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Optimization

Core topic in applied mathematics, computer science, physics, etc.



Unique local 
minimum is 

the global one

So many local 
minima…

However, in practice, many functions are nonconvex.

For instance, in machine learning: Train an ML model Optimize a loss function

Loss functions of neural networks: very nonconvex in general.  

Nonconvex Optimization



Nonconvex Optimization

Working horse in training neural networks, e.g., ADAM, Adagrad, are improved versions of SGD.

Most common issue: Exploration in the optimization landscape.

From the left side, need to jump through all the 
local minima and maxima in the middle to reach x*



In quantum physics, nonconvex landscapes appear in quantum tunneling.

Quantum Tunneling

quantum learning rate

For 1-dimension potential, WKB approximation (semiclassical analysis) gives: 



Comparisons

Hf

Dynamics
(continuous-time)

Classical Quantum 

Langevin equation Schrödinger equation

Convergence rate 
(1-dimension f)

exp(Hf / s) exp(S0 / h)



The cost of simulating the 
Schrodinger equation for time t:

Optimization of High-Dimensional Nonconvex Functions

First: Can we efficiently simulate the Schrödinger equation with high-dimensional potential?

Assumption: Quantum evaluation oracle



Question: What is the behavior of the Schrödinger equation for high-dimensional functions?

Optimization of High-Dimensional Nonconvex Functions

Main result (informal): For nonconvex functions whose local minima have equal values, i.e., 
all local minima are global, the evolution of the Schrödinger equation behaves as:

quantum tunneling + quantum walk = quantum tunneling walk

Quantum tunneling: the strength of tunneling can be described by the 1-dim WKB. 

Quantum walk: Having the tunneling strength between wells, the amplitudes evolve like a 
continuous-time quantum walk.



Q: Why do we require local minima to be global? 

Quantum Tunneling Walk

A: Otherwise, there can be nontrivial probability transiting form 
the ground state of one well to excited states of another well.

Q: If all local minima are global, why do we want to study this problem?

A: Optimization is only one of goals of nonconvex problems. Generalization is also important. 



Main Result



Hf

More Comparisons

vs. C time cost =Q time cost =

0-order property (distribution of wells)

differential property (flatness of minima)

Integral property (width and sharpness of barriers) Exponential term

Polynomial coefficient

Properties of
the landscape

Time cost𝑒 ⁄"! # and 𝑒 ⁄$%" &

[term before 𝑒 ⁄"! # (or 𝑒 ⁄$%" &)]

Main Message

This work [Shi, Su, and Jordan, arXiv:2004.06977]
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Quantum Walks

Quantum analog of a random walk on a graph, but replace probabilities by amplitudes.

Interference can produce radically different behavior!

Ex. One-dimensional walks

Classical

Quantum



Quantum Walks on Graphs

Graph G: Laplacian L of G:

Classical random walk
State: Probability Pv(t) of being at vertex v at time t
Dynamics: 

Quantum walk
State: Amplitude av(t) of being at vertex v at time t
Dynamics: 



Mixing Time

The Laplacian L is negative semidefinite.

0 is an eigenvalue with the uniform vector u=(1/n,…,1/n) being its eigenvector.

Furthermore, if G is connected, then 0 has single multiplicity, i.e., all other eigenvectors of 
G has eigenvalue ≠ 0. Random walk mixes to u:

Convergence rate: O(log(1/ε)/Δ), where Δ
is the spectral gap of G.



Mixing Time of Quantum Walks
In quantum computing, the story is totally different.

Fact: The Schrödinger equation
gives a unitary dynamics that keeps rotating and does not converge.

Solution: Define a notion of limiting distribution by taking the end time t uniformly in [0,T].



Mixing Time of Quantum Walks

If Δ is the smallest gap between any pair of eigenvalues of A (Δ>0 implies that A is non-
degenerate), then:

Furthermore:
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Assumptions on the Nonconvex Function
The assumption that “all local minima are global” is formally stated as follows:

We can then further define the distances as follows:



Assumptions on the Nonconvex Function

For each well j, we can hence define its local ground state |ej〉 as its eigenstate with the 
minimum eigenvalue. 

Next, we want to further look at the local landscape near a well.
For a small enough η, we consider

Fact 1: For sufficiently small h in the Schrödinger 
equation, the local ground states |e1〉, |e2〉, … , 
|eN〉 almost localize near the wells U1, U2, … , UN: 
Exponential decay with respect to the Agmon
distance to its corresponding well.
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Assumptions on the Nonconvex Function
Fact 2: The space F spanned by {|e1〉, |e2〉, … , |eN〉} is a low-energy invariant subspace of 
the Hamiltonian H=-h2Δ+f(x). In other words, in the low-energy space F, the particle walks 
between wells by quantum tunneling.

Fact 3: The Hamiltonian restricted in F, i.e., H|F , determines the strength of the quantum 
tunneling effect and is called the interaction matrix. 

Two further assumptions: dominated by hn 
for any n>0



Assumptions on the Nonconvex Function

Based on our assumptions + existing literature in functional analysis, we use semiclassical 
analysis (WKB approximation) to analyze the tunneling effect in H|F .

Our main result for spectrum properties of the Schrodinger Hamiltonian H=-h2Δ+f(x):

This can be naturally applied to analyzing the mixing time of the quantum tunneling walk!



Mixing Time of Quantum Tunneling Walks



Mixing Time of Quantum Tunneling Walks

As quantum walk mixes, it can also hit a specific set. 



Hitting Time of Quantum Tunneling Walks
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Applications

Two main questions:

1. Are their natural high-dim nonconvex optimization problems falling into our theory?

2. Can we achieve significant quantum speedups for certain problems? 

Short answer: Yes for both questions, though not very satisfactory.
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Application: Orthogonal Tensor Decomposition

Central problem in learning latent variable models



Quantum Speedup
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Significant speedup by quantum 
tunneling walks compared to 
classical algorithms with gradient 
queries is possible:



Caveat!

initial state reveals
directional 

information

Paradox: This is like an unstructured search problem - reduction from Grover’s algorithm?
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Numerical experiments

Experiments on three consecutive wells Experiments on the speedup example (d=2)



Numerical experiments



Conclusions

A first attempt and framework for quantum algorithms for nonconvex optimization
- The algorithm is simple: quantum simulation of the Schrödinger equation
- Between two local minima: quantum tunneling
- Dynamics among all minima: quantum walks

Thank you! Questions: tongyangli@pku.edu.cn

Open questions:
Ø Looser assumptions or more general landscapes?
Ø Quantum speedups on more examples, which can give real quantum-classical separation?
Ø Other dynamics?


