A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits

Marco Cerezo CCS-3

"A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits" arxiv 2309.09342 (2023)
Michael Ragone, Bojko N. Bakalov, Frédéric Sauvage, Alexander F. Kemper, Carlos Ortiz Marrero, Martin Larocca, MC "Showcasing a Barren Plateau Theory Beyond the Dynamical Lie Algebra" this week on arxiv.
N. L. Diaz, Diego García-Martín, Sujay Kazi, Martin Larocca, and MC

10/17/2023 @IPAM Workshop

Outline

- (Very brief) Introduction to variational quantum computing
- A casual stroll through the history of Barren Plateaus (BPs)
- A unified Dynamical Lie algebraic perspective to BPs
- Beyond the Dynamical Lie algebra BP Theory
- Outlook

Variational Quantum Computing

Solve a problem of interest by encoding it as an optimization task.
These include Variational Quantum Algorithms (VQE, QAOA, etc), but also Quantum Machine Learning schemes. We will consider models passed on Parametrized Quantum Circuits, or, Quantum Neural Networks.

The loss function will take the form:
We will

$$
\ell_{\boldsymbol{\theta}}(\rho, O)=\operatorname{Tr}\left[U(\boldsymbol{\theta}) \rho U^{\dagger}(\boldsymbol{\theta}) O\right]
$$

How and when can this computational approach fail?

While NN are widely used today, their historical development saw periods of great stagnation (or winters).

Variational Quantum Computing holds tremendous the tremendous promise to achieve a quantum advantage - a computational speedup - we need to guarantee that our architectures will work when scaled up and applied to large, realistic problems.

Two memes in a row? Oh, the humanity!

Z_{2} symmetric Meme

A review of Barren Plateaus and their sources

Good practices that we have come to learn and love

We will study loss concentration, not partial derivative concentration. They can be shown to be equivalent.

Barren Plateaus

Barren Plateau

Image Credits: Samson Wang
$\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, 0)\right] \in \Omega(1 / \operatorname{poly}(n))$
$\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right] \in \mathcal{O}\left(1 / b^{n}\right)$ with $b>1$.

Expressiveness in the circuit,
 or, a general form of No-Free-Lunch theorem

The first, and perhaps, most studied source of BPs:
Seminal Google paper: $U(\boldsymbol{\theta})$ forms a 2-design
(A)

Accessible space \mathbb{U}

Locality of measurement operator

or, why comparing exponentially large objects is bound to fail

Let's take the most inexpressive imaginable circuit and a global measurement $O=Z^{\otimes n}$

Always has a BP:
$\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right] \in \mathcal{O}\left(1 / b^{n}\right)$ with $b>1$ for any ρ.

What if we take a local measurement $O=Z_{1}$

$\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\frac{2}{3}\left(\operatorname{Tr}\left[\left(\rho_{1}\right)^{2}\right]-1 / 2\right)$
If input is $\rho=|0\rangle\left\langle\left. 0\right|^{\otimes n}\right.$, then no BP.. But...

Entanglement in the initial state

or, why untamed entanglement can be bad

What if we take a local measurement $O=Z_{1}$, but ρ

Data Embedding follows a volume law of entanglement?

Has a BP: $\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right] \in \mathcal{O}\left(1 / b^{n}\right)$
Despite no expressiveness and local measurements

Subtleties in the trainability of quantum machine learning models, S. Thanasilp et al, arxiv (2021).

And of course, Noise

 or, why existence is pain

Previous understanding of BPs

or, yes this slide looks ugly, but it will get better soon.

Architecture
Specific Analysis

Specific $U(\boldsymbol{\theta})$

Previous works:

Can we understand and unify all these sources of BPs?

Yes! We need to take a Lie algebraic perspective. Assume

$$
U(\boldsymbol{\theta})=\prod_{l=1}^{L} e^{-i \theta_{l} H_{l}},
$$

Where $H_{l} \in \mathcal{G}$ (set of generators).
Then we need to construct the circuit's Dynamical Lie algebra (DLA):

$$
\mathfrak{g}=\langle i \mathcal{G}\rangle_{L i e} \subseteq s u(d)
$$

DLA = subspace spanned by the nested commutators of the generators

The DLA is important for 2 reasons:

1) $U(\boldsymbol{\theta}) \in e^{g}$ for any $\boldsymbol{\theta}, \boldsymbol{L}$.
2) Quantifies the ultimate expressiveness $U(\boldsymbol{\theta})$.

$$
\begin{aligned}
& \text { BCH Formula } e^{A} e^{B}=e^{C} \text { with } \\
& \left.C=A+B+\frac{1}{2}[A, B]+\frac{1}{12}[A,[A, B]]-\frac{1}{12}[B,[A, B]]\right)
\end{aligned}
$$

Examples of DLA

Single qubit rotations:

$$
\mathcal{G}=\left\{Z_{i}, Y_{i}\right\}_{i=1}^{n}
$$

$$
\mathfrak{g}=s u(2)^{\oplus n}
$$

Matchgate circuit:

$$
\mathcal{G}=\left\{Z_{i}\right\}_{i=1}^{n} \cup\left\{X_{i} X_{i+1}\right\}_{i=1}^{n-1}
$$

$$
\mathfrak{g}=\operatorname{so}(2 n)
$$

Universal circuit:

$$
\begin{gathered}
\mathcal{G}=\left\{Z_{i}, Y_{i}\right\}_{i=1}^{n} \cup\left\{X_{i} X_{i+1}\right\}_{i=1}^{n-1} \\
\mathfrak{g}=\operatorname{su}\left(2^{n}\right)
\end{gathered}
$$

Enough math. Why is the DLA important?

The importance of the DLA was conjectured in our work [1], and recently proven to be central in the BP study. A classic QIP deadline induced rush:

arXiv:2309.07902

A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits

arXiv:2309.09342

Exact variance formula for states or observables in the DLA

Given an arbitrary subalgebra $\mathfrak{f} \subseteq \operatorname{su}\left(2^{n}\right)$ with Hermitian basis $\left\{B_{j}\right\}_{j=1}^{\operatorname{dim}(\mathfrak{f})}$, we define the \mathfrak{f}-purity of an operator H as

$$
\mathcal{P}_{\mathfrak{£}}(H)=\operatorname{Tr}\left[H_{\mathfrak{f}}^{2}\right]=\sum_{j=1}^{\operatorname{dim}(\mathfrak{£})} \operatorname{Tr}\left[B_{j}^{\dagger} H\right]^{2} .
$$

Then, recalling that any DLA

$$
\mathfrak{g}=\frac{g_{1} \oplus \mathfrak{g}_{2} \oplus \cdots}{\text { simple }} \oplus \frac{\mathfrak{g}_{k}}{\text { abelian }}
$$

and assuming that either ρ, or O are in ig (QAOA, VEQ) and the circuit is a 2-design over $\mathrm{e}^{\mathfrak{g}}$:

$$
\mathrm{E}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\operatorname{Tr}\left[\rho_{\mathfrak{g}_{k}} O_{\mathfrak{g}_{k}}\right]
$$

$$
\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\sum_{j=1}^{k-1} \frac{\mathcal{P}_{g_{j}}(\rho) \mathcal{P}_{g_{j}}(0)}{\operatorname{dim}\left(\mathfrak{g}_{j}\right)}
$$

What can we learn from here?

Assume g is simple

$$
\begin{gathered}
\mathrm{E}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=0 \\
\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\frac{\mathcal{P}_{g}(\rho) \mathcal{P}_{g}(O)}{\operatorname{dim}(\mathfrak{g})}
\end{gathered}
$$

If either $\operatorname{dim}(\mathrm{g}), 1 / \mathcal{P}_{g}(\rho), 1 / \mathcal{P}_{g}(0) \in \Omega\left(b^{n}\right)$ with $b>2$, one has a BP!

There are 3 sources of BPs here!
Proves a conjecture in [1]!

1. The circuit expressiveness, measured through $\operatorname{dim}(g)$.
2. The generalized entanglement in ρ, measured through $\mathcal{P}_{g}(\rho)$.
3. The generalized locality of O, measured through $\mathcal{P}_{g}(O)$.

Revisiting previous examples

Google's result:

$$
\begin{gathered}
\mathfrak{g}=\operatorname{su}\left(2^{n}\right) ; \quad \operatorname{dim}(\mathfrak{g})=4^{n}-1 \\
\mathcal{P}_{g}(\rho)=\operatorname{Tr}\left[\rho^{2}\right]-1 / 2^{n}\left(\rho=\rho_{\mathfrak{g}}-I / 2^{n}\right) \\
\mathcal{P}_{g}(O)=\operatorname{Tr}\left[O^{2}\right]\left(0=O_{\mathfrak{g}}-\operatorname{Tr}[O] I / 2^{n}\right)
\end{gathered}
$$

$\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\frac{1}{4^{n}-1}\left(\operatorname{Tr}\left[\rho^{2}\right]-1 / 2^{n}\right)\left(\operatorname{Tr}\left[O^{2}\right]-\operatorname{Tr}[O]^{2} / 2^{n}\right)$

Local measurement $O=Z_{1}$

$$
\begin{gathered}
\mathfrak{g}=\operatorname{su}(2)^{\oplus n}\left(Z_{1} \in \mathfrak{g}_{1}\right) ; \quad \operatorname{dim}\left(\mathfrak{g}_{1}\right)=3 \\
\mathcal{P}_{g_{1}}(\rho)=\operatorname{Tr}\left[\rho_{1}^{2}\right]-1 / 2^{n}\left(\rho_{1}=\operatorname{Tr}_{1}[\rho]\right) \\
\mathcal{P}_{g}(0)=2
\end{gathered}
$$

§ Generalized entanglement = standard entanglement

Algebra IS local

$$
\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\frac{2}{3}\left(\operatorname{Tr}\left[\left(\rho_{1}\right)^{2}\right]-1 / 2^{n}\right)
$$

An important lesson learnt

The previous examples led the community to developing a series of good practice guidelines such as:

- Global observables (acting
- Too much entanglement le
- Deep circuits are have BPs

We show that generalized entanglement in ρ is relative to the DLA, generalized locality of O, is relative to the DLA.

Hence, it is entirely possible for a circuit to be trained on highly entangled initial states using highly nonlocal measurements (i.e., acting on all qubits) as long as they are well aligned with the underlying DLA of the circuit.

Summary

THITTSAWRAP

Lie Algebra
 Analysis

Architecture

 Specific AnalysisSpecific $U(\boldsymbol{\theta})$

Arbitrary $U(\boldsymbol{\theta})$ ρ or O in $i \mathfrak{g}$

Previous works:
Expressiveness
Generalized
Entanglement
Generalized Locality

Can we go beyond the DLA?

Yes! We need to take (at least for now) an architecture specific analysis.

Parametrized Matchgate circuits: $\quad \mathcal{G}=\left\{Z_{i}\right\}_{i=1}^{n} \cup\left\{X_{i} X_{i+1}\right\}_{i=1}^{n-1}$ Free fermion DLA:

$$
\mathrm{g}=\operatorname{span}_{R}\left\{Z_{i}, \widehat{X_{i} X_{j}}, \widehat{X_{i} Y_{j}}, \widehat{Y_{i} X_{j}}, \widehat{Y_{i} Y_{j}}\right\}_{1 \leq i<j \leq n} \simeq \operatorname{so}(2 n)
$$

Where $\overline{A_{i} B_{j}}=A_{i} Z_{i+1} \cdots Z_{j-1} B_{j}$

Before we needed ρ or 0 in ig. The DLA was the central element. Now we need to work with group modules.

$$
\mathcal{B}=\oplus_{\kappa=0}^{2 n} \mathcal{B}_{\kappa} ; \operatorname{dim}\left(\mathcal{B}_{\kappa}\right)=\binom{2 n}{\kappa}
$$

Use Jordan-Wigner, and define Majorana operators

$$
\begin{aligned}
& \forall M_{\kappa} \in \mathcal{B}_{\kappa}, \text { then } \\
& U M_{\kappa} U^{\dagger} \in \mathcal{B}_{\kappa} \text { for any } \\
& U \in e^{\mathfrak{g}}
\end{aligned}
$$

$$
\begin{aligned}
& c_{1}=X I \cdots I, c_{3}=Z X I \cdots I, c_{5}=Z \cdots Z X \\
& c_{2}=Y I \cdots I, c_{3}=Z Y I \cdots I, c_{5}=Z \cdots Z Y
\end{aligned}
$$

Moar exact variance formulae,

/môar/ - adj - A way of asking for more of something you want very badly

$$
\begin{gathered}
\mathrm{E}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\sum_{\kappa=0,2 n}\left\langle\rho_{\kappa}, O_{\kappa}\right\rangle_{I+P} \\
\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\sum_{j=1}^{k-1} \frac{\mathcal{P}_{\kappa}(\rho) \mathcal{P}_{\kappa}(O)+\mathcal{C}_{\kappa}(\rho) \mathcal{C}_{\kappa}(O)}{\operatorname{dim}\left(\mathcal{B}_{\kappa}\right)} \\
\begin{array}{c}
O \in \mathcal{B}_{\kappa}, \text { then } \mathrm{E}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=0, \text { and } \\
\operatorname{Var}_{\boldsymbol{\theta}}\left[\ell_{\boldsymbol{\theta}}(\rho, O)\right]=\frac{\mathcal{P}_{\kappa}(\rho) \mathcal{P}_{\kappa}(O)}{\operatorname{dim}\left(\mathcal{B}_{\kappa}\right)}
\end{array} \\
\mathcal{P}_{\kappa}(M)=\left\langle M_{\kappa}, M_{\kappa}\right\rangle_{I}, \mathcal{C}_{\kappa}(M)=i^{\kappa \bmod 2}\left\langle M_{\kappa}, M_{\kappa}\right\rangle_{P}, \text { and }\left\langle M_{1}, M_{2}\right\rangle_{\Gamma}=\operatorname{Tr}\left[\Gamma M_{1}^{\dagger} M_{2}\right]
\end{gathered}
$$

1. The (local) expressiveness measure $\operatorname{dim}(\mathrm{g})$ is replaced by the (global) expressiveness $\operatorname{dim}\left(\mathcal{B}_{\kappa}\right)$. The conjecture in [1] is then not generally true. Trainability is module dependent.
2. We can define a notion of generalized globality, product of Majoranas: $\kappa \bmod n \in \Theta(1)$ no BP but $\kappa \bmod n \in \Theta(n)$ then BP!

Remember, we have qubits!
3. For $\kappa=2\left(\mathcal{B}_{2}=\mathfrak{g}\right)$, operational meaning to $\mathcal{P}_{\kappa}(\rho)$ as a Fermionic entanglement measure.
4. The covariances are forms of generalized-coherences between isomorphic modules (related to the parity sectors).

I do theory, but... here are some cool numerics:

$$
\begin{aligned}
& \text { Gaussian State } \\
& \rho=|0\rangle\left\langle\left. 0\right|^{\otimes n}\right.
\end{aligned}
$$

Increase standard globality:

$$
O=Z^{\otimes m} \in \mathcal{B}_{2 m}
$$

Magic State (exponential extent)

$$
|\Psi(\tau)\rangle=\left[\frac{|0000\rangle+|0011\rangle+|1100\rangle+e^{i \tau}|111\rangle}{2}\right]^{\otimes n / 4}
$$

Non FermionicState $|\psi\rangle=\alpha|0\rangle^{\otimes n}+\beta|1\rangle|0\rangle^{\otimes n}$ Increase generalized globality:

$$
O=X_{j} \in \mathcal{B}_{2 j-1}
$$

$$
O=Z_{1} \in \mathcal{B}_{2}
$$

Enough is enough Marco! Ok, just one more cool result

Towards a super duper, unified mega complete BP theory

Sources of Barren Plateaus

Phew.. That was a lot... What did we learn?

IMHO: Our understanding of BPs underwent a recent transformative shift. We can use these results to guide our model's design.

Here are some open questions:

- In the Matchgate case, we can relate trainability to fermionic entanglement (a computational resource that can promote matchgates to universal circuits). We see that e-v-e-r-y trainable model, is also (somehow*) classically simulable.
We even propose a simulation method for exponential magic states that are non-simulable via Wick theorem simulation-based techniques!)

> Is this connection more general?

- What about noise?
- What about shallow depth?
- Non-expectation value-based models (generative)?

