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Deep learning 
• Computer vision, natural language processing, machine translation, self driving cars, 

game playing, physics, chemistry, finance, healthcare, demographics, entertainment, 
music, art, robotics. 


• Availability of datasets, specialized hardware, and outstanding algorithmic 
developments have ushered a new generation of large models displaying 
unprecedented accuracy across a wide array of technologically and scientifically 
relevant tasks.


• Example: Diffusion models


• Impressive results for image generation that suggest that art will change


• Dall-E-2: Prompt the model with natural language and it draws artistic pictures  

https://openai.com/dall-e-2/



Deep learning: Dall-E

https://openai.com/dall-e-2/



Natural language processing

• Branch of computer science, linguistics, and machine learning concerned 
with giving computers the ability to process text and spoken words in a 
similar way humans do it. 

• Machine translation 

• Speech recognition 

• Sentiment analysis 

• Automatic summarization of text 

• Text to image/video generation



Deep learning 

• Example: “Galactica: A Large Language Model for Science” https://arxiv.org/
abs/2211.09085


• Prompt a scientific topic and the language model writes a manuscript for you. 
Surprising results. 


• Meta shuts down public test of Galactica, its ‘AI for Science’ because it 
produced pseudoscientific papers

https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085


Deep learning



ChatGPT

• ChatGPT is a machine learning 
model which interacts in a 
conversational way 

• Dialogue format makes it 
possible for ChatGPT to 
answer followup questions, 
admit its mistakes, challenge 
incorrect premises, and reject 
inappropriate requests.

https://openai.com/blog/chatgpt/



ChatGPT

• People now believe these 
models will likely have 
deep technological, 
educational, and societal 
implications.

https://openai.com/blog/chatgpt/



ChatGPT

https://openai.com/blog/chatgpt/



Training these models this is expensive

• These advances crucially depend on the availability of specialized 
computational resources such as graphics and tensor processing units, which 
demand a high electricity consumption.


• In particular, a set of key but computationally expensive elements in the 
modern machine learning (ML) workflow include hyperparameter optimization 
and neural architecture search.


• GPT-3’s training costs up to $27.6 million 


• GPT-4

The GPT-3 economy: https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/

https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/


Possible solution is 
quantization of 

weights and biases 



Binary Neural networks

Neural networks with binary weights and activations (BiNNs) partially alleviate 
these issues as they are computationally efficient, hardware-friendly, and energy 
efficient.


32-fold reduction in memory.


Robust to adversarial attacks. 


Specialized hardware implementations that simultaneously increase 
computational speed and improve their energy efficiency.


Parameter, hyperparameter, and architectural searches remains computationally 
expensive— multiple nested combinatorial optimization problems
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Binary Neural Networks remain expensive to train

• Traditionally, there are two nested loops:


• Outer optimization—loop through the hyperparameter and architectural state 
spaces on a validation set


• Inner optimization—adjusts the weights of the neural network on a training set. 


• Such a nested optimization process remains the most computationally 
demanding task in the modern ML workflow and entails an unsustainable 
carbon footprint


• Call for computationally efficient hardware and algorithms to train and search 
for neural architectures



Binary Neural Networks are expensive to train

• Traditionally, there are two nested loops:


• Outer optimization—loop through the hyperparameter and architectural state 
spaces on a validation set


• Inner optimization—adjusts the weights of the neural network on a training set.


• Objective: 


• Real boolean function of the binary (hyper-) parameters of the neural network.

C (w) =
1
Nt

Nt

∑
i=1

ℒ (NN(xi; {w}), yi) .



• HyperNetworks: an approach of using a one network, also known as a 
hypernetwork, to generate the weights for another network.

HyperNetworks
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• Used in natural language processing, computer vision, hyperparmeter tuning, 
neural architectural search, meta-learning.


• HyperNetworks. https://arxiv.org/abs/1609.09106



Quantum HyperNetworks



• We define Quantum HyperNetworks 
and use them to unify parameter, 
hyperparameter, and architectural 
search for binary neural networks 


• Can be understood as training binary 
neural networks in quantum 
superposition


• Superpositions contain exponentially 
many binary neural networks with 
different parameters, architectural 
choices, and hyperparameters

Quantum HyperNetworks to train binary neural networks
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Encoding BiNNs in a quantum state

• Consider a quantum state 


• 


• To each basis element  —> 
augmented model comprising the parameters, 
hyperparameters, and any desired architectural 
choices.


• The selection of activation function from two 
possibilities  or , we make the activation 
function qubit dependent (qubit  ). 

|Ψ⟩ = ∑
σ1,…,σN

Ψ(σ1, …, σN) |σ1, …, σN⟩
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Encoding BiNNs in a quantum state

• 


• Other architectural choices (skip 
connections, dimension of the hidden 
layer, # of layers, etc)—add more qubits. 


• We “nudge” the state so that when we 
measure it in an experiment, it returns 
neural networks with good architectural 
choices, parameters, and 
hyperparameters

f(x; σ) = {f1(x) if σ = 0
f2(x) if σ = 1.
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Variational quantum algorithm
Encode the problem in a form suitable to optimization by a variational 
quantum algorithm

• One idea: a variational quantum algorithm (VQA).


• A VQA employs a classical optimizer acting on a 
parameterized quantum circuit, with the purpose 
of finding solutions to a problem encoded in an 
objective function.


• Objective: 


• We define an augmented model with parameters
 to include the neural network 

weights, biases, hyperparameters, and 
architectural choices.

C (w) =
1
Nt

Nt

∑
i=1

ℒ (NN(xi; {w}), yi) .

w = {w1, …, wN}
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Augmented model

NN(w, xi)

ParametersArchitectural

choices

Hyperparameters

 or P (label | image) P (image)



Variational quantum algorithm
Encode the problem in a form suitable to optimization by a variational 
quantum algorithm

• Making the objetive function quantum


• Promote the parameters of the BiNN to a 
set of Pauli matrices 

, 


•   (i.e. go from a Boolean 
function to a diagonal matrix). 


• This encoding is flexible — off-diagonal 
operators, multi-basis encoding, tensor 
product of Pauli operators, etc.

w → ̂σz = ( ̂σz
1, ̂σz

2, …, ̂σz
N)

C (w) → Ĉ
2N × 2N
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Variational Quantum Optimization with Multi-Basis Encodings. Taylor L. Patti, Jean 
Kossaifi, Anima Anandkumar, Susanne F. Yelin. https://arxiv.org/abs/2106.13304

https://arxiv.org/search/quant-ph?searchtype=author&query=Patti%2C+T+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Kossaifi%2C+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Kossaifi%2C+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Anandkumar%2C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Yelin%2C+S+F


Variational quantum algorithm
Encode the problem in a form suitable to optimization by a variational 
quantum algorithm

• We construct a quantum state  through a 
parameterized quantum circuit  with continuous 
parameters  such that 


• We aim at finding  solutions to the training of the BiNN 
solving for 


•  


•

|Ψ⟩
U(θ)

θ |Ψ⟩ → |Ψθ⟩ = U(θ) |0⟩⨂n

θ* = arg min
θ

E (θ),

3

{w1, . . . , wN}, include the neural network weights, bi-
ases, hyperparameters, and architectural choices. The
objective function corresponds to a N -bit real Boolean
function C : {0, 1}N ! R, which the quantum algorithm
aims to minimize. The weights and biases take the values
2�i � 1 2 {�1, 1}.

The simplest and currently most experimentally
friendly approach to carry out this optimization using
quantum resources is through a VQA. A VQA employs
a classical optimizer acting on a parameterized quantum
circuit, with the purpose of finding solutions to a prob-
lem encoded in an objective function, which in our setting
corresponds to C (w). A key element to a VQA is the
encoding of the objective function, achieved by promot-
ing Eq.2 to a quantum operator. A natural choice is to
promote the parameters of the BiNN to a set of Pauli
matrices w ! �̂z = (�̂z

1 , �̂
z
2 , . . . , �̂

z
N ), which, in turn,

promotes the objective function C (w) to an operator Ĉ.
This encoding is flexible and other operator choices, in-
cluding o↵-diagonal operators, are possible.

We construct a quantum state | i through a parame-
terized quantum circuit U(✓) with continuous parameters
✓ such that | i ! | ✓i = U(✓)|0i

N
n. We aim at finding

solutions to the training of the BiNN solving for

✓⇤ = arg min
✓

E (✓) , (3)

where E (✓) = h ✓|Ĉ| ✓i. From an ML perspective, this
approach can be understood as a stochastic relaxation of
the discrete optimization problem. That is, instead of
directly searching for the optimal binary parameters, we
introduce a joint distribution over the parameters and
architectural choices encoded by the quantum state | ✓i.
Measuring the quantum state (see Fig. 1(b)) produces
trial binary weights and architectural choices and gives
access to estimates of the learning objective E(✓).

We express U(✓) as the product of L unitary blocks
of the form U(✓) = UL (✓L) · · ·U1 (✓1). We restrict our-
selves to one of the simplest and most widely available
circuits in current quantum computing platforms, namely
those implementable in quantum devices with a linear
connectivity:

Uk (✓k) =
N�2+k mod 2Y

m=1+k mod 2, step 2

CX(m,m+ 1) (4)

NY

j=1

RY(j, ✓y,j,k)RZ(j, ✓z,j,k).

Here CX(i, j) denotes a control-X gate acting on the con-
trol i and target j qubits. The parameterized single-
qubit unitaries RY(j, ✓y,j,k) and RZ(j, ✓z,j,k) at layer k

are given by ei✓y,j,k�̂
y
j and ei✓z,j,k�̂

z
j , respectively. The pa-

rameters of the circuit are ✓ = {✓↵,i,k}, where ↵ = y, z,
i = 1, . . . , N , and k = 1, . . . , L. We illustrate a quan-
tum circuit with L = 2 and N = 4 in Fig. 1, where the
green boxes synthesize the combined e↵ect of RY(j, ✓y,j,k)

and RZ(j, ✓z,j,k). In our experiments, we consider even
L = 2 ⇥ Nlayer and define a layer (see encircled blocks
in Fig. 1b) as 2 unitary blocks, so that the circuit in
Fig. 1b contains Nlayer = 1 layers. In addition, we also
consider one of the simplest possible quantum states,
namely an entanglement-free product state ansatz, where
U(✓)prod. =

QN
j=1 RY(j, ✓y,j,1)RZ(j, ✓z,j,1). The latter

have been shown e↵ective at solving quadratic uncon-
strained binary optimization problems [19, 20].

B. Optimization

The optimization in Eq. 3 is carried out via a gradient-
based hybrid quantum-classical loop where a quantum
computer evaluates E (✓) and the gradient r✓E (✓), and
a classical optimizer that iteratively updates the param-
eters of the circuit. At the end of the optimization, we
expect that the quantum state | ✓i assigns high ampli-
tudes to configurations corresponding to BiNNs with low
objective function, i.e., good architectural choices, pa-
rameters and hyperparameters.
In an experimental setting, the estimation of the gra-

dients r✓E (✓) makes use of the parameter-shift rule [21,
22]. It follows that the entries of the gradient are given
by

@E (✓)

@✓↵,j,k
=

1

2

h
E(✓+

↵,j,k) � E(✓�
↵,j,k)

i
, (5)

where the shifted parameter vector ✓±
↵jk is such that

✓±�,i,l = ✓�,i,l ± ⇡
2 �↵,��i,j�k,l. Thus, the calculation of

the gradient corresponds to the evaluation of a shifted
version of the objective function E(✓), which can be es-
timated by preparing and measuring the same quantum
circuit used to compute the original objective with shifted
circuit parameters.
In an quantum experiment, functions of the form E(✓)

are estimated via averages over the measurement out-
comes of projective measurements, e.g.,

E (✓) = h ✓|Ĉ| ✓i (6)

=
X

�1,�2,...,�N

| ✓(�1,�2, . . . ,�N )|2C(�1,�2, . . . ,�N )

= E�⇠| ✓|2 [C(�)] ⇡ 1

Ns

NsX

i=1

C(�i),

where Ns configurations �i are distributed according to
| ✓|2.
In contrast, we use classical simulations of VQA based

on tensor networks (TN) [23] implemented through the
PastaQ.jl package [24]. The TN techniques allow for the
exact evaluation of expectation values and their the gra-
dients through automatic di↵erentiation (AD) provided
by the package Zygote.jl [25]. To optimize E(✓) we use
the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) algorithm [26].
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Variational quantum algorithm for unconstrained black box binary optimization: Application to 
feature selection. C Zoufal, RV Mishmash, N Sharma, N Kumar, A Sheshadri, A Deshmukh, 
Noelle Ibrahim, Julien Gacon, and Stefan Woerner. Quantum 7, 909 (2023) 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC


Variational quantum algorithm
Encode the problem in a form suitable to optimization by a variational 
quantum algorithm

• 


• From an ML perspective—stochastic 
relaxation of the discrete optimization 
problem. This is close to a Bayesian BiNN 
with a “quantum” approximating posterior.  


• Instead of optimizing binary variables, 
optimize continuous parameters .

3

{w1, . . . , wN}, include the neural network weights, bi-
ases, hyperparameters, and architectural choices. The
objective function corresponds to a N -bit real Boolean
function C : {0, 1}N ! R, which the quantum algorithm
aims to minimize. The weights and biases take the values
2�i � 1 2 {�1, 1}.

The simplest and currently most experimentally
friendly approach to carry out this optimization using
quantum resources is through a VQA. A VQA employs
a classical optimizer acting on a parameterized quantum
circuit, with the purpose of finding solutions to a prob-
lem encoded in an objective function, which in our setting
corresponds to C (w). A key element to a VQA is the
encoding of the objective function, achieved by promot-
ing Eq.2 to a quantum operator. A natural choice is to
promote the parameters of the BiNN to a set of Pauli
matrices w ! �̂z = (�̂z

1 , �̂
z
2 , . . . , �̂

z
N ), which, in turn,

promotes the objective function C (w) to an operator Ĉ.
This encoding is flexible and other operator choices, in-
cluding o↵-diagonal operators, are possible.

We construct a quantum state | i through a parame-
terized quantum circuit U(✓) with continuous parameters
✓ such that | i ! | ✓i = U(✓)|0i

N
n. We aim at finding

solutions to the training of the BiNN solving for

✓⇤ = arg min
✓

E (✓) , (3)

where E (✓) = h ✓|Ĉ| ✓i. From an ML perspective, this
approach can be understood as a stochastic relaxation of
the discrete optimization problem. That is, instead of
directly searching for the optimal binary parameters, we
introduce a joint distribution over the parameters and
architectural choices encoded by the quantum state | ✓i.
Measuring the quantum state (see Fig. 1(b)) produces
trial binary weights and architectural choices and gives
access to estimates of the learning objective E(✓).

We express U(✓) as the product of L unitary blocks
of the form U(✓) = UL (✓L) · · ·U1 (✓1). We restrict our-
selves to one of the simplest and most widely available
circuits in current quantum computing platforms, namely
those implementable in quantum devices with a linear
connectivity:

Uk (✓k) =
N�2+k mod 2Y

m=1+k mod 2, step 2

CX(m,m+ 1) (4)

NY

j=1

RY(j, ✓y,j,k)RZ(j, ✓z,j,k).

Here CX(i, j) denotes a control-X gate acting on the con-
trol i and target j qubits. The parameterized single-
qubit unitaries RY(j, ✓y,j,k) and RZ(j, ✓z,j,k) at layer k

are given by ei✓y,j,k�̂
y
j and ei✓z,j,k�̂

z
j , respectively. The pa-

rameters of the circuit are ✓ = {✓↵,i,k}, where ↵ = y, z,
i = 1, . . . , N , and k = 1, . . . , L. We illustrate a quan-
tum circuit with L = 2 and N = 4 in Fig. 1, where the
green boxes synthesize the combined e↵ect of RY(j, ✓y,j,k)

and RZ(j, ✓z,j,k). In our experiments, we consider even
L = 2 ⇥ Nlayer and define a layer (see encircled blocks
in Fig. 1b) as 2 unitary blocks, so that the circuit in
Fig. 1b contains Nlayer = 1 layers. In addition, we also
consider one of the simplest possible quantum states,
namely an entanglement-free product state ansatz, where
U(✓)prod. =

QN
j=1 RY(j, ✓y,j,1)RZ(j, ✓z,j,1). The latter

have been shown e↵ective at solving quadratic uncon-
strained binary optimization problems [19, 20].

B. Optimization

The optimization in Eq. 3 is carried out via a gradient-
based hybrid quantum-classical loop where a quantum
computer evaluates E (✓) and the gradient r✓E (✓), and
a classical optimizer that iteratively updates the param-
eters of the circuit. At the end of the optimization, we
expect that the quantum state | ✓i assigns high ampli-
tudes to configurations corresponding to BiNNs with low
objective function, i.e., good architectural choices, pa-
rameters and hyperparameters.
In an experimental setting, the estimation of the gra-

dients r✓E (✓) makes use of the parameter-shift rule [21,
22]. It follows that the entries of the gradient are given
by

@E (✓)

@✓↵,j,k
=

1

2

h
E(✓+

↵,j,k) � E(✓�
↵,j,k)

i
, (5)

where the shifted parameter vector ✓±
↵jk is such that

✓±�,i,l = ✓�,i,l ± ⇡
2 �↵,��i,j�k,l. Thus, the calculation of

the gradient corresponds to the evaluation of a shifted
version of the objective function E(✓), which can be es-
timated by preparing and measuring the same quantum
circuit used to compute the original objective with shifted
circuit parameters.
In an quantum experiment, functions of the form E(✓)

are estimated via averages over the measurement out-
comes of projective measurements, e.g.,

E (✓) = h ✓|Ĉ| ✓i (6)

=
X

�1,�2,...,�N

| ✓(�1,�2, . . . ,�N )|2C(�1,�2, . . . ,�N )

= E�⇠| ✓|2 [C(�)] ⇡ 1

Ns

NsX

i=1

C(�i),

where Ns configurations �i are distributed according to
| ✓|2.
In contrast, we use classical simulations of VQA based

on tensor networks (TN) [23] implemented through the
PastaQ.jl package [24]. The TN techniques allow for the
exact evaluation of expectation values and their the gra-
dients through automatic di↵erentiation (AD) provided
by the package Zygote.jl [25]. To optimize E(✓) we use
the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(LBFGS) algorithm [26]. θ
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Variational quantum algorithm
Encode the problem in a form suitable to optimization by a variational 
quantum algorithm

• Design of the circuit is important. Depth, 
connectivity of the gates etc. 


• We don’t know a whole lot about C— 
How to choose a good ansatz? 


• People use QAOA  — hard to 
use as need to compile 


• We choose a circuit with linear 
connectivity and vary its depth. 
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Variational quantum algorithm for unconstrained black box binary optimization: Application to 
feature selection. C Zoufal, RV Mishmash, N Sharma, N Kumar, A Sheshadri, A Deshmukh, 
Noelle Ibrahim, Julien Gacon, and Stefan Woerner. Quantum 7, 909 (2023) 

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC


How do we choose ansatz? 



Optimization
Encode the problem in a form suitable to optimization by a variational 
quantum algorithm

• Use gradient descent to optimize 


• 


• The shifted parameter vector  is such that 
 


• Thus, the calculation of the gradient corresponds 
to the evaluation of a shifted version of the 
objective function . 


• However, we used a tensor network simulator 
and automatic differentiation.

E(θ)

∂E (θ)
∂θα,j,k

=
1
2 [E(θ+

α,j,k) − E(θ−
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θ±
αjk
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β,i,l = θβ,i,l ± π

2 δα,βδi,jδk,l

E(θ)
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Some results



Results: MNIST, binary logistic regression

• Train weights and bias. 


• Run optimization at least 200 times 
and evaluate the probabilities of finding 
an objective function with value  


• Compute Probability that  is less 
than . 


• Optimization is successful frequently


• Optimal circuit depth suggests an 
optimal use of entanglement
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Results

• Train weights + architectural choice of non-
linearity. 


• Run optimization at least 200 times and 
evaluate the probabilities of finding an 
objective function with value  


• Compute Probability that  is less than . 


• Optimization is successful frequently


• Optimal circuit depth— optimal use of 
entanglement

E(θ)

E(θ)

0.00 0.05 0.10 0.15
E(µ)

p. state

1 lay

2 lay

3 lay

4 lay

C

c
°3 °2 °1 0 1 2 3

x1

°3

°2

°1

0

1

2

x 2

σ1

σ2

f (x; σ14 )

σ3

σ4

σ5

σ6

σ7

σ8

σ9

f

f

f

σ10

σ11

σ12

σ13

x1

x2

fout

a b

d

Prod. state
1 Layers

2 Layers
3 Layers

4 Layers

0.56

0.58

0.60

0.62

0.64

0.66

0.68

P
(E

(µ
)°

E
ex

ac
t
∑

≤)
W1 b1 W2 b2



• Train weights + 
architectural choice of 
non-linearity + hidden 
dimension (2 or 3, 
binary choice )


• Optimal circuit depth


• Success probability a 
bit smaller


• But overall successful 
optimization
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Any idea about the structure of C



Fourier Analysis 

•  


• Effective Ising model with multi-
variable all-to-all interactions


• Fourier coefficients are given by 



•
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Fourier Analysis 
• Data suggest that the objective 

functions C are predominantly 
local


• MNIST C is nearly single-body, 
which is easier to optimize even by 
a product state


• No tractability issues arising from 
vanishing gradients induced by C
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“Augmented” model selection
• Augmented model encapsulating the 

parameters, hyperparameters and 
architecture of a neural network which 
we jointly optimize on a training 
dataset. How to choose model using a 
validation set? 


• The data suggests that these 
augmented models behave like 
traditional statistical models which 
follow the usual bias-variance 
decomposition.  

7

0 10 20 30 40 50
training iteration

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
(�

)

Ns = 103

Ns = 8
Ns = 6
Ns = 4
Ns = 2

Val.
Val.
Val.
Val.
Val.

Figure 6.

an average of E(✓) over 100 independent realizations of
training datasets of sizes Nt = 2, 4, 6, 7, and 103. We fix
the total number of circuit training iterations to 50 and
the choose a large validation set of size 103.

Overall, we find that the augmented model adheres to
the anticipated behaviour of an ML model. In all of our
examples, the average training curves on the training sets
are monotonically decreasing. For small training sets,
e.g. Nt = 2, the validation set curve initially decreases
and later on increases, which o↵ers a simple strategy to
choose optimal models located at the minimum of the
validation curve as a way to avoid overfitting [29]. For
Nt > 2, the validation curves exhibit a monotonic de-
creasing behaviour as a function of training iterations,
which is the typical dynamics for large training sets Nt

where the dynamics is less prone to overfitting. As ex-
pected, the generalization gap, i.e. the di↵erence between
the validation and training set curves near the end of the
training, decreases quickly as a function of the Nt and is
seen to get small for large datasetsNt = 103, as expected.

III. DISCUSSION

We have developed a VQA for the training of BiNNs
which searches over an augmented space comprising the
weights of the neural network, its hyperparameters, and
any desired architectural choices in a single optimization
loop. Using tensor network simulations, we have shown
that of our approach e↵ectively finds optimal parameters,
hyperparmeters and architectural choices with high prob-
ability on toy classification problems including a two-
dimensional Gaussian dataset and a scaled down version
of MNIST handwritten digits. We find that the proba-
bility of finding BiNNs with low objective function and
good architectural choices is tied to the circuit depth, and
consequently, to the amount of entanglement supported
by the circtuit, which indicates that entanglement and

quantum e↵ects do play a role and decrease the proba-
bility that the optimization finds poor local minima.
Even though circuits with a simple linear connectiv-

ity have proven successful in our setting, other ansatze
constrcuted considering knowledge of the problem, e.g.,
circuit designs adaptively grown guided by the objec-
tive function and gate availability [30], may simulta-
neously shorten the circuit depth and significantly im-
prove the e↵ectiveness and scalability of our approach.
To explore training large models beyond what’s feasi-
ble with limited-size quantum processors, it is natural
to consider a layer-by-layer optimization of the BiNN,
which would operate analogously to the density matrix
renormalization group algorithm [31]. Additionally, dis-
tributed quantum computing [32] may extend the scal-
ability of our approach to larger ML models. The ap-
plication of fault tolerant quantum algorithms may also
prove useful to the success of the unified training strategy
presented here and may lead to provable speedups [16].
Our approach naturally connects with Bayesian infer-

ence as the quantum state | ✓i defines a probability dis-
tribution over the weights of the BiNNs, a defining prop-
erty of a Bayesian neural network. A full Bayesian ap-
proach prescribes the evaluation of the parameters’ distri-
bution density, which is fundamentally intractable in our
setting. It may be possible, however, to estimate the ev-
idence lower bound [] by performing a decomposition the
circuit distribution taking inspiration from Ref. [33]. Ad-
ditionally, although we have arrived at our unified strat-
egy through a variational quantum optimization lens, our
approach can also be used in conjuction with, e.g., clas-
sical or quantum-inspired optimization strategies [20, 34]
where a variational Bayesian approach to BiNN optimiza-
tion is possible.
Quantum computers are currently reaching the abil-

ity to vastly outperform supercomputers’ energy e�-
ciency by many orders of magnitude over classical com-
puters [35], so it stands to reason that the e�ciency and
energetic consumption of complex tasks in the ML work-
flow such as neural network training and hyperparmeter
search may be significantly reduced through the use of
quantum computational resources. A combination of the
energy e�ciency of BiNN’s classical operation with the
energetic advantages of quantum devices for their train-
ing along with the unified single-loop optimization in-
troduced here may o↵er a compelling approach to train
large ML models with a reduced carbon footprint in the
future.
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Conclusions
• We have introduced HyperNetworks which train binary neural networks in quantum 

superposition


• One optimization loop trains parameters, hyperparameters, and architectural choices in binary 
neural networks 


• Speculation: “quantum computers are currently reaching the ability to vastly outperform 
supercomputers' energy efficiency by many orders of magnitude over classical computers.”


• Horrible encoding. Z—> 


• Binary neural networks save energy at inference time. We are suggesting is that we can 
potentially save energy in training, architectural design and hyperparameter search.  


• Neural networks perform best when they are large— we are exploring better encoding of the 
problem.


• Vast arrays of problems in ML that can be recast as a black box optimization

X, Y, Z, , X ⊗ X, X ⊗ Y, X ⊗ Z,1 ⊗ Z, etc



Artificial neural networks

f : Rn ! Rm

Artificial neural networks are a family of models 
used to approximate functions that can depend on a large number of inputs. 

Artificial neural networks are generally presented as systems of 
interconnected "neurons" which exchange messages between each other

Connections= sets of adaptive 
weights, i.e. numerical parameters 

that are tuned by a learning 
algorithm

Wikipedia



A neuron:  

Sigmoid neuron

Perceptron:

x1

x2
h⇥ (x) =

1

1 + e��⇥T x

� ! 1

+1

⇥ = (✓0 ✓1 ✓2 ✓3)

� = 1 x3

⇥(1)

x = (1 x1 x2 x3)

Where     ‘s  are the parameters you fiddle with⇥



Deep learning


