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Deep learning

 Computer vision, natural language processing, machine translation, self driving cars,
game playing, physics, chemistry, finance, healthcare, demographics, entertainment,
music, art, robotics.

e Availability of datasets, specialized hardware, and outstanding algorithmic
developments have ushered a new generation of large models displaying
unprecedented accuracy across a wide array of technologically and scientifically
relevant tasks.

 Example: Diffusion models

* |mpressive results for image generation that suggest that art will change

« Dall-E-2: Prompt the model with natural language and it draws artistic pictures

https://openai.com/dall-e-2/



Deep learning: Dall-E

@ DALL-E History Collections

Edit the detailed description Surprise me Upload =]

a sunset in toronto waterfront synthwave style Generate

https://openai.com/dall-e-2/



Natural language processing

Branch of computer science, linguistics, and machine learning concerned
with giving computers the ability to process text and spoken words in a
similar way humans do it.

Machine translation

Speech recognition

Sentiment analysis

Automatic summarization of text

Text to image/video generation



Deep learning

 Example: “Galactica: A Large Language Model for Science” https://arxiv.org/
abs/2211.09085

 Prompt a scientific topic and the language model writes a manuscript for you.
Surprising results.

 Meta shuts down public test of Galactica, its ‘Al for Science’ because it
produced pseudoscientific papers


https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085
https://arxiv.org/abs/2211.09085

Deep learning

x not verified

Recurrent Neural Network wavefunctions

We can use a Recurrent Neural Network (RNN) to model the quantum wavefunction of a many-body system.
In this notebook we show how to implement this model and train it on the ground state of the Ising model.

For this notebook we will use the TensorFlow Keras API.

The model

The RNN wavefunction has the following structure:

<img src="./figures/rnn_structure.png" alt="RNN_structure" style="width: 400px;"/>
Each site is represented by a spin variable s; which can take two values, +1.

The wavefunction is parametrized by an RNN, where each spin s; is treated as a time step in the RNN. The hidden state h;
at each time step 4 is updated according to the following rule:

h,’ - f(s,-W(l) + hi_lW(z))

where f is an activation function, W 1) and W2 are matrices which parametrize the RNN. The output at each time step is
given by:

W(sy,...,8x5) = f(haW®)

The matrices W), W (2) and W ®) are trained using Variational Monte Carlo (VMC).

Data

We train the RNN on the ground state of the one-dimensional transverse field Ising model:




ChatGPT

i#i CBC

Can the new Al tool ChatGPT replace human work? Judge

» ChatGPT is a machine learning for yourself

A new artificial intelligence tool using natural language processing has captured the

m Od e | W h iC h i n te ra CtS i n a public's imagination, amassing more than a million...
conversational way

% Global News

ChatGPT: Everything to know about the viral,

° D|a |Og ue fO rmat ma keS |t '‘groundbreaking’ Al bot - National | Globalnews.ca

Users can ask the Al to write essays, poems or scripts, or even translate or summarize . d

p OSS i b | e fO r C h a t G PT tO text. ChatGPT can also answer questions on a wide...

21 hours ago

answer followup questions, 8 v

admit its mistakes, challenge ot o e et e i sy ‘ e
i n CO r reCt p re m iSeS, a n d rej eCt ?nds;/:le;;zmplex questions. In the days after its...

Inappropriate requests. 2 T Tororto st

| wrote a story about ChatGPT's Al. Then | dared it to write a
better one

Like a million or so other artificial intelligence dumb-dumbs who discovered ChatGPT
this week, | couldn't wait to show off the capabilities...

https://openai.com/blog/chatgpt/



ChatGPT

» People now believe these @ Daiy Vi
. . ChatGPT can pass the United States Medical Licensing
1 The rise of the machines? ChatGPT CAN pass US Medical Licensing Exam and the
d ee p teC h n O | Og I Ca | / Bar, experts warn - after the Al chatbot received B grade on...

educational, and societal Lt

implications. (B oo |
OpenAl’'s ChatGPT passes Wharton’s MBA Exam, while also

qualifying for a medical licence in the US

Medical researchers are actually considering using ChatGPT in actual, clinical cases to
assist real doctors. OpenAl's chatbot ChatGPT has been...

5 hours ago

02-21-23 | 9:59 AM

A science fiction magazine closed
submissions after being bombarded
with stories written by ChatGPT

https://openai.com/blog/chatgpt/ In a case of life (or something) imitating art, an award-winning publisher of science
fiction says it's being overrun with Al-generated work.



ChatGPT

I'll do my best to create an ASCII art representation of the Mona Lisa, however, please
keep in mind that it may not be a very detailed or realistic representation. Here is my

attempt:

7] Copy code

Please note that this is a very simple and minimal representation of Monalisa, as ASCII art

is not my primary function. It may not be the best representation of Monalisa.

https://openai.com/blog/chatgpt/



Training these models this Is expensive

 These advances crucially depend on the availability of specialized

computational resources such as graphics and tensor processing units, which
demand a high electricity consumption.

* |n particular, a set of key but computationally expensive elements in the

modern machine learning (ML) workflow include hyperparameter optimization
and neural architecture search.

 GPT-3’s training costs
c GPT-4

The GPT-3 economy: https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/


https://bdtechtalks.com/2020/09/21/gpt-3-economy-business-model/

Possible solution iIs
quantization of
weights and biases




Binary Neural networks

Neural networks with binary weights and activations (BiNNs) partially alleviate

these issues as they are computationally efficient, hardware-friendly, and energy
efficient.

32-fold reduction in memory.
Robust to adversarial attacks.

Specialized hardware implementations that simultaneously increase
computational speed and improve their energy efficiency.

Parameter, hyperparameter, and architectural searches remains computationally
expensive— multiple nested combinatorial optimization problems



Binary Neural Networks remain expensive to train

* [raditionally, there are two nested loops:

» Quter optimization—loop through the hyperparameter and architectural state
spaces on a validation set

* |nner optimization—adjusts the weights of the neural network on a training set.

* Such a nested optimization process remains the most computationally
demanding task in the modern ML workflow and entails an unsustainable
carbon footprint

» (Call for computationally efficient hardware and algorithms to train and search
for neural architectures



Binary Neural Networks are expensive to train

* [raditionally, there are two nested loops:

» Quter optimization—loop through the hyperparameter and architectural state
spaces on a validation set

* |nner optimization—adjusts the weights of the neural network on a training set.

] o
Objective: C (w) = — D L (NNGx;: (w)).y) -
Li=1

* Real boolean function of the binary (hyper-) parameters of the neural network.



HyperNetworks

 HyperNetworks: an approach of using a one network, also known as a
hypernetwork, to generate the weights for another network.

Image

— |_abel

HyperNetwork

* Used in natural language processing, computer vision, hyperparmeter tuning,
neural architectural search, meta-learning.

* HyperNetworks. https://arxiv.org/abs/1609.09106



Quantum HyperNetworks



Quantum HyperNetworks to train binary neural networks

¥)= ) ¥(op....0,)

e \We define Quantum HyperNetworks
and use them to unify parameter,
hyperparameter, and architectural Image
search for binary neural networks

» Can be understood as training binary
neural networks in quantum
superposition

e Superpositions contain exponentially
many binary neural networks with
different parameters, architectural

- Quantum
choices, and hyperparameters HyperNetwork i e]f;] d:]ﬁj i
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Encoding BINNs In a quantum state

 Consider a quantum state

¥)= ) W(o.....00) 0 ....00)

» To each basis element |6) = |5y, ..., 0p) —>
augmented model comprising the parameters,
hyperparameters, and any desired architectural
choices.

* The selection of activation function from two
possibilities f; or f,, we make the activation
function qubit dependent (qubit o, ).

J(x) = f(x, 04)

¥)= ) ¥(op....0,)

Image
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Encoding BINNs In a quantum state
¥)= ) ¥(op....0,)

f(x) if 6=0

¥ o) = Image
. J(x; 0) {fz(x) if o0 =1.

e Other architectural choices (skip
connections, dimension of the hidden
layer, # of layers, etc)—add more qubits.

 We “nudge” the state so that when we
measure It In an experiment, it returns
neural networks with good architectural
choices, parameters, and
hyperparameters
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Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational ‘ \P> — Z VY (019 e, (;4>
015,04

quantum algorithm

* One idea: a variational quantum algorithm (VQA).

Image

* A VQA employs a classical optimizer acting on a
parameterized quantum circuit, with the purpose
of finding solutions to a problem encoded in an
objective function.

— |_abel

|
Objective: C (W) = — D L (NNGx;: (W), ) -
Fi=1

 We define an augmented model with parameters

w = {wy, ..., Wy} toinclude the neural network
weights, biases, hyperparameters, and
architectural choices.
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Augmented model

Architectural Hyperparameters
choices

Parameters

P (Iabel | image) or P (image)



Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational ‘ \P> - Z V) (019 . 04)
O1,...,04

quantum algorithm

 Making the objetive function quantum

Image

 Promote the parameters of the BINN to a
set of Pauli matrices

W — 0, = (01,02, ...,GN),

— |_abel

c C(w) — C (i.e. go from a Boolean
function to a 2" x 2Vdiagonal matrix).

* This encoding is flexible — off-diagonal

operators, multi-basis encoding, tensor § Quantum i ejdj d:]ﬁj
. yperNetwork :
product of Pauli operators, etc. 5

Variational Quantum Optimization with Multi-Basis Encodings. Taylor L. Patti, Jean "------l----l---- -
Kossaifi, Anima Anandkumar, Susanne F. Yelin. https://arxiv.org/abs/2106.13304 O> | O> | O> | 0

0y 0y 03 Oy



https://arxiv.org/search/quant-ph?searchtype=author&query=Patti%2C+T+L
https://arxiv.org/search/quant-ph?searchtype=author&query=Kossaifi%2C+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Kossaifi%2C+J
https://arxiv.org/search/quant-ph?searchtype=author&query=Anandkumar%2C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Yelin%2C+S+F

Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational

quantum algorithm

» We construct a quantum state | W) through a
parameterized quantum circuit U(@) with continuous

parameters @ such that | V) — |Wy) = U@)| 0>®n

* We aim at finding solutions to the training of the BINN

solving for
. 0* =argmin E (0),
0
E(6) = (Wo|C|Wo) (6)
— Z ‘\PQ(Ul,UQ,...,O-N)‘2C(O-170-27'°'70-N)

= Eonwe2 [C(0))
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Image

Parameterized
Circuit

Variational quantum algorithm for unconstrained black box binary optimization: Application to

feature selection. C Zoufal, RV Mishmash, N Sharma, N Kumar, A Sheshadri, A Deshmukh,

Noelle Ibrahim, Julien Gacon, and Stefan Woerner. Quantum 7, 909 (2023)
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https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC

Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational _ ( )
quantum algorithm ‘ T) = Z ¥ 01, ...,04
O1s...,04

E(0) = (Vg|C| W) (6)
= > |e(01,02,....,08)Cl01,02,. .., 0n)

Image

= Eonjuy2 [Clo)] ® NL ic(ai)’

S =1

— |_abel

 From an ML perspective—stochastic
relaxation of the discrete optimization
problem. This is close to a Bayesian BINN
with a "quantum” approximating posterior.

Parameterized ej
» Instead of optimizing binary variables, Circult H;]d:]ﬁj ,
optimize continuous parameters 0. ll
0) 10y 10) [0

0y 0y 03 Oy



Variational quantum algorithm

Encode the problem in a form suitable to optimization by a variational _ ( )
quantum algorithm ‘ T) = Z ¥ 01, ...,04
O1s...,04

* Design of the circuit is important. Depth,
connectivity of the gates etc.

Image

— |_abel

e We don’t know a whole lot about C—
How to choose a good ansatz”?

;A X
 People use QAOA el“Ce”zif’i — hard to
use as need to compile /¢

e \WWe choose a circuit with linear

. - Parameterized E
connectivity and vary its depth. o :
Circuit ;
Variational quantum algorithm for unconstrained black box binary optimization: Application to I b 'I oTT | o
feature selection. C Zoufal, RV Mishmash, N Sharma, N Kumar, A Sheshadri, A Deshmukh, 0) |0) 10) |0

Noelle Ibrahim, Julien Gacon, and Stefan Woerner. Quantum 7, 909 (2023) o, 0, O3 Oy
1 2


https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=ZjEGjx4AAAAJ&sortby=pubdate&citation_for_view=ZjEGjx4AAAAJ:ns9cj8rnVeAC

How do we choose ansatz?




Optimization

Encode the problem in a form suitable to optimization by a variational ‘ T) . Z ¥ (5
quantum algorithm — 19 oo

 Use gradient descent to optimize E(0)
OF (0)
" 00,k

Image

— |_abel

Ly, I
== |EO;,0 - B0,

* The shifted parameter vector H—k IS such that
+
Op.it = Op,i1 % 500,510k

* Thus, the calculation of the gradient corresponds
to the evaluation of a shifted version of the

objective function E(0). S arameterized
. Circuit ej¢] d:]ﬁj

However, we used a tensor network simulator
and automatic differentiation. RO I I

|0> 10) 10) I0>

0y 0y 03 Oy




Some results



Results: MNIST, binary logistic regression
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0.3268 0.3270 0.3272 0.3274 0.3276
E(0)
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Train weights and bias.

Run optimization at least 200 times
and evaluate the probabilities of finding

an objective function with value E(@)

Compute Probability that £(0) is less
than €.

Optimization is successful frequently

Optimal circuit depth suggests an
optimal use of entanglement



Results

* Train weights + architectural choice of non-
linearity.

 Run optimization at least 200 times and
evaluate the probabillities of finding an

objective function with value E£(0)

« Compute Probability that £(@) is less than
* Optimization is successful frequently

* Optimal circuit depth— optimal use of
entanglement
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Npiqg Nonl

Param.y,3 = [[I 2 3 4 5 6][7 3 9][10][11 12 13]

Npiq Nonl
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XS
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Train weights +
architectural choice of
non-linearity + hidden
dimension (2 or 3,
binary choice )

Optimal circuit depth

Success probability a
bit smaller

But overall successful
optimization



Any idea about the structure of C



Fourier Analysis

2 floy, .. GN)®G

o Effective Ising model with multi-
variable all-to-all interactions

* Fourier coefficients are given bi
L
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Fourier Analysis

* Data suggest that the objective
functions C are predominantly
local

* MNIST C is nearly single-body,
which Is easier to optimize even by
a product state

* No tractabillity issues arising from
vanishing gradients induced by C

- N=6
N =10
—r— N =14
N =18




“Augmented” model selection

03 Val.

 Augmented model encapsulating the

Ns = 1

035_ s = al.
parameters, hyperparameters and N e
architecture of a neural network which 0.30- P G

we jointly optimize on a training

dataset. How to choose model using a AO'25
validation set? = 020
0.15
 [he data suggests that these
augmented models behave like 010"
traditional statistical models which 0.05 -
follow the usual bias-variance | | | | | |
decomposition. 0 10 20 30 40 50

training iteration



“Augmented” model selection

035 | | A
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Val.
Val.
Val.
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+4444

Validation Error 0.30-
0.25 -
S = 0.20-
: 5
W
reasing Bias Increasing Variance 0.15-
D — —
Training 0.10 -
Error
0.05 1
0

https://medium.com/@rahuljain13101999/why-early-stopping-works-as-regularization-b9f0a6c¢c2772

training iteration




Simations based on Matrix product states

Final quantum state sampling

20%

e s e LR S L £ Activations BN Sigmoid activation
.:'.:-w::;.E:_-.:.mrl-%w_;\ﬁu\\\nWlm-’-\hiu . B ArcTan activation

15% A

> .
9] P
, Cogd i n
8X8 +1 + 1 = 66 qubits 3 | =
o : Cross Entropy Loss =
S 3 S 10% 1
| . . g 0.7 - Full sample )
Weights, bias, activation - : 5 2
(7)) ’
[ [ m E
function choice = %f T —— Fullsample 1. o
------ Best 10%
------ Best 5% 01, . . ]
0514 ... Best 1% 0 500 1000 1500
: ; , ' 0% - T
0 500 1000 1500 70% 75% 80% 85% 90% 95% 100%
Ilteration Test-set accuracy

Figure 2: Left. Optimization of a quantum circuit with depth P = 2, trained to learn BNN architectures for the
8 x 8 MNIST (0, 1 binary classification). The solid black line shows the test set classification accuracy, averaged
over the whole sample at each iteration, with symbols highlighting iterations with an accepted QN-SPSA parameter
update. The dotted lines represent the same quantity, averaged over the 1,5, 10% best shots at each iteration. In
the inset, we plot the average (whole-sample) binary cross-entropy loss function £(@). Right. Sampling of the final
state |¢(0*)). Samples are divided depending on the outcome of the qubit encoding the hyperparameter, i.e. the
activation function of the classifier. An histogram is constructed showing the test accuracy of the sampled BNNs.



Conclusions

 We have introduced HyperNetworks which train binary neural networks in quantum
superposition

* One optimization loop trains parameters, hyperparameters, and architectural choices in binary
neural networks

» Speculation: “qguantum computers are currently reaching the ability to vastly outperform
supercomputers' energy efficiency by many orders of magnitude over classical computers.”

e Horrible encoding. Z—> X, Y,Z, X X, XR® Y, X R Z,1 K Z, etc

* Binary neural networks save energy at inference time. We are suggesting is that we can
potentially save energy In training, architectural design and hyperparameter search.

* Neural networks perform best when they are large— we are exploring better encoding of the
problem.

» \ast arrays of problems in ML that can be recast as a black box optimization



Artificial neural networks

Artiticial neural networks are a family of models
used to approximate functions that can depend on a large number of inputs.
Artiticial neural networks are generally presented as systems of
interconnected "neurons” which exchange messages between each other

Hidd i
ldaen = sets of adaptive
Input . weights, i.e. numerical parameters
Output that are tuned by a learning

algorithm
i SC It

Q/ Wikipedia



A Nneuron: %

+1 ()(1)
X1 1
Sigmoid neuron < - he (z) = | 1 o_pOTa
b =1 X3

O = ((9() (91 (92 (93) f
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— (1 L1 L9 373)

Perceptron:
B — 00

Where © ‘s are the parameters you fiddle with



Deep learning

@ Giuseppe Carleo @gppcarleo - Nov 16

Looks like Galactica knows how to use NetKet to train a neural quantum
state, that's good news :) @NetKetOrg galactica.org/?prompt=how+do...

<

Question: How do | train a neural-network quantum state? x not verified

Answer: This tutorial will show you how to train a neural-network quantum state (NQS) using NetKet.

We will use a simple example of a 1D transverse-field Ising model (TFIM) with open boundary conditions.

import netket as nk
import numpy as np
import jax

import jax.numpy as jnp

1. Defining the model

The first step is to define the model.

In NetKet, a model is a class that defines the following methods:

e init_parameters(): initializes the parameters of the model.
e apply(parameters, o):applies the model to a batch of configurations o.
e log_value(parameters, o): computes the log-value of the model for a batch of configurations o.




