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Optimization

Problem: f: R" - R, minf(x)
X

Core topic in applied mathematics, computer science, physics, etc.

Provable guarantee for solving an optimization problem?

Convex optimization can be solved in polynomial time if we can query f: input x,
output f(x). Methods: ellipsoid method, interior point method, etc.



Nonconvex Optimization

However, in practice, many functions are nonconvex.

For instance, in machine learning: Train an ML model ¢m====) Optimize a loss function

Loss functions of neural networks: very nonconvex in general.
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Nonconvex Optimization

Stochastic gradient descent (SGD): xx1 = Xxx — sSVf(xx) — s& with learning rate s and the
kth step noise &.

Working horse in training neural networks, e.g., ADAM, Adagrad, are improved versions of SGD.

Most common issue: Exploration in the optimization landscape.

From the left side, need to jump through all the
local minima and maxima in the middle to reach x*




Quantum Tunneling

In quantum physics, nonconvex landscapes appear in quantum tunneling.

classical physics:
climbing the hill

The Schrédinger equation: ia%q) (—h?A +f(x)) ©

l

quantum physics: quantum learning rate

“tunnelling”
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For 1-dimension potential, WKB approximation (semiclassical analysis) gives:
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Comparisons

Dynamics
(continuous-time)

Convergence rate
(1-dimension f)

Classical

dz = -V f(z)dt + /sdW

Langevin equation

exp(H,/ s)

Quantum

i2® = (—h2A +f(x)) ®

Schréodinger equation

exp(Sy/ h)

X3
So = J’ \/]_rdx
X3
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Optimization of High-Dimensional Nonconvex Functions

First: Can we efficiently simulate the Schrodinger equation with high-dimensional potential?

Assumption: Quantum evaluation oracle O¢ |z)|2) = |z) |f(z) + 2) Vz € R% 2z € R.

» |t allows coherent superpositions of queries to f, a standard assumption for quantum
algorithms working in real space.

» |n practice, real numbers are represented digitally, but we assume the representation has
sufficiently high precision that errors from this digital representation can be neglected.

» If f can be computed by a classical circuit, then the corresponding quantum oracle can be
implemented by a quantum circuit of roughly the same size.

The cost of simulating the O (HfH y log(|| fl| o= () t/€) )
Schrodinger equation for time t: L= o log(|| £l Lo ()t/€)



Optimization of High-Dimensional Nonconvex Functions

Question: What is the behavior of the Schrodinger equation for high-dimensional functions?

Main result (informal): For nonconvex functions whose local minima have equal values, i.e.,
all local minima are global, the evolution of the Schrodinger equation behaves as:

guantum tunneling + quantum walk = quantum tunneling walk

Quantum tunneling: the strength of tunneling can be described by the 1-dim WKB.

Quantum walk: Having the tunneling strength between wells, the amplitudes evolve like a
continuous-time quantum walk.



Quantum Tunneling Walk

Q: Why do we require local minima to be global? /\

N
A: Otherwise, there can be nontrivial probability transiting form g
the ground state of one well to excited states of another well.

Q: If all local minima are global, why do we want to study this problem?

A: Optimization is only one of goals of nonconvex problems. Generalization is also important.

Main Problem. On a landscape whose local minima are global minima, starting from one local
minimum, find all local minima with similar function values or find a certain target minimum.



Main Result

Theorem 1 (Quantum tunneling walks, informal)

On landscapes whose local minima are global minima, we have an algorithm called
quantum tunneling walks (QTW) which initiates the simulation of the Schrédinger
equation from the local ground state at a minimum, and measures the position at a time
which is chosen uniformly from [0, 7]. To solve the Main Problem we can take

T = O(poly(N)/AE),

where N is the number of global minima and AE is the minimal spectral gap of the
Hamiltonian restricted in a low-energy subspace. For sufficiently small h, we have

S

AE = vh(b + O(h))e™ 7,

where b, So > 0 are constants that depend only on f.



More Comparisons
So = J::\/fdx
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This work
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Main Message

Properties of
E—

0-order property (distribution of wells)
the landscape

__differential property (flatness of minima)

. .
X1 X2

[Shi, Su, and Jordan, arXiv:2004.06977]

Q time cost = O(poly(N)/AE) AE = vh(b+ O(h))e~# | VS.
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Quantum Walks

Quantum analog of a random walk on a graph, but replace probabilities by amplitudes.
Interference can produce radically different behavior!

Ex. One-dimensional walks

Classical

Quantum



Quantum Walks on Graphs

Laplacian Lof G: L =

Classical random walk

State: Probability P, (t) of being at vertex v at time t
Dynamics: ds Lp

Quantum walk
State: Amplitude a,(t) of being at vertex v at time t

: d
Dynamics: z’&a = La




Mixing Time (2 1 1

The Laplacian L is negative semidefinite.

0
0 1 1 -3
\0 1

0 is an eigenvalue with the uniform vector u=(1/n,...,1/n) being its eigenvector.

Furthermore, if G is connected, then 0 has single multiplicity, i.e., all other eigenvectors of
G has eigenvalue # 0. Random walk mixes to u:

p(t) = e"'p(0)

= (IVIWT + ;)eMUAUI) p(0) Convergence rate: O(log(1/€)/A), where A
v | Z " is the spectral gap of G.
u, p(0))u e
A#0

—ut Y M s, p(0))vy

A£0



Mixing Time of Quantum Walks
In quantum computing, the story is totally different.

d L S _iHt-
Fact: The Schrodinger equation 3,4 = Ha = a(t) = e~*"*a(0)

gives a unitary dynamics that keeps rotating and does not converge.

Solution: Define a notion of limiting distribution by taking the end time t uniformly in [O,T].
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Mixing Time of Quantum Walks

Pas(T) = / [(ble=iH*|a)|2dt

1 — 6—i()\—)\’)T
i — AT

(@A BN+ Y (BIAY (Ala) (alN)(N[b)
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If A is the smallest gap between any pair of eigenvalues of A (A>0 implies that A is non-
degenerate), then: p,_,4(c0) : Z| (a|\) (B|M\)|2.

1 — e—t(A=X)T
i\ =T
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Assumptions on the Nonconvex Function

I”

The assumption that “all local minima are global” is formally stated as follows:

Assumption 2.4. There exists a radius v such that inf|;~, f > min f. Furthermore, f has a
finite number of local minima, and they can be decomposed as follows:

argmin f =U, UU,...U Uy,

U; = {z;} is a point, Vf(z;) =0, and V*f(z;) >0 for j=1,...,N.
FEach U; s called a well.

We can then further define the distances as follows:

Definition 2.5 (Agmon distance). Under Assumption 2.4, the Agmon distance d(z,y) is

d(z,y) := inf/ v/ f(z) — min f dz,
T Iy

where vy denotes pairwise C' paths connecting x and y. For a set U, d(z,U) = d(U,z) :=
infycp d(z,y). And for two sets Uy and Uz, d(U1,Usz) = infcu, yev, d(z,y).



Assumptions on the Nonconvex Function

The minimal Agmon distance between wells are defined as
SO = IJI;%};Id(UJ, Uk)
Next, we want to further look at the local landscape near a well.
For a small enough n, we consider B(U;,n) = {x € M|d(z,U;) < n}

For each well j, we can hence define its local ground state |eg;) as its eigenstate with the
minimum eigenvalue.

i2® = (—h2A +f(x)) ®
Fact 1: For sufficiently small h in the Schrodinger
equation, the local ground states |e,), |e,), ...,
|ey) almost localize near the wells U, U,, ..., Uy:

Exponential decay with respect to the Agmon
distance to its corresponding well.

fx):




Assumptions on the Nonconvex Function

Fact 2: The space F spanned by {|e,), |e,), ..., |ey)} is a low-energy invariant subspace of
the Hamiltonian H=-h?A+f(x). In other words, in the low-energy space ‘F, the particle walks
between wells by quantum tunneling.

Fact 3: The Hamiltonian restricted in F, i.e., H,¢, determines the strength of the quantum
tunneling effect and is called the interaction matrix.

Two further assumptions: dominated by hn
for any n>0

Assumption 2.5. The eigenvalue difference between any two local ground states is at most O(h>°).

Assumption 2.6. There are a finite number of paths of the Agmon length Sy connecting U; and
Ui if d(U;,Ux) = So.



Assumptions on the Nonconvex Function

Based on our assumptions + existing literature in functional analysis, we use semiclassical
analysis (WKB approximation) to analyze the tunneling effectin H ¢

Our main result for spectrum properties of the Schrodinger Hamiltonian H=-h2A+f(x):

Theorem A.1 (Energy gap, informal). The minimal energy gap AE of H\r, i.e., the minimal
absolute difference between unequal eigenvalues of H|r, is given by

AE = Vh(b+ O(h))e~ %/,

where b > 0 is a constant that depends only on the potential f.

This can be naturally applied to analyzing the mixing time of the quantum tunneling walk!



Mixing Time of Quantum Tunneling Walks

Let the spectral decomposition of H|r to be H|r = ch\;l Ey |Ex) (Ex|-

Choosing t uniformly in [0, 7|, the probability density of finding the walker at z is

]. T —3
parwir@) = [ dtl(ale= 7! [B(0))

T Jo
= > (@lEx)(ELI®(0)(2(0)|Er)(Er |2)

Ek =Ekl

2

Ek#Ek/

1 _ e—i(Ek—Ek/ )7‘
’i(Ek — Ek/)T

(x| Ex)(Ex|2(0))(2(0)| Ex) (Er |).

The time-averaged probability density leads to a limiting distribution when 7 — oo:

parw = Y (z|Ex)(Ex|®(0))(2(0)| Ex)(Ew |z).



Mixing Time of Quantum Tunneling Walks

Definition 3.1 (Mixing time of QTW). Thix s called the e-close mixing time, iff for any T > Tix,

lpQTw (7, ) — pQrw ()|l L e

Lemma 3.1 (Upper bound for QTW mixing time). We have
1 E,|®(0)) (®(0)| Ey
uemo(} ¥ LEHBOD@OIE (v 50

Ex£E, |Er — B

<0 g+ W -DoE=)

where AE := ming, +g,, |Ex — Ex| is referred to as the minimal gap of H r.

As quantum walk mixes, it can also hit a specific set.



Hitting Time of Quantum Tunneling Walks

Definition 3.4 (Hitting time of QTW). Let Q be an open and C?-bounded region. Then, starting
from the initial state |®(0)), the Q-hitting time of QTW is defined as follows:

T

Ti Q) := inf .
hie(£) 750 [, pqrw (7, 2)dz

Lemma 3.5 (Upper bound of the QTW hitting time). Consider an bounded open set (); containing
only one well U;, we have

/Qj porw (T, z)dz > /Qj pqrw(z)dz — Ai?f(l +[0(h%)])
= p(00,4) + O(h™) = 5= (1 + [O(h))).

For any € < [, pqrw(z)dz, let 7. = 2(1 4 |O(h™)|)/AEE, we have

Te

Thit(§2;) <
ht( .7) fQj pQTW(Team)dw

=>Thit(9j)=o( L 1+]0(®) )

AFEe fQj porw(z)dz — €
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Applications

Two main questions:

1. Are their natural high-dim nonconvex optimization problems falling into our theory?

2. Can we achieve significant quantum speedups for certain problems?

Short answer: Yes for both questions, though not very satisfactory.



Application: Orthogonal Tensor Decomposition

10.6 . . .
“ Central problem in learning latent variable models
0.5

_ d
-3
0.3 i=1
+a, u
< o & fu) = 1= T(uu,u,u) = 1- D (" a)®, [l = 1.
—0s 0.1 i=1

Proposition 1 (Tensor decomposition, informal)

Let d be the dimension of the components of thel fourth-order tensor T € ]R‘”l, 0 be the
expected risk yielded by the limit distribution uqrw, and € be the maximum error between
puqrw and the actual obtained distribution (quantified by L1 norm). For sufficiently small e
and sufficiently small ¢, the total time Tiot for finding all orthogonal components of T by
QTW satisfies

(d—1)+os5(1)

Tiot = O(poly(1/6,e%,1/€))e 2




Quantum Speedup

——— -

Significant speedup by quantum
tunneling walks compared to
classical algorithms with gradient
gueries is possible:

Theorem 2 (Advantage with conditions, informal)

For any dimension d, there exists a landscape f: RY — R such that its local minima are
global minima, and on which, with high probability, QTW can hit the neighborhood of an
unknown global minimum from the local ground state associated to a known minimum
using queries polynomial in d, while no classical algorithm knowing the same minimum
can hit the same target region with queries subexponential in d.




Caveat!

Paradox: This is like an unstructured search problem - reduction from Grover’s algorithm?

f Q)
initial state reveals

directional
information
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Experiments on the speedup example (d

Experiments on three consecutive wells



Numerical experiments
0.6+
X
04t
02+
N\,
N
~ ~
0
| 2
Example 1 Example 2 Example 3
250 : : 250 - : 1000 — : : : -
SGD SGD SGD
T "r10 | jreediU BT, /10
200 =¥ {2000 TV |4 800t TV |
it hit hit
8150 {150} 600 |
2
o
100 f 1100} 400 |
50 | 50 200 |
0 A o .me = 8 0 Pr— L O _m-“‘ L i L
0 1000 2000 3000 0 5000 10000 15000 0 5 10 15 20
Hitting time Hitting time Hitting time %<10%

Figure 8: Quantum-classical comparison between SGD and QTW on three landscapes. Example 1 is the
critical case where the exponential terms in QTW and SGD evolution time are equal for sufficiently small
accuracy 0. Example 2 has flatter minima but similar barriers compared to Example 1, enabling QTW to be
faster. Example 3 possesses the same flatness of minima as Example 1 but is equipped with sharp but thin
barriers, enabling larger quantum speedups. We take 7 = 288, 800, 600 in the three examples, respectively.

Example 1
Example 2

Example 3




Conclusions

A first attempt and framework for quantum algorithms for nonconvex optimization
- The algorithm is simple: quantum simulation of the Schrodinger equation
- Between two local minima: quantum tunneling

- Dynamics among all minima: quantum walks

Open questions:

» Looser assumptions or more general landscapes?

» Quantum speedups on more examples, which can give real quantum-classical separation?
» Other dynamics?

Thank you! Questions: tongyangli@pku.edu.cn



