
1 Find C such that $C|\psi\rangle=|x\rangle|\varphi\rangle$.
2 Measure first register of $C|\psi\rangle$ to learn x.
3 Perform pure state tomography on second register to get $|\widehat{\varphi}\rangle \approx|\varphi\rangle$.
4 Output $C^{\dagger}|x\rangle|\widehat{\varphi}\rangle$.
How do we find $\operatorname{Stab}(|\psi\rangle)$?

Characteristic Distribution p_{ψ}

For $W \in\{I, X, Y, Z\}^{\otimes n}$,

$$
p_{\psi}(W):=\frac{1}{2^{n}}\langle\psi| W|\psi\rangle^{2} .
$$

Characteristic Distribution p_{ψ}

For $W \in\{I, X, Y, Z\}^{\otimes n}$,

$$
p_{\psi}(W):=\frac{1}{2^{n}}\langle\psi| W|\psi\rangle^{2} .
$$

- p_{ψ} is a distribution [Mon17]
- Can sample from $q_{\psi}=p_{\psi} * p_{\psi}$ via Bell difference sampling [GNW21]

A Fourier Duality Theorem

Theorem ([GIKL23c])

Given a subgroup $G \subseteq\{I, X, Y, Z\}^{\otimes n}$:

$$
\sum_{W \in G} p_{\psi}(W)=\frac{|G|}{2^{n}} \sum_{W \in G^{\perp}} p_{\psi}(W)
$$

A Fourier Duality Theorem

Theorem ([GIKL23c])

Given a subgroup $G \subseteq\{I, X, Y, Z\}^{\otimes n}$:

$$
\sum_{W \in G} p_{\psi}(W)=\frac{|G|}{2^{n}} \sum_{W \in G^{\perp}} p_{\psi}(W)
$$

Definition

$G^{\perp} \subseteq\{I, X, Y, Z\}^{\otimes n}$ is the set of Pauli matrices that commutes with all of G.
Claim: $\left(G^{\perp}\right)^{\perp}=G$.

Corollary

The support of p_{ψ} lies in $\operatorname{Stab}(|\psi\rangle)^{\perp}$.

Proof.

Corollary

The support of p_{ψ} lies in $\operatorname{Stab}(|\psi\rangle)^{\perp}$.

Proof.

By duality theorem:

$$
\sum_{W \in \operatorname{Stab}(|\psi\rangle)} p_{\psi}(W)=\frac{\mid \operatorname{Stab}(|\psi\rangle) \mid}{2^{n}} \sum_{W \in \operatorname{Stab}(|\psi\rangle)^{\perp}} p_{\psi}(W)
$$

Corollary

The support of p_{ψ} lies in $\operatorname{Stab}(|\psi\rangle)^{\perp}$.

Proof.

By duality theorem:

$$
\sum_{W \in \operatorname{Stab}(|\psi\rangle)} p_{\psi}(W)=\frac{\mid \operatorname{Stab}(|\psi\rangle) \mid}{2^{n}} \sum_{W \in \operatorname{Stab}(|\psi\rangle)^{\perp}} p_{\psi}(W)
$$

By definition of $\operatorname{Stab}(|\psi\rangle)$:

$$
\sum_{W \in \operatorname{Stab}(|\psi\rangle)} p_{\psi}(W)=\sum_{W \in \operatorname{Stab}(|\psi\rangle)} \frac{1}{2^{n}}\langle\psi| W|\psi\rangle^{2}=\frac{\mid \operatorname{Stab}(|\psi\rangle) \mid}{2^{n}} .
$$

How to learn Stab $(|\psi\rangle)$

Algorithm 2: Learning Algorithm v2
Input: Copies of $|\psi\rangle$
Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx|\psi\rangle$
1 Draw $m=O(n)$ samples: $W_{1}, W_{2}, \cdots W_{m} \sim p_{\psi}$.
2 Compute $\widehat{\operatorname{Stab}(|\psi\rangle)}:=\left\langle W_{1}, W_{2}, \cdots, W_{m}\right\rangle^{\perp}$.
3
Claim: Given G, G^{\perp} can be computed in time $O\left(n^{3}\right)$.

How to learn Stab $(|\psi\rangle)$

Algorithm 2: Learning Algorithm v2
Input: Copies of $|\psi\rangle$
Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx|\psi\rangle$
1 Draw $m=O(n)$ samples: $W_{1}, W_{2}, \cdots W_{m} \sim p_{\psi}$.
2 Compute $\widehat{\operatorname{Stab}(|\psi\rangle)}:=\left\langle W_{1}, W_{2}, \cdots, W_{m}\right\rangle^{\perp}$.
3 Run compression scheme from previous algorithm.
Claim: Given G, G^{\perp} can be computed in time $O\left(n^{3}\right)$.

A More Robust Algorithm

Problem: Cannot always learn the support of p_{ψ} exactly.

A More Robust Algorithm

Problem: Cannot always learn the support of p_{ψ} exactly.

$$
G \subsetneq \operatorname{Stab}(|\psi\rangle)^{\perp} \Longleftrightarrow G^{\perp} \supsetneq \operatorname{Stab}(|\psi\rangle) .
$$

A More Robust Algorithm

Problem: Cannot always learn the support of p_{ψ} exactly.

$$
G \subsetneq \operatorname{Stab}(|\psi\rangle)^{\perp} \Longleftrightarrow G^{\perp} \supsetneq \operatorname{Stab}(|\psi\rangle) .
$$

Solution: Learning almost all of the support is sufficient!

Robustness Lemma

Solution: Learning almost all of the support is sufficient!

Robustness Lemma

Solution: Learning almost all of the support is sufficient!
Lemma ([GIKL23a])
Let $G \subseteq \operatorname{Stab}(|\psi\rangle)^{\perp}$ such that

$$
\sum_{W \in G} p_{\psi}(W)=1-\varepsilon^{2}
$$

Then $|\psi\rangle \approx_{\varepsilon}|\varphi\rangle$ such that $\operatorname{Stab}(|\varphi\rangle)=G^{\perp}$.

Robustness Lemma

Solution: Learning almost all of the support is sufficient!
Lemma ([GIKL23a])
Let $G \subseteq \operatorname{Stab}(|\psi\rangle)^{\perp}$ such that

$$
\sum_{W \in G} p_{\psi}(W)=1-\varepsilon^{2}
$$

Then $|\psi\rangle \approx_{\varepsilon}|\varphi\rangle$ such that $\operatorname{Stab}(|\varphi\rangle)=G^{\perp}$.

Can learn such a subgroup with $O\left(n / \varepsilon^{2}\right)$ samples.

The Learning Algorithm

Algorithm 3: Tomography of States with many Stabilizers

Input: Copies of $|\psi\rangle$
Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx_{\varepsilon}|\psi\rangle$
1 Perform draw $m=O\left(n / \varepsilon^{2}\right)$ samples: $W_{1}, W_{2}, \cdots W_{m}$.
2 Compute $\left\langle W_{1}, W_{2}, \cdots, W_{m}\right\rangle^{\perp}$.
3 Apply C such that $C|\psi\rangle \approx_{\varepsilon}|x\rangle|\varphi\rangle$.

The Learning Algorithm

Algorithm 3: Tomography of States with many Stabilizers

Input: Copies of $|\psi\rangle$
Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx_{\varepsilon}|\psi\rangle$
1 Perform draw $m=O\left(n / \varepsilon^{2}\right)$ samples: $W_{1}, W_{2}, \cdots W_{m}$.
2 Compute $\left\langle W_{1}, W_{2}, \cdots, W_{m}\right\rangle^{\perp}$.
3 Apply C such that $C|\psi\rangle \approx_{\varepsilon}|x\rangle|\varphi\rangle$.
4 Measure first register of $C|\psi\rangle O(1)$ times to learn x.

The Learning Algorithm

Algorithm 3: Tomography of States with many Stabilizers

Input: Copies of $|\psi\rangle$
Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx_{\varepsilon}|\psi\rangle$
1 Perform draw $m=O\left(n / \varepsilon^{2}\right)$ samples: $W_{1}, W_{2}, \cdots W_{m}$.
2 Compute $\left\langle W_{1}, W_{2}, \cdots, W_{m}\right\rangle^{\perp}$.
3 Apply C such that $C|\psi\rangle \approx_{\varepsilon}|x\rangle|\varphi\rangle$.
4 Measure first register of $C|\psi\rangle O(1)$ times to learn x.
5 Post-select on measuring $|x\rangle$ then run pure state tomography on $|\varphi\rangle$.

The Learning Algorithm

Algorithm 3: Tomography of States with many Stabilizers

Input: Copies of $|\psi\rangle$
Promise: $\mid \operatorname{Stab}(|\psi\rangle) \mid \geq 2^{n-k}$
Output: $|\widehat{\psi}\rangle \approx_{\varepsilon}|\psi\rangle$
1 Perform draw $m=O\left(n / \varepsilon^{2}\right)$ samples: $W_{1}, W_{2}, \cdots W_{m}$.
2 Compute $\left\langle W_{1}, W_{2}, \cdots, W_{m}\right\rangle^{\perp}$.
3 Apply C such that $C|\psi\rangle \approx_{\varepsilon}|x\rangle|\varphi\rangle$.
4 Measure first register of $C|\psi\rangle O(1)$ times to learn x.
5 Post-select on measuring $|x\rangle$ then run pure state tomography on $|\varphi\rangle$.
6 Return $C^{\dagger}\left|0^{n-k^{\prime}}\right\rangle \otimes|\widehat{\varphi}\rangle$.

Proof of Robustness Lemma

Lemma ([GIKL23a])
Let $G \subseteq \operatorname{Stab}(|\psi\rangle)^{\perp}$ such that

$$
\sum_{W \in G} p_{\psi}(W)=1-\varepsilon^{2}
$$

Then $|\psi\rangle \approx_{\varepsilon}|\varphi\rangle$ such that $\operatorname{Stab}(|\varphi\rangle)=G^{\perp}$.

Proof of Robustness Lemma

Lemma ([GIKL23a])

Let $G \subseteq \operatorname{Stab}(|\psi\rangle)^{\perp}$ such that

$$
\sum_{W \in G} p_{\psi}(W)=1-\varepsilon^{2}
$$

Then $|\psi\rangle \approx_{\varepsilon}|\varphi\rangle$ such that $\operatorname{Stab}(|\varphi\rangle)=G^{\perp}$.
Goal:

$$
\begin{gathered}
|\psi\rangle:=C^{\dagger} \sum_{x \in\{0,1\}^{n-l}} \alpha_{x}|x\rangle \otimes\left|\varphi_{x}\right\rangle . \\
x \in\{0,1\}^{n-l} \\
\max _{x}\left|\alpha_{x}\right|^{2} \geq 1-\varepsilon^{2}
\end{gathered}
$$

Collision Probability and p_{ψ}

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Collision Probability and p_{ψ}

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Then the collision probability of the first register is:

$$
\sum_{\in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{4}
$$

Collision Probability and p_{ψ}

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Then the collision probability of the first register is:

$$
\sum_{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{4}=\sum_{x \in\{0,1\}^{l}} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^{l}\right)^{\otimes 2}|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right]\right.
$$

Collision Probability and p_{ψ}

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Then the collision probability of the first register is:

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{4} & =\sum_{x \in\{0,1\}^{l}} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^{l}\right)^{\otimes 2}|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right]\right. \\
& =2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)
\end{aligned}
$$

Collision Probability and p_{ψ}

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Then the collision probability of the first register is:

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{4} & =\sum_{x \in\{0,1\}^{l}} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^{l}\right)^{\otimes 2}|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right]\right. \\
& =2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)
\end{aligned}
$$

$$
\max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2}=\max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2} \cdot 1
$$

Collision Probability and p_{ψ}

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Then the collision probability of the first register is:

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{4} & =\sum_{x \in\{0,1\}^{l}} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^{l}\right)^{\otimes 2}|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right]\right. \\
& =2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)
\end{aligned}
$$

$$
\max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2}=\max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2} \cdot \sum_{x \in\{0,1\}^{n-1}}\left|\alpha_{x}\right|^{2}
$$

Collision Probability and p_{ψ}

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Then the collision probability of the first register is:

$$
\begin{aligned}
\sum_{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{4} & =\sum_{x \in\{0,1\}^{l}} \operatorname{Tr}\left[\left(|x\rangle\langle x| \otimes I^{l}\right)^{\otimes 2}|\psi\rangle\left\langle\left.\psi\right|^{\otimes 2}\right]\right. \\
& =2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)
\end{aligned}
$$

$$
\max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2}=\max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2} \cdot \sum_{x \in\{0,1\}^{n-1}}\left|\alpha_{x}\right|^{2} \geq \sum_{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{4}
$$

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Let $G \subset\{I, X, Y, Z\}^{\otimes n}$ such that $G^{\perp}=\mathcal{Z}^{n-l}$.

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Let $G \subset\{I, X, Y, Z\}^{\otimes n}$ such that $G^{\perp}=\mathcal{Z}^{n-l}$.

$$
1-\varepsilon^{2} \leq \sum_{W \in G} p_{\psi}(W)
$$

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Let $G \subset\{I, X, Y, Z\}^{\otimes n}$ such that $G^{\perp}=\mathcal{Z}^{n-l}$.

$$
\begin{aligned}
1-\varepsilon^{2} & \leq \sum_{W \in G} p_{\psi}(W) \\
& =\frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W)
\end{aligned}
$$

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Let $G \subset\{I, X, Y, Z\}^{\otimes n}$ such that $G^{\perp}=\mathcal{Z}^{n-l}$.

$$
\begin{aligned}
1-\varepsilon^{2} & \leq \sum_{W \in G} p_{\psi}(W) \\
& =\frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W) \\
& =2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W)
\end{aligned}
$$

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Let $G \subset\{I, X, Y, Z\}^{\otimes n}$ such that $G^{\perp}=\mathcal{Z}^{n-l}$.

$$
\begin{aligned}
1-\varepsilon^{2} & \leq \sum_{W \in G} p_{\psi}(W) \\
& =\frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W) \\
& =2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W) \\
& \leq \max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2} .
\end{aligned}
$$

$$
\mathcal{Z}^{t}:=\{I, Z\}^{\otimes t} \otimes I^{\otimes n-t}
$$

Let $G \subset\{I, X, Y, Z\}^{\otimes n}$ such that $G^{\perp}=\mathcal{Z}^{n-l}$.

$$
\begin{aligned}
1-\varepsilon^{2} & \leq \sum_{W \in G} p_{\psi}(W) \\
& =\frac{2^{n}}{|G|} \sum_{W \in G^{\perp}} p_{\psi}(W) \\
& =2^{l} \cdot \sum_{W \in \mathcal{Z}^{n-l}} p_{\psi}(W) \\
& \leq \max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2} . \\
|\psi\rangle & \approx_{\varepsilon}\left|x_{\max }\right\rangle\left|\varphi_{\left.x_{\max }\right\rangle}\right\rangle
\end{aligned}
$$

Finding C

Lemma ([GIKL23a])

Let $G \subseteq\{I, X, Y, Z\}^{\otimes n}$ such that

$$
\sum_{W \in G} p_{\psi}(W)>\frac{3}{4} .
$$

Then there exists a Clifford circuit C such that $C\left(G^{\perp}\right)=\mathcal{Z}^{n-l}$.

Finding C

Lemma ([GIKL23a])

Let $G \subseteq\{I, X, Y, Z\}^{\otimes n}$ such that

$$
\sum_{W \in G} p_{\psi}(W)>\frac{3}{4} .
$$

Then there exists a Clifford circuit C such that $C\left(G^{\perp}\right)=\mathcal{Z}^{n-l}$.

Let $\left|\psi^{\prime}\right\rangle:=C|\psi\rangle$:

Finding C

Lemma ([GIKL23a])

Let $G \subseteq\{I, X, Y, Z\}^{\otimes n}$ such that

$$
\sum_{W \in G} p_{\psi}(W)>\frac{3}{4} .
$$

Then there exists a Clifford circuit C such that $C\left(G^{\perp}\right)=\mathcal{Z}^{n-l}$.

Let $\left|\psi^{\prime}\right\rangle:=C|\psi\rangle$:

$$
\sum_{x \in G} p_{\psi}(x)=\sum_{x \in C(G)} p_{\psi^{\prime}}(x)
$$

Algorithm Overview

Let $\varepsilon \in(0,1)$:

Algorithm Overview

Let $\varepsilon \in(0,1)$:
(1) Draw $m=O\left(n / \varepsilon^{2}\right)$ samples from $p_{\psi}: W_{1}, W_{2}, \cdots W_{m}$.

- Let $G:=\left\langle W_{1}, W_{2}, \cdots W_{m}\right\rangle$. Then w.h.p.

$$
\sum_{W \in G} p_{\psi}(W) \geq 1-\varepsilon^{2} / 4
$$

Algorithm Overview

Let $\varepsilon \in(0,1)$:
(1) Draw $m=O\left(n / \varepsilon^{2}\right)$ samples from $p_{\psi}: W_{1}, W_{2}, \cdots W_{m}$.

- Let $G:=\left\langle W_{1}, W_{2}, \cdots W_{m}\right\rangle$. Then w.h.p.

$$
\sum_{W \in G} p_{\psi}(W) \geq 1-\varepsilon^{2} / 4
$$

(2) Compute G^{\perp}.

- $G^{\perp} \supseteq \operatorname{Stab}(|\psi\rangle)$.

Algorithm Overview

Let $\varepsilon \in(0,1)$:
(1) Draw $m=O\left(n / \varepsilon^{2}\right)$ samples from $p_{\psi}: W_{1}, W_{2}, \cdots W_{m}$.

- Let $G:=\left\langle W_{1}, W_{2}, \cdots W_{m}\right\rangle$. Then w.h.p.

$$
\sum_{W \in G} p_{\psi}(W) \geq 1-\varepsilon^{2} / 4
$$

(2) Compute G^{\perp}.

- $G^{\perp} \supseteq \operatorname{Stab}(|\psi\rangle)$.
(3) Apply C such that $C\left(G^{\perp}\right)=\{I, Z\}^{\otimes n-l} \otimes I^{\otimes l}$.
- $C|\psi\rangle=\sum_{x \in\{0,1\}^{n-l}} \alpha_{x}|x\rangle\left|\varphi_{x}\right\rangle$ such that

$$
\max _{x \in\{0,1\}^{n-l}}\left|\alpha_{x}\right|^{2} \geq 1-\varepsilon^{2} / 4
$$

Algorithm Overview (cont.)

(4) Measure first register of $C|\psi\rangle O(1)$ times, to learn $x_{\max }$ w.h.p.

- Probability of measuring $x_{\max }$ is $\left|\alpha_{x_{\max }}\right|^{2}>3 / 4$.

Algorithm Overview (cont.)

(4) Measure first register of $C|\psi\rangle O(1)$ times, to learn $x_{\max }$ w.h.p.

- Probability of measuring $x_{\max }$ is $\left|\alpha_{x_{\max }}\right|^{2}>3 / 4$.
(5) Post-select on measuring $\left|x_{\max }\right\rangle$.
- Left with $|\eta\rangle:=\left|x_{\max }\right\rangle|\varphi\rangle$.
- $d_{\operatorname{Tr}}(C|\psi\rangle,|\eta\rangle) \leq \varepsilon / 2$.

Algorithm Overview (cont.)

(4) Measure first register of $C|\psi\rangle O(1)$ times, to learn $x_{\max }$ w.h.p.

- Probability of measuring $x_{\max }$ is $\left|\alpha_{x_{\max }}\right|^{2}>3 / 4$.
(5) Post-select on measuring $\left|x_{\max }\right\rangle$.
- Left with $|\eta\rangle:=\left|x_{\max }\right\rangle|\varphi\rangle$.
- $d_{\operatorname{Tr}}(C|\psi\rangle,|\eta\rangle) \leq \varepsilon / 2$.
(6) Run pure state tomography on second register such that $d_{\operatorname{Tr}}(|\varphi\rangle,|\widehat{\varphi}\rangle) \leq \varepsilon / 2$.
- Total trace distance is at most $\varepsilon / 2+\varepsilon / 2$ via triangle inequality.

Algorithm Overview (cont.)

(4) Measure first register of $C|\psi\rangle O(1)$ times, to learn $x_{\max }$ w.h.p.

- Probability of measuring $x_{\max }$ is $\left|\alpha_{x_{\max }}\right|^{2}>3 / 4$.
(5) Post-select on measuring $\left|x_{\max }\right\rangle$.
- Left with $|\eta\rangle:=\left|x_{\max }\right\rangle|\varphi\rangle$.
- $d_{\operatorname{Tr}}(C|\psi\rangle,|\eta\rangle) \leq \varepsilon / 2$.
(6) Run pure state tomography on second register such that $d_{\operatorname{Tr}}(|\varphi\rangle,|\widehat{\varphi}\rangle) \leq \varepsilon / 2$.
- Total trace distance is at most $\varepsilon / 2+\varepsilon / 2$ via triangle inequality.
(7) Output $C^{\dagger}\left|x_{\max }\right\rangle|\widehat{\varphi}\rangle$.
- Trace distance preserved by unitaries.

Open Questions

Lower Bounds

Current best-known lower bounds are $\approx \Omega(\sqrt[4]{k})$, due to unitary t-designs [$\mathrm{HMMH}^{+} 23$].

Open Questions

Lower Bounds

Current best-known lower bounds are $\approx \Omega(\sqrt[4]{k})$, due to unitary t-designs [$\mathrm{HMMH}^{+} 23$].

Proper Learning

Output state is not necessarily produced by $O(\log n)$ T-gates, can be as many as poly (n).

Thank You!

[^0]: ${ }^{1}$ See Simons Talk for more information!

[^1]: ${ }^{1}$ See Simons Talk for more information!

[^2]: ${ }^{1}$ See Simons Talk for more information!

[^3]: ${ }^{1}$ See Simons Talk for more information!

