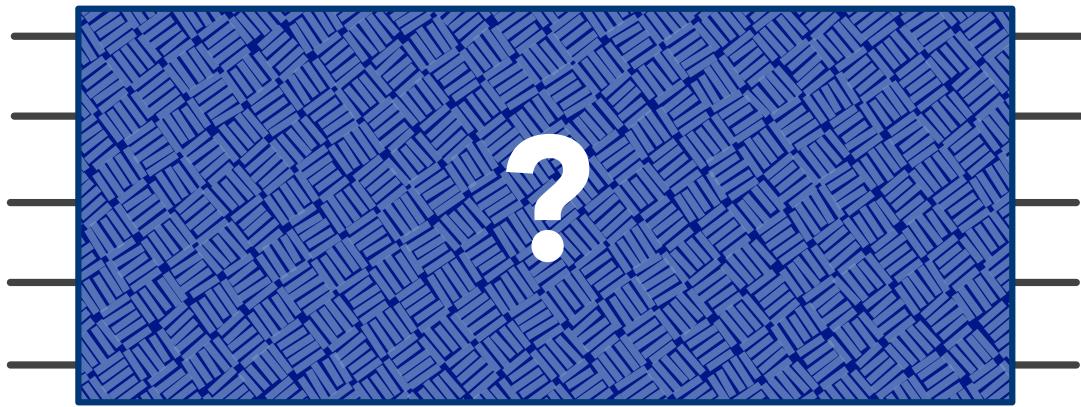
Learning to predict arbitrary quantum processes

Presenter: Hsin-Yuan Huang (Robert) Joint work with Sitan Chen and John Preskill

Motivation

- We have seen substantial recent progress on efficiently learning to predict quantum states.
- Are there efficient algorithms for learning to predict quantum circuits / processes?

A high-complexity quantum process



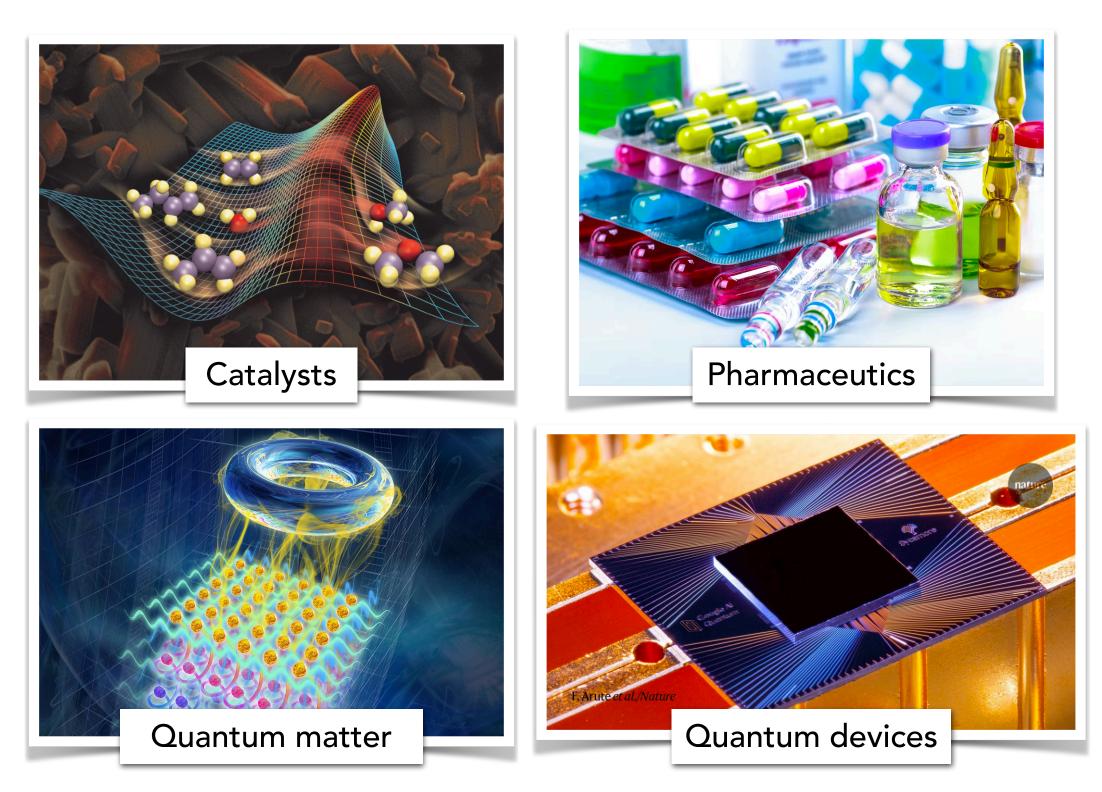


Image credits: (Top left) <u>https://www.energy.gov/science/doe-explainscatalysts</u> (Top right) <u>https://theconversation.com/as-pharmaceutical-use-continues-to-rise-side-effects-are-becoming-a-costly-health-issue-105494</u> (Bottom left) <u>https://news.mit.edu/2019/ultra-quantum-matter-uqm-research-given-8m-boost-0529</u> (Bottom right) <u>https://www.nature.com/articles/d41586-019-03213-z</u>

 In this work, we focus on training an ML model to learn and predict $\rho, O \mapsto f_{\mathscr{C}}(\rho, O) = \operatorname{Tr}(O\mathscr{E}(\rho)),$

- This includes any function computable by a quantum computer (in exponential time).
- where ρ is an input quantum state, \mathscr{E} is an (unknown) CPTP map, and O is an observable.

 In this work, we focus on training an ML model to learn and predict $\rho, O \mapsto f_{\mathscr{E}}(\rho, O) = \operatorname{Tr}(O\mathscr{E}(\rho)),$

• This includes any function computable by a quantum computer (in exponential time).

Example 1

Predicting outcomes of physical experiments

- ρ : initial state given by classical input x
- \mathscr{C} : the physical process in the experiment
- O : what the scientist measure

where ρ is an input quantum state, \mathscr{E} is an (unknown) CPTP map, and O is an observable.

In this work, we focus on training an ML model to learn and predict $\rho, O \mapsto f_{\mathscr{E}}(\rho, O) = \operatorname{Tr}(O\mathscr{E}(\rho)),$

• This includes any function computable by a quantum computer (in exponential time).

Example 1

Predicting outcomes of physical experiments

- ρ : initial state given by classical input x
- \mathscr{C} : the physical process in the experiment
- *O* : what the scientist measure

- ρ : input state encoding classical input x
- \mathscr{C} : the quantum neural network to learn
- *O* : a single fixed observable

where ρ is an input quantum state, \mathscr{E} is an (unknown) CPTP map, and O is an observable.

Example 2

Training quantum neural networks

• In this work, we focus on training an ML model to learn and predict $\rho, O \mapsto f_{\mathscr{E}}(\rho, O) = \operatorname{Tr}(O\mathscr{E}(\rho)),$

• This includes any function computable by a quantum computer (in exponential time).

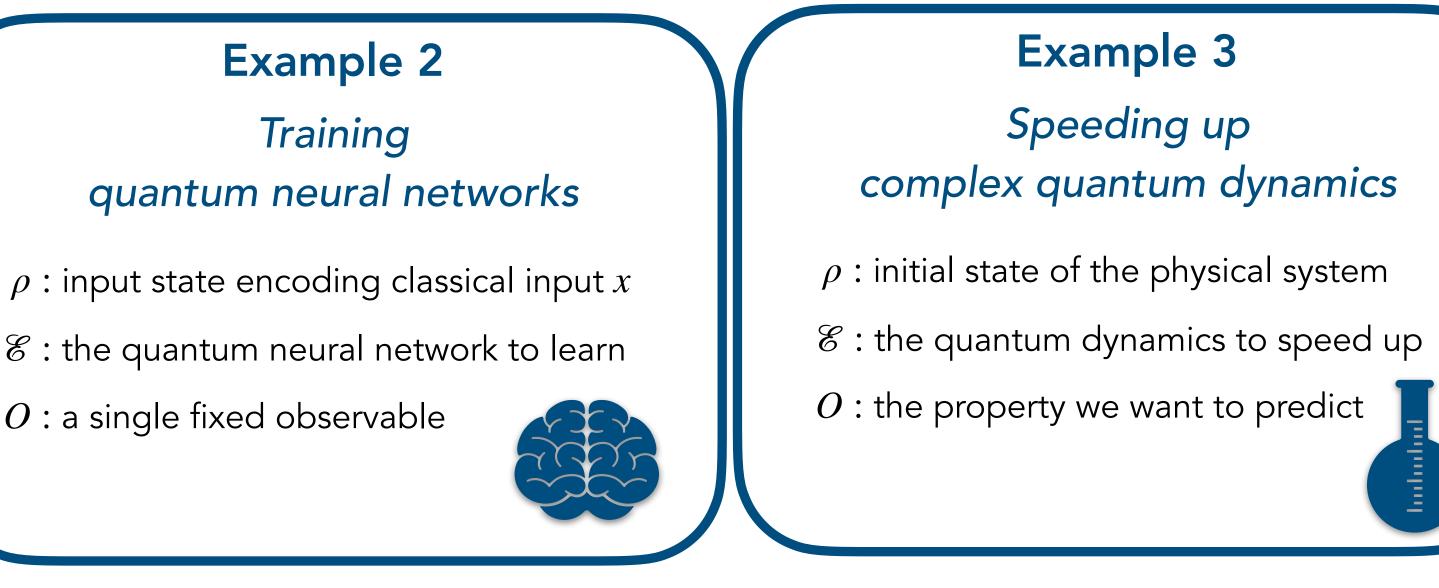
Example 1

Predicting outcomes of physical experiments

- ρ : initial state given by classical input x
- \mathscr{C} : the physical process in the experiment
- *O* : what the scientist measure

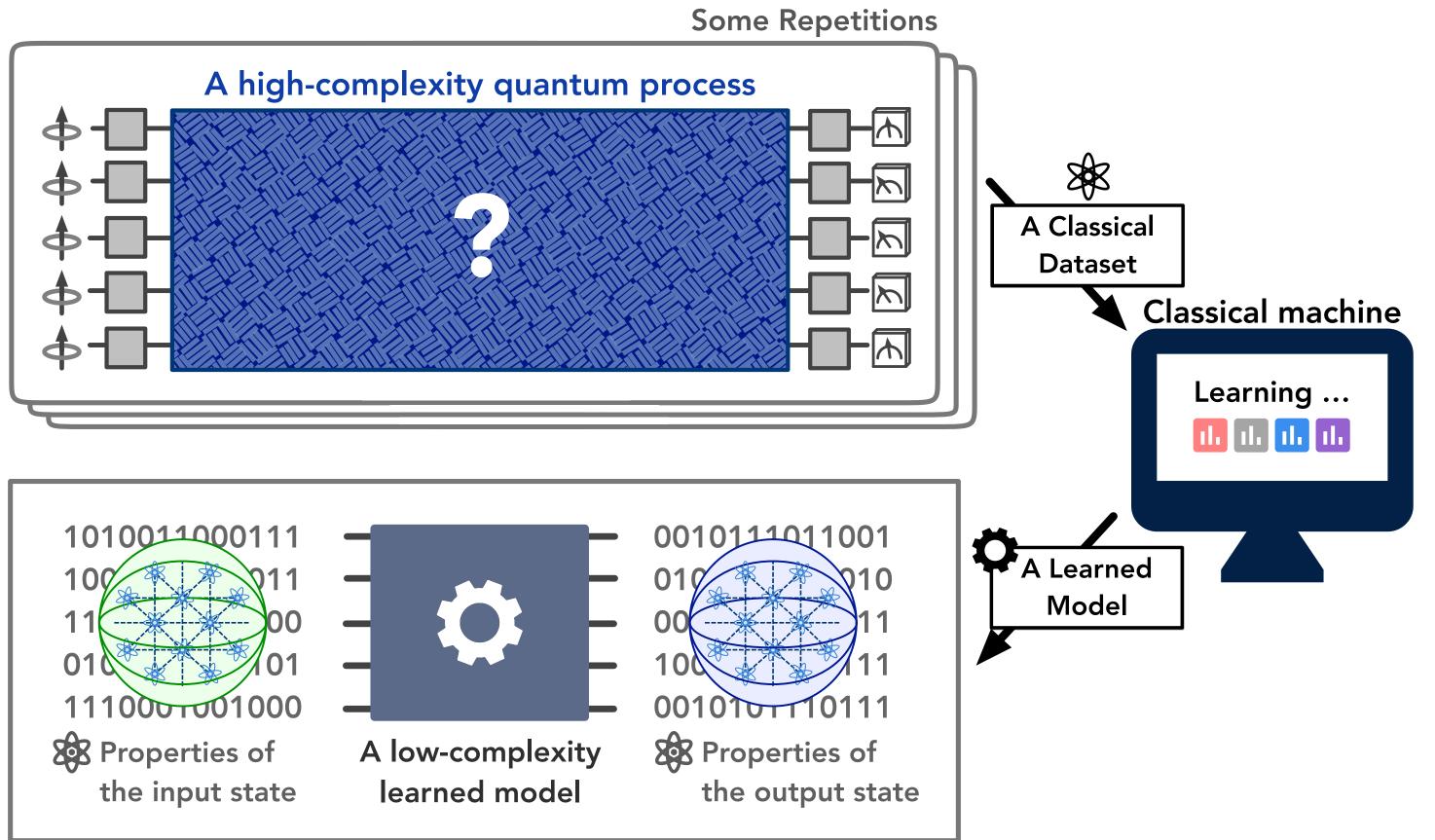
- O : a single fixed observable

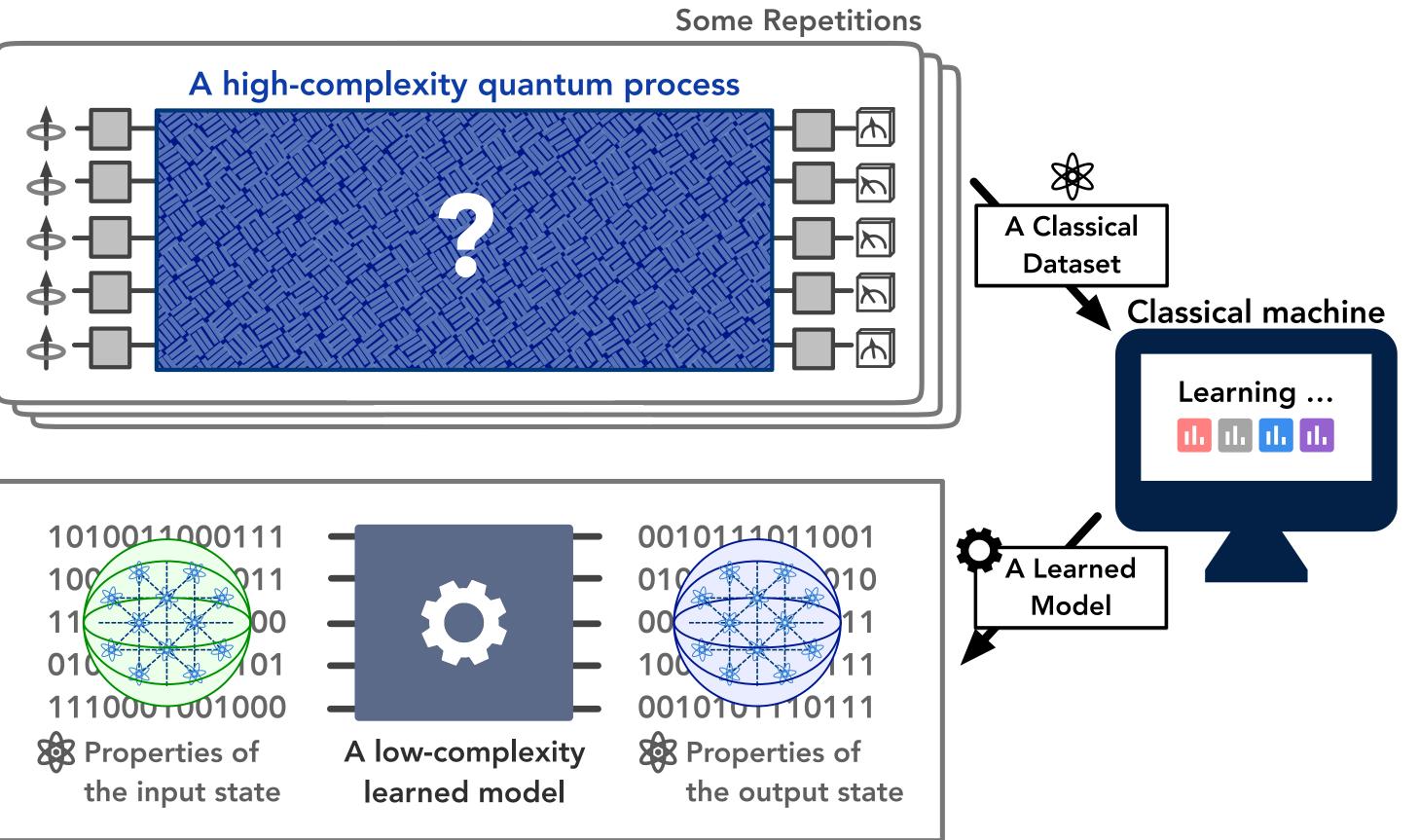
where ρ is an input quantum state, \mathscr{E} is an (unknown) CPTP map, and O is an observable.



The goal of this work

Given an *n*-qubit CPTP map \mathscr{E} that represents a high-complexity quantum process





Overview

- A classical version of the quantum problem
- A restricted version of the quantum problem
- Generalization to the original quantum problem

Overview

- A classical version of the quantum problem
- A restricted version of the quantum problem
- Generalization to the original quantum problem

A Classical Problem

- Given an unknown classical Boolean circuit C mapping n bits to n bits.
- The input is now an *n*-bit string $x \in \{-1,1\}^n$.
- The 1st output bit of C for input x is equal to $f_C(x) = \text{Tr}(Z_1C(|x||x|))$.



Worst-case hardness

- The function f_C is equiv. to an exponentially long vector $\{-1,1\}^{2^n}$ with **no structure**.
- To learn a model h(x), such that h(x)we must query $f_C(x)$ for all input x. Query complexity: $\Theta(2^n)$.

$$(x) - f_C(x) \Big|^2 < 0.5, \forall x \in \{-1, 1\}^n$$
,
Overy complexity: $\Theta(2^n)$

Average-case hardness

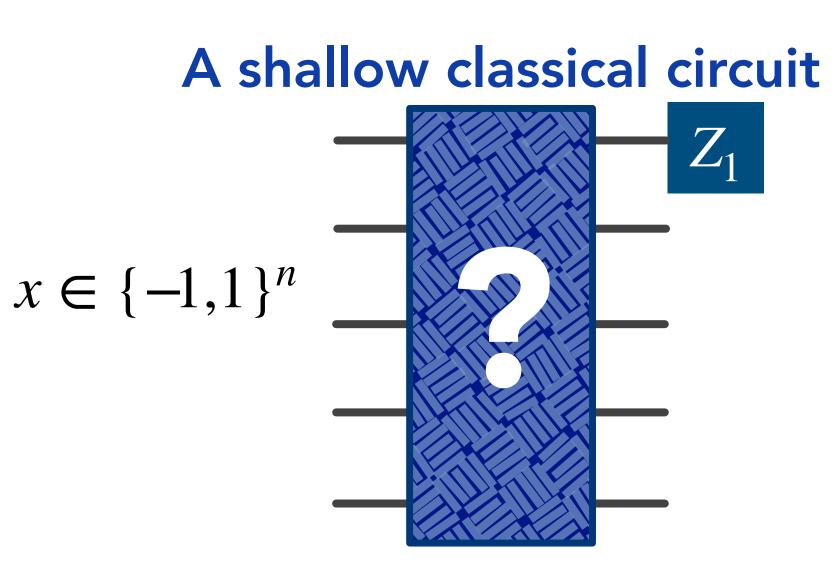
- To learn a model h(x), such that $\mathbb{E}_{x\sim}$ we must query $f_C(x)$ for at least half

The function f_C is equiv. to an exponentially long vector $\{-1,1\}^{2^n}$ with **no structure**.

$$|f \text{ of all } x. \text{ Query complexity: } \Theta(2^n)|^2 < 0.5,$$

Average-case hardness for shallow classical circuits

classical Boolean circuit is **constant-depth** (with majority gates, i.e., TC_0).



• [AGS19] showed that learning h(x), such that $\mathbb{E}_{x \sim \{-1,1\}^n} \left| h(x) - f_C(x) \right|^2 < 0.5$, is computationally hard (for both classical & quantum computers), even when the

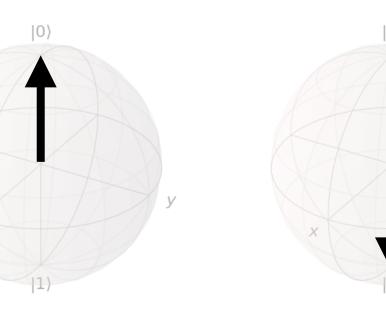
Overview

- A classical version of the quantum problem
- A restricted version of the quantum problem
- Generalization to the original quantum problem

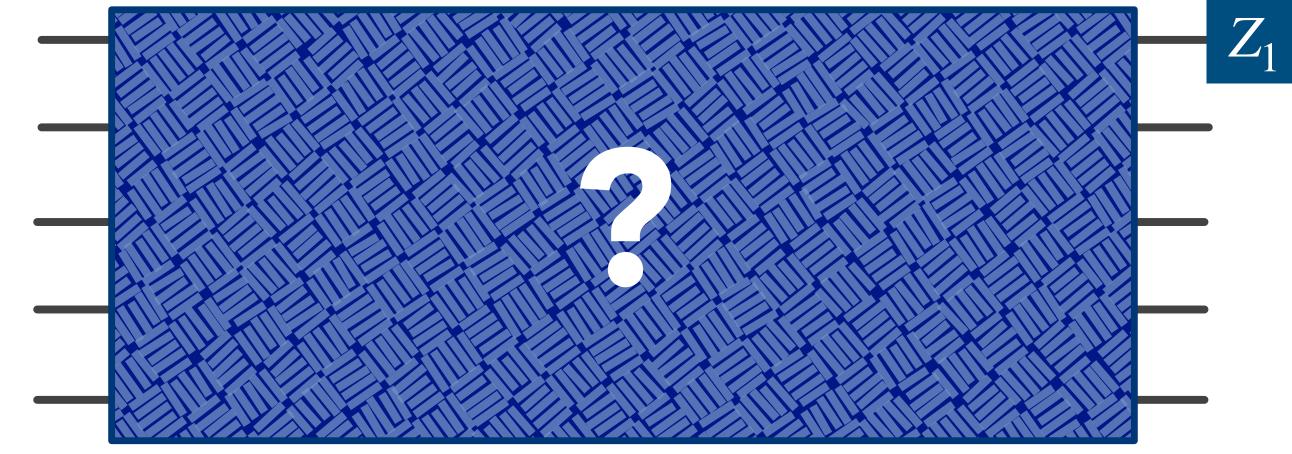
Overview

- A classical version of the quantum problem
- A restricted version of the quantum problem
- Generalization to the original quantum problem

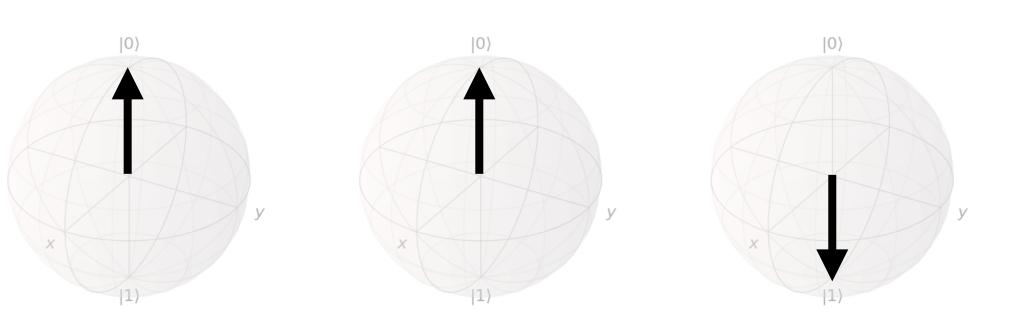
A Classical Problem



Input:



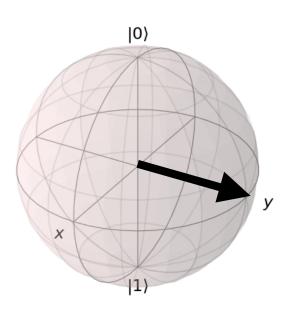
 $x \in \{-1, 1\}^n$



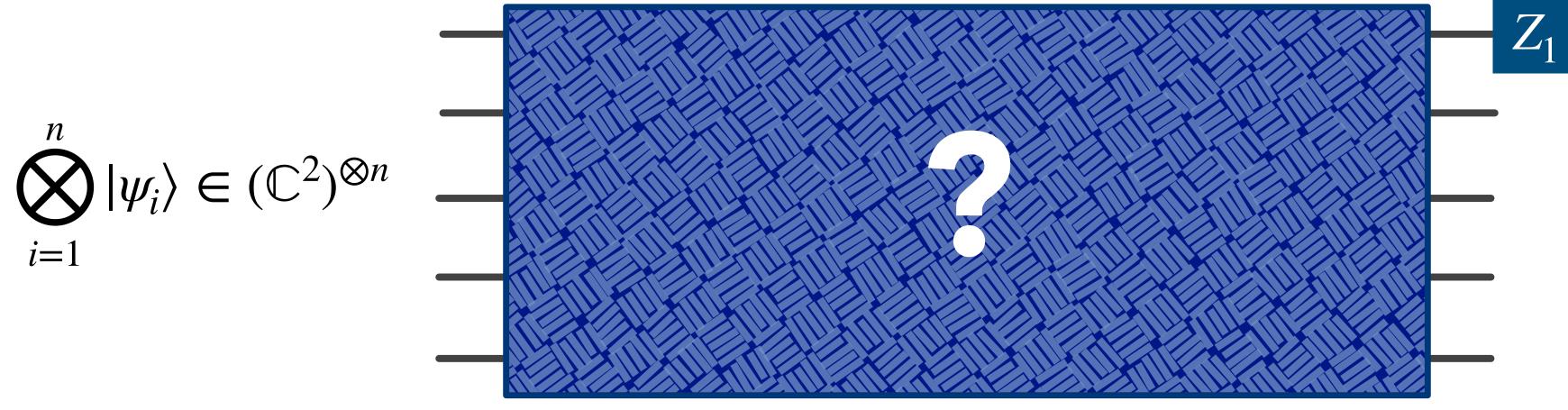
A high-complexity classical circuit

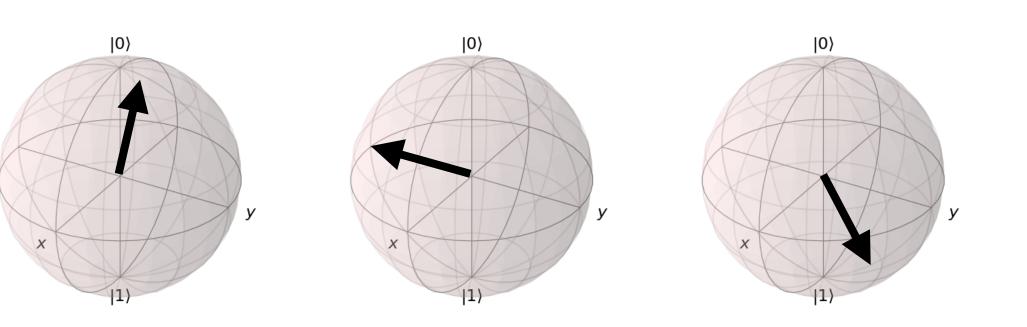
This is hard!

A Quantum Problem



i=1

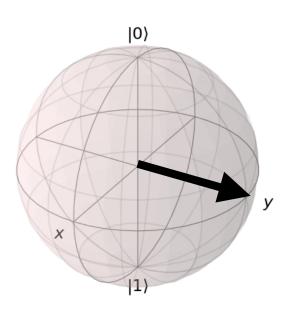




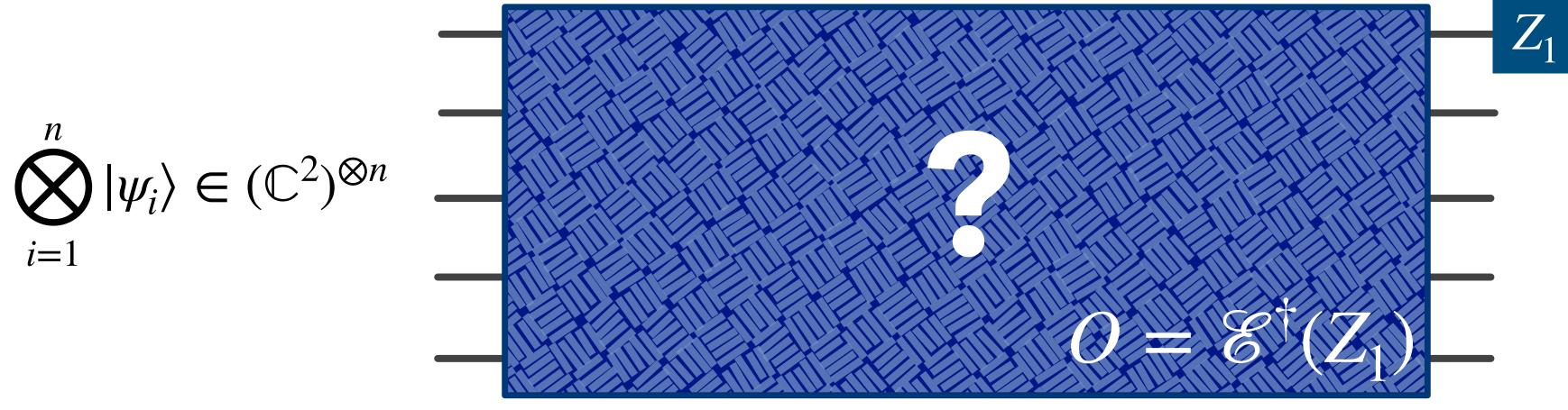
A high-complexity quantum process

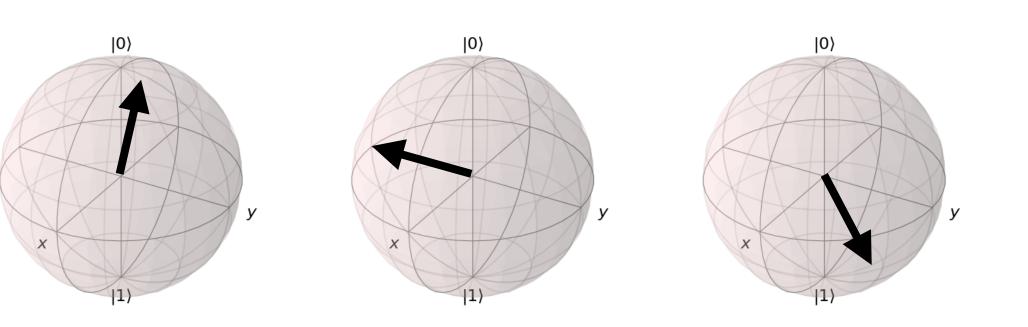
Is this harder?

A Quantum Problem



i=1

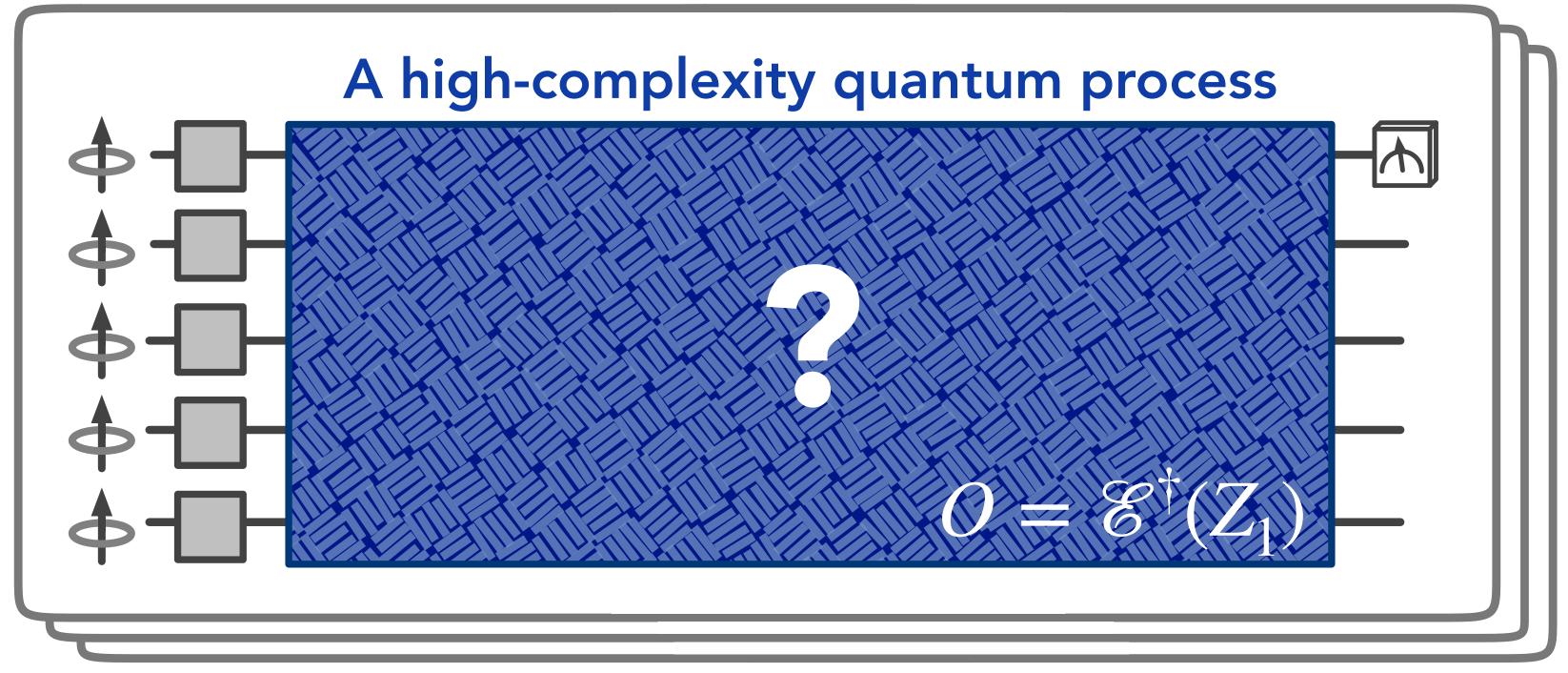




A high-complexity quantum process

Is this harder?

A Classical Dataset



Some Repetitions

Each repetition prepares a random product state, and measures the 1st qubit in the Z basis

 $|\psi_{\ell}\rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto$ for ℓ

Each repetition prepares a random product state, and measures the 1st qubit in the Z basis

A Classical Dataset

Classical Dataset about *O*

$$y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell} | O | \psi_{\ell} \rangle$$
$$= 1, \dots, N.$$

The Prediction Task

$$\begin{split} & \underbrace{ \left\{ \psi_{\ell} \right\} } \quad \textbf{Classical Dataset about } O \\ & |\psi_{\ell}\rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell}|O|\psi_{\ell}\rangle \\ & \quad \textbf{for } \ell = 1, \dots, N. \end{split}$$

Given a new state

how to predict $\langle \psi | 0 \rangle$

$$|\psi\rangle = \bigotimes_{i=1}^{n} |\psi_i\rangle \in (\mathbb{C}^2)^{\otimes n},$$

 $O|\psi\rangle$ accurately?

Worst-case hardness

- To learn a model $h(|\psi\rangle)$, such that the problem is at least as hard as the classical problem.
- Hence, the query complexity is $\Omega(2^n)$.

$$\left|h(|\psi\rangle) - \langle \psi|O|\psi\rangle\right|^2 < 0.5, \forall |\psi\rangle = \bigotimes_{i=1}^n |\psi_i\rangle,$$

Average-case hardness?

- To learn a model $h(|\psi\rangle)$, such that \mathbb{E} is the problem still exponentially ha

$$E_{|\psi\rangle=\bigotimes_{i=1}^{n}|\psi_{i}\rangle}\left|h(|\psi\rangle)-\langle\psi|O|\psi\rangle\right|^{2}<0.5,$$
ord?

Surprisingly, the answer is **no**. The problem can be done in quasi-polynomial time.

$$O = \sum_{P \in \{I, X, Y, Z\}^{\otimes n}} \alpha_P P$$
$$O^{(\text{low})} = \sum_{|P| \le k} \alpha_P P$$

Lemma (Low-weight approximation):

Low-weight approximation

$$\mathbb{E}_{|\psi\rangle=\bigotimes_{i=1}^{n}|\psi_{i}\rangle}\left|\langle\psi|O|\psi\rangle-\langle\psi|O^{(\mathrm{low})}|\psi\rangle\right|^{2}<\frac{1}{3^{k}}.$$

$$O = \sum_{P \in \{I, X, Y, Z\}^{\otimes n}} \alpha_P P$$
$$O^{(\text{low})} = \sum_{|P| \le k} \alpha_P P$$

Lemma (Low-weight approximation):

Interpretation: For most product sta

Low-weight approximation

$$\mathbb{E}_{|\psi\rangle = \bigotimes_{i=1}^{n} |\psi_i\rangle} \left| \langle \psi | O | \psi \rangle - \langle \psi | O^{(\text{low})} | \psi \rangle \right|^2 < \frac{1}{3^k}.$$

Here $|\psi\rangle = \bigotimes_{i=1}^{n} |\psi_i\rangle, \langle \psi | O | \psi \rangle \approx \langle \psi | O^{(\text{low})} | \psi \rangle.$

Low-weight approximation

$$O = \sum_{P \in \{I, X, Y, Z\}^{\otimes n}} \alpha_P P$$
$$O^{(\text{low})} = \sum_{|P| \le k} \alpha_P P$$

Lemma (Low-weight approximation):

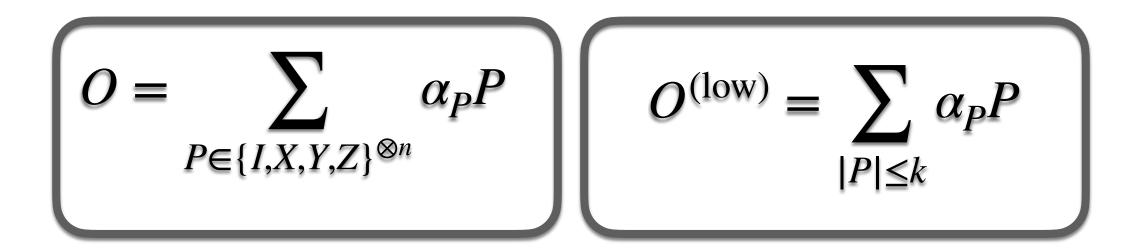
Interpretation: For most product sta

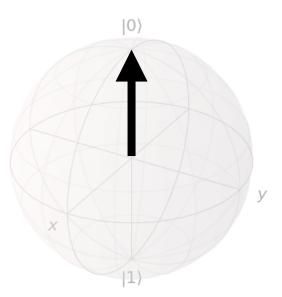
$$\mathbb{E}_{|\psi\rangle = \bigotimes_{i=1}^{n} |\psi_i\rangle} \left| \langle \psi | O | \psi \rangle - \langle \psi | O^{(\text{low})} | \psi \rangle \right|^2 < \frac{1}{3^k}.$$

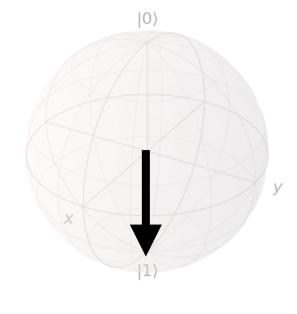
Here $|\psi\rangle = \bigotimes_{i=1}^{n} |\psi_i\rangle, \langle \psi | O | \psi \rangle \approx \langle \psi | O^{(\text{low})} | \psi \rangle.$

Low-weight approximation does not hold in the classical version of this problem

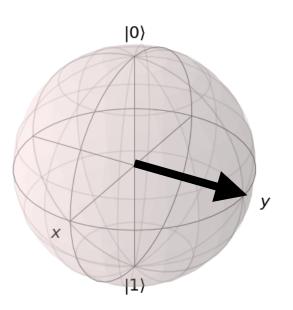
Low-weight approximation

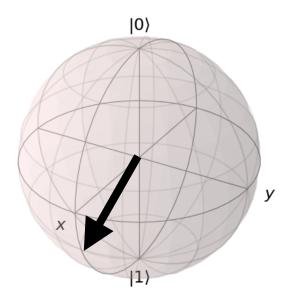




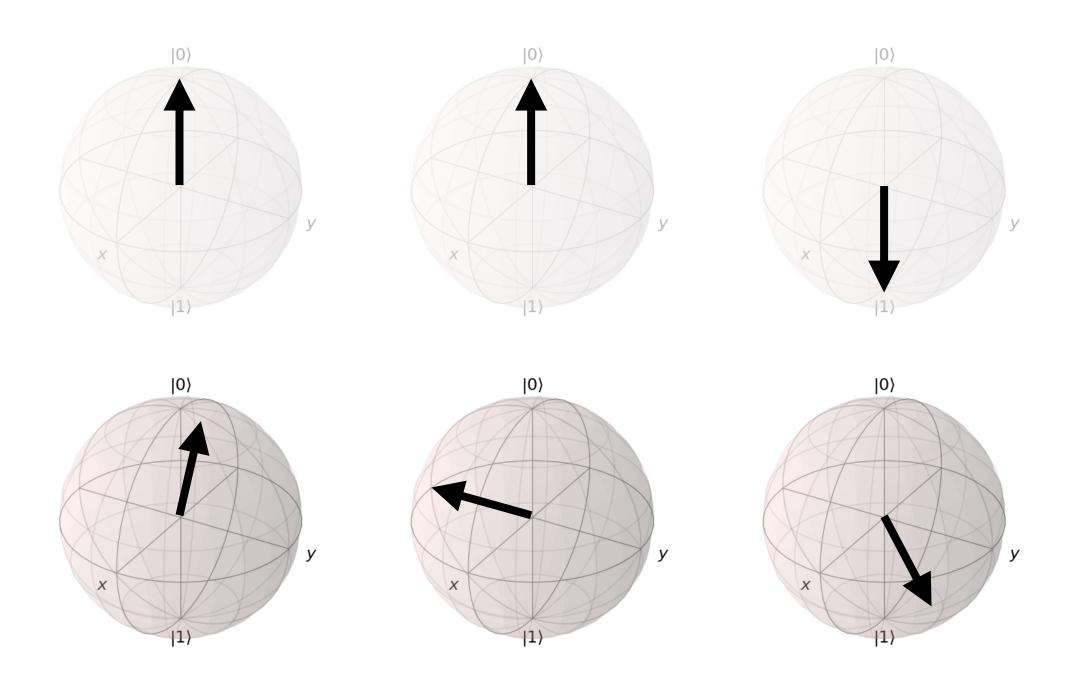


Quantum Input:





Classical inputs are perfectly distinguishable. But quantum state inputs are not.



Basic Idea for the ML model

Lemma (Fourier transform): $\alpha_P = \mathbb{E}$

$$\begin{split} & \underbrace{ \left\{ \psi_{\ell} \right\} } \quad \textbf{Classical Dataset} \\ & |\psi_{\ell} \rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i} \rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell} | O | \psi_{\ell} \rangle \\ & \quad \textbf{for } \ell = 1, \dots, N. \end{split}$$

Basic idea: Learn the low-weight observable $O^{(low)} = \sum \alpha_P P$ for a small k. $|P| \leq k$

$$\frac{3^{|P|}}{N} \sum_{\ell=1}^{N} y_{\ell} \langle \psi_{\ell} | P | \psi_{\ell} \rangle \right], \, \forall P \in \{I, X, Y, Z\}^{\otimes n}$$

Basic Idea for the ML model

Lemma

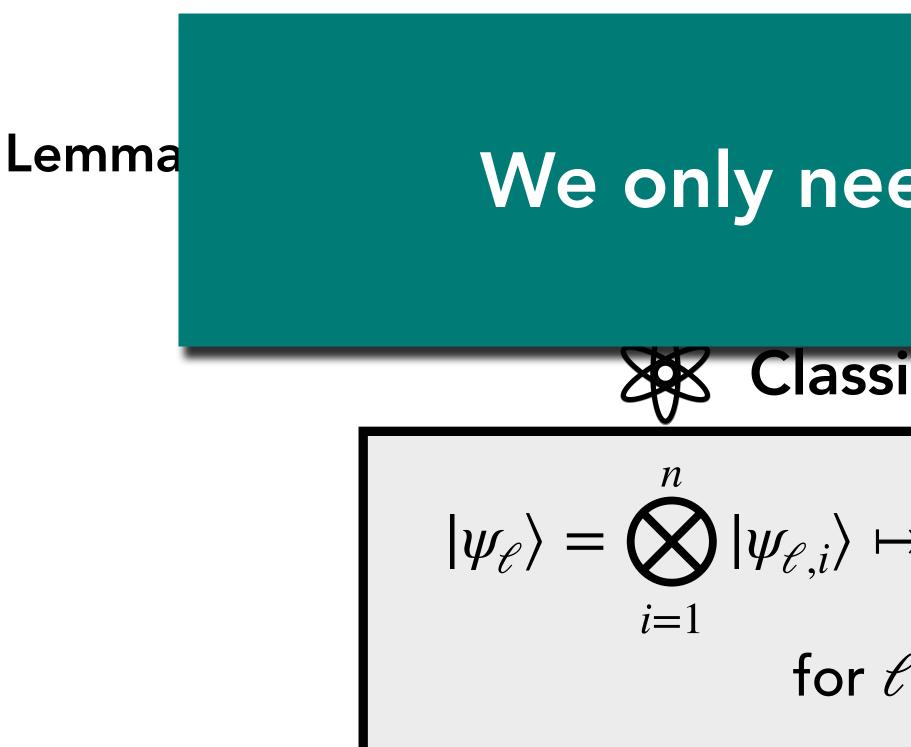
$$\begin{split} & \underbrace{|\psi_{\ell}\rangle} \in \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell}|O|\psi_{\ell}\rangle \\ & \text{for } \ell = 1, \dots, N. \end{split}$$

Basic idea: Learn the low-weight observable $O^{(\text{low})} = \sum \alpha_P P$ for a small k. $|P| \leq k$

How large should the data size N be?

 $Z\}^{\otimes n}$

Basic Idea for the ML model



Basic idea: Learn the low-weight observable $O^{(\text{low})} = \sum \alpha_P P$ for a small k. $|P| \leq k$

We only need $N = \mathcal{O}(\log n)$!

 $Z\}^{\otimes n}$

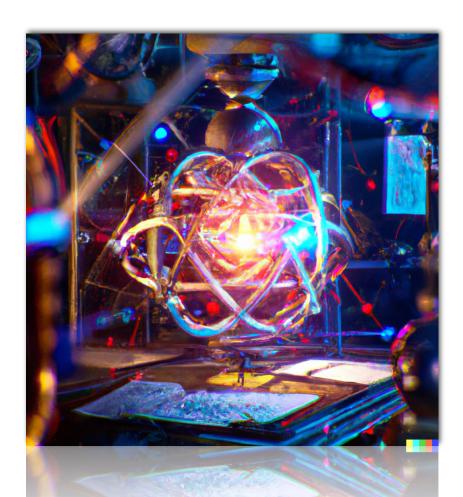
Classical Dataset

$$\rightarrow y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell} | O | \psi_{\ell} \rangle$$

$$\ell = 1, \dots, N.$$

Optimizing Quantum Hamiltonians

Presenter: Hsin-Yuan Huang (Robert) Joint work with Sitan Chen and John Preskill



An interlude

The Task

We want a gua based on the desc

Given an *n*-qubit, *k*-local Hamiltonian $H = \sum \alpha_P P$. $|P| \leq k$

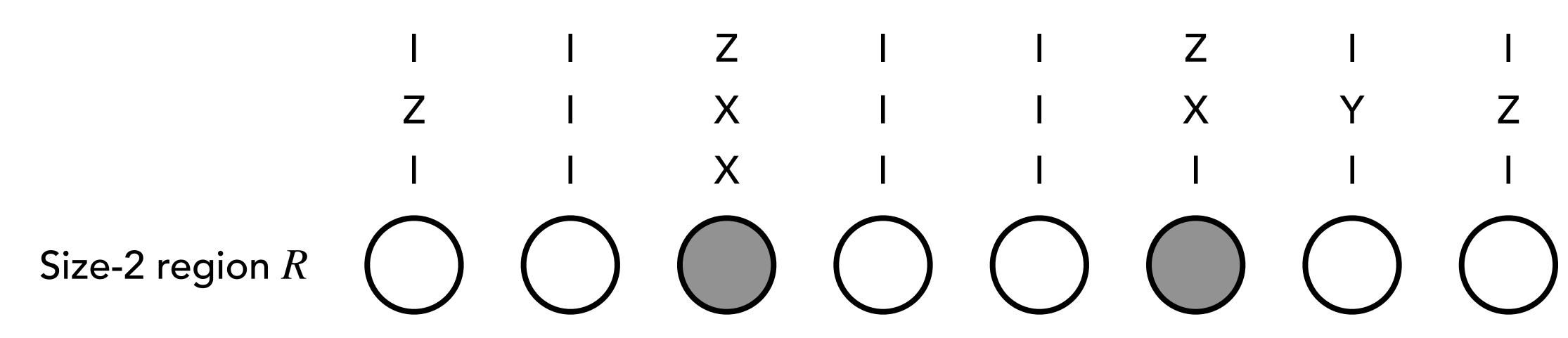
arantee on
$$\langle \psi | H | \psi \rangle$$

cription of $H = \sum_{|P| \le k} \alpha_P P$

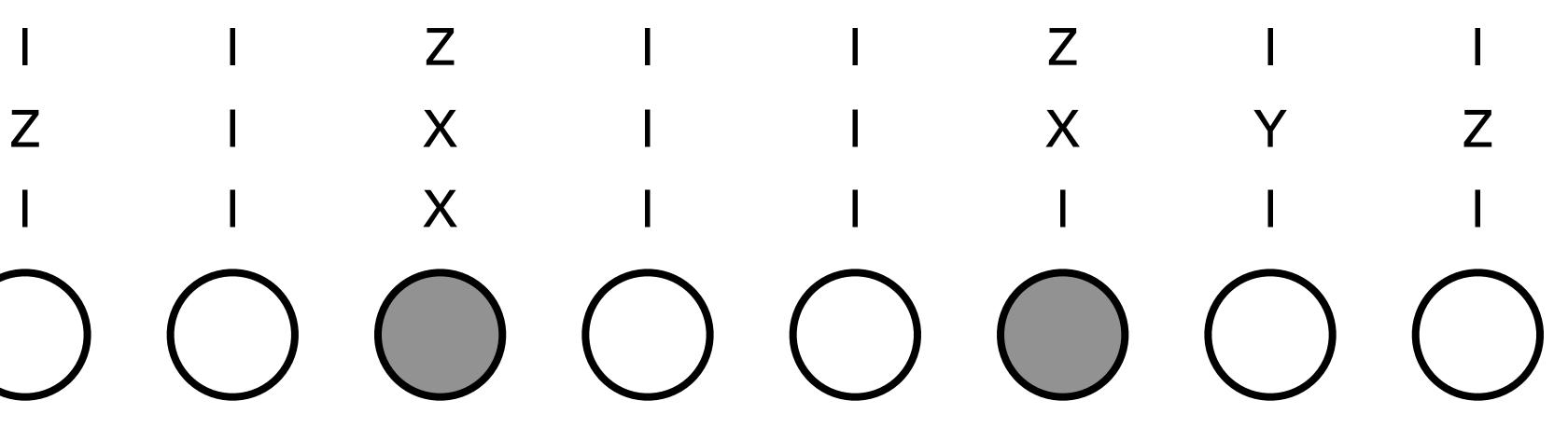
Expansion property

Given an *n*-qubit, *k*-loca

H has an expansion coefficient c_{ρ} and dimension d_{ρ} if for every size- d_{ρ} region R, the number of P with $\alpha_P \neq 0$, $\operatorname{dom}(P) \subseteq R, R \subseteq \operatorname{dom}(P)$ is at most c_{ρ} .

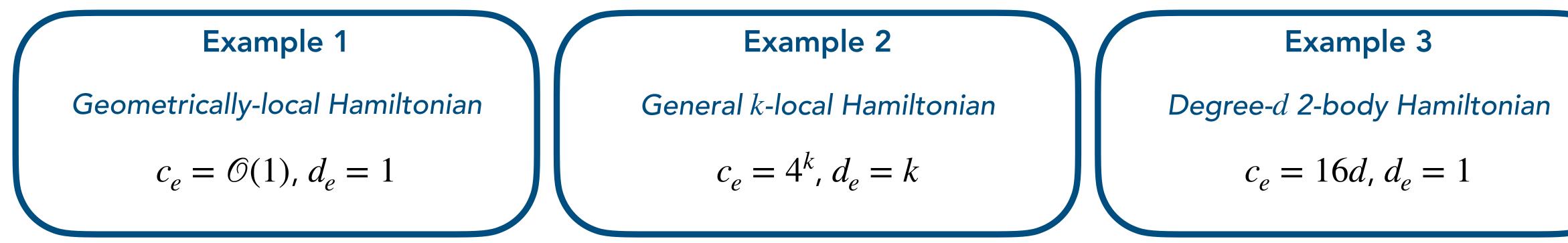


al Hamiltonian
$$H = \sum_{|P| \le k} \alpha_P P.$$



Expansion property

Given an *n*-qubit, *k*-loca



al Hamiltonian
$$H = \sum_{|P| \le k} \alpha_P P.$$

H has an expansion coefficient c_{ρ} and dimension d_{ρ} if for every size- d_{ρ} region R, the number of P with $\alpha_P \neq 0$, $\operatorname{dom}(P) \subseteq R, R \subseteq \operatorname{dom}(P)$ is at most c_{ρ} .

Theorem

Given an *n*-qubit, *k*-loca

we have an algorithm that either finds a maximizing product state $|\psi\rangle$,

 $\langle \psi | H | \psi \rangle \geq \mathbb{E}_{|\phi\rangle:\text{Haar}} \langle \phi | H | \phi$

al Hamiltonian
$$H = \sum_{|P| \le k} \alpha_P P.$$

If H has an expansion coefficient c_e and dimension d_e , then for $r = 2d_e/(d_e + 1) \in [1,2)$,

$$\phi\rangle + \frac{1}{c_e^{1/2d_e} 2^{\Theta(k\log k)}} \left(\sum_{P\neq I} |\alpha_P|^r\right)^{1/r},$$

or finds a minimizing product state $|\psi\rangle$ with a similar guarantee (+ \rightarrow -, $\geq \rightarrow \leq$).

Theorem

Given an *n*-qubit, *k*-loca

we have an algorithm that either finds a maximizing product state $|\psi\rangle$,

 $\langle \psi | H | \psi \rangle \geq \mathbb{E}_{|\phi\rangle:\text{Haar}} \langle \phi | H | \phi$

Improved over existing results

al Hamiltonian
$$H = \sum_{|P| \le k} \alpha_P P.$$

- If H has an expansion coefficient c_e and dimension d_e , then for $r = 2d_e/(d_e + 1) \in [1,2)$,

$$\phi\rangle + \frac{1}{c_e^{1/2d_e} 2^{\Theta(k\log k)}} \left(\sum_{\substack{P\neq I}} |\alpha_P|^r\right)^{1/r},$$

or finds a minimizing product state $|\psi\rangle$ with a similar guarantee (+ \rightarrow -, $\geq \rightarrow \leq$).

Given an *n*-qubit, *k*-local Hamiltonian $H = \sum \alpha_P P$.

 $|P| \leq k$

Find a product state $|\psi\rangle$ that approximately optimizes $\langle \psi | H | \psi \rangle$.

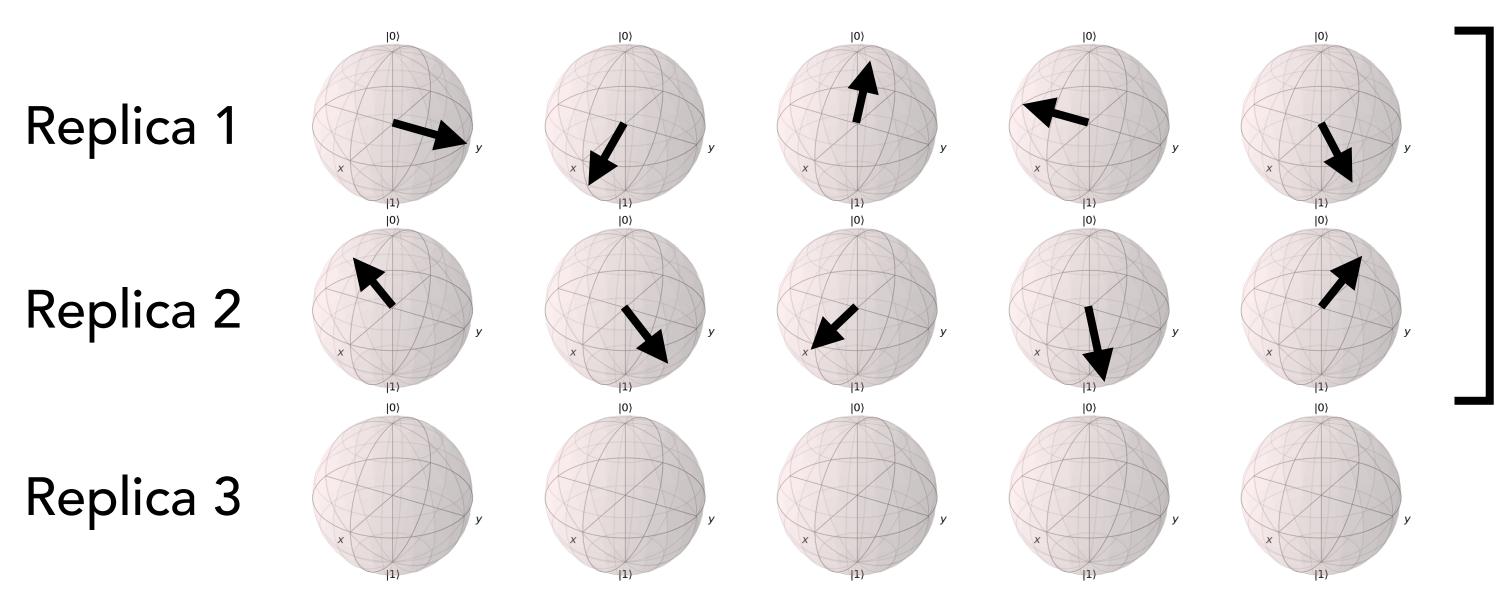
Given an *n*-qubit, *k*-loca

The Algorithm

Select a slice with the largest value of α_P

al Hamiltonian
$$H = \sum_{|P|=k} \alpha_P P.$$

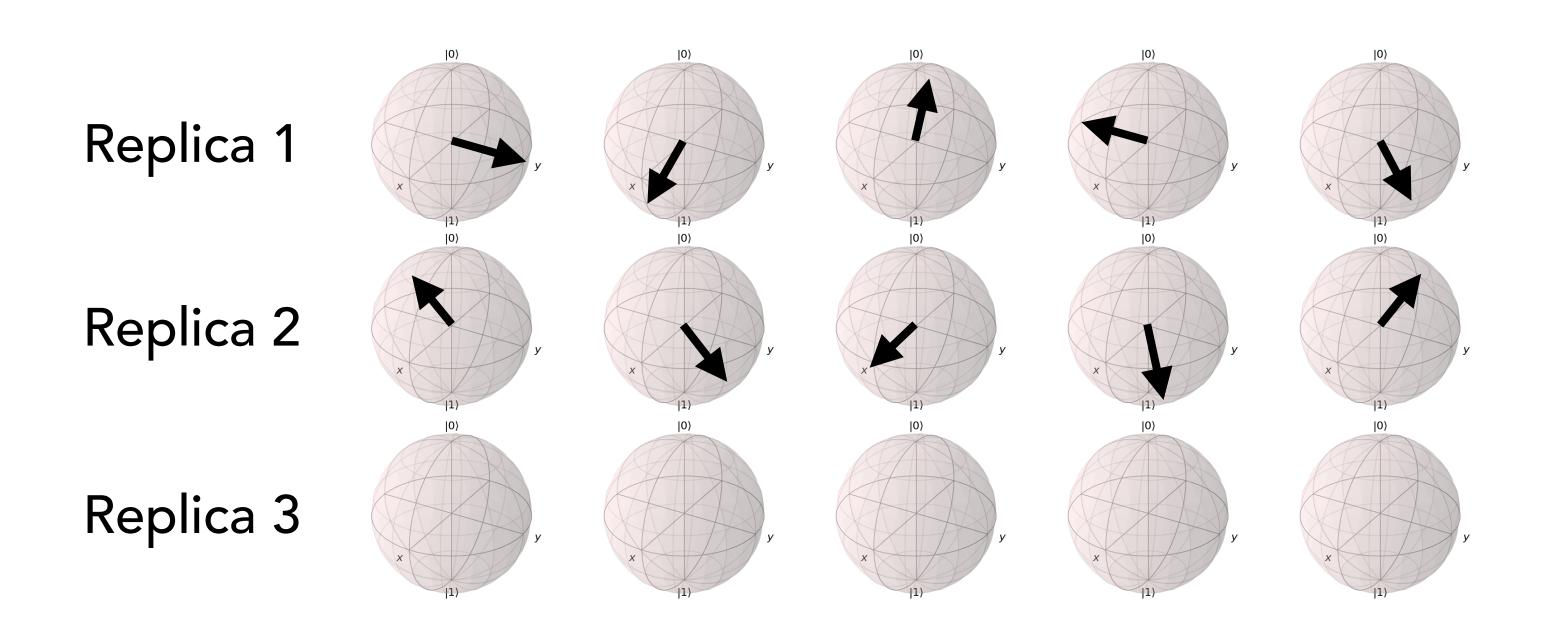
Find a product state $|\psi\rangle$ that approximately optimizes $\langle \psi | H | \psi \rangle$.



Given an *n*-qubit, *k*-local Hamiltonian $H = \sum \alpha_P P$.

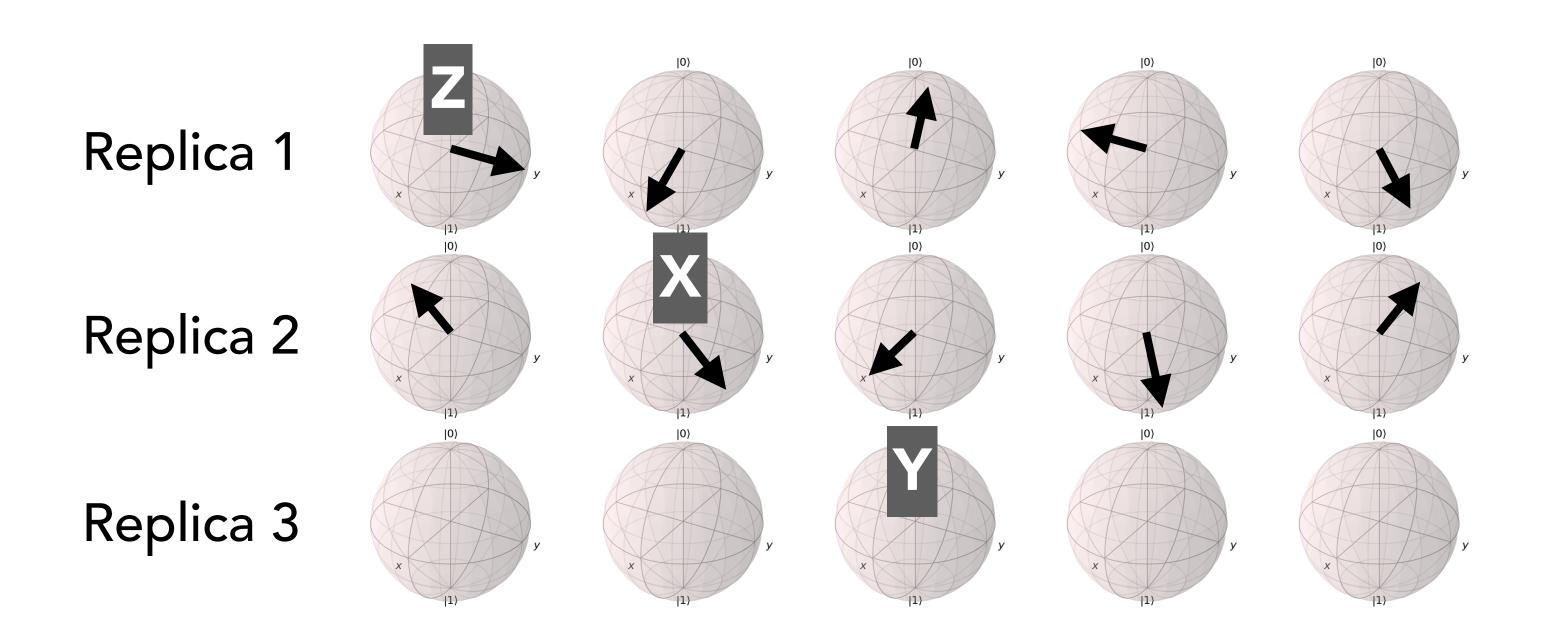
|P| = k

Random product states

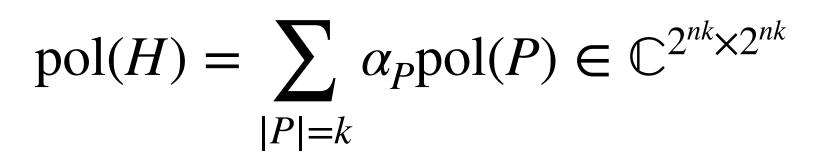


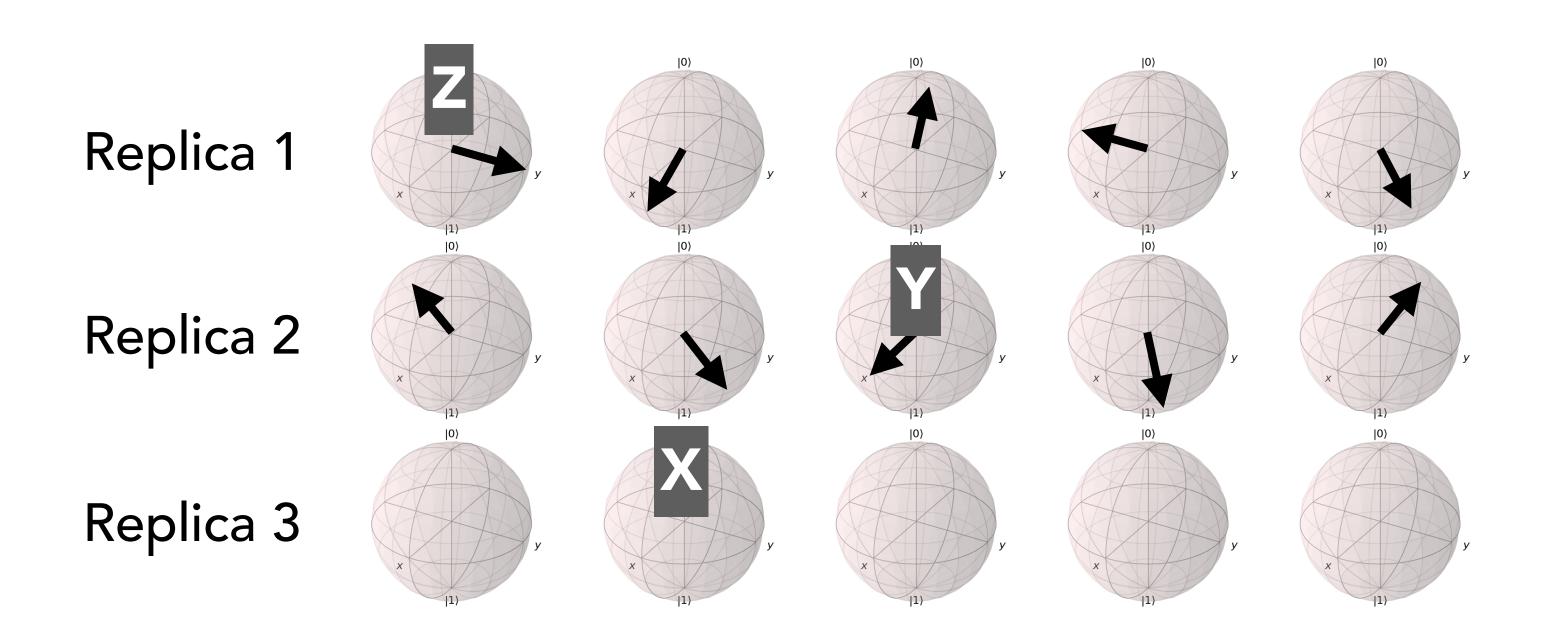
Lift n-qubit H to nk qubits

 $\operatorname{pol}(H) = \sum \alpha_P \operatorname{pol}(P) \in \mathbb{C}^{2^{nk} \times 2^{nk}}$ |P|=k

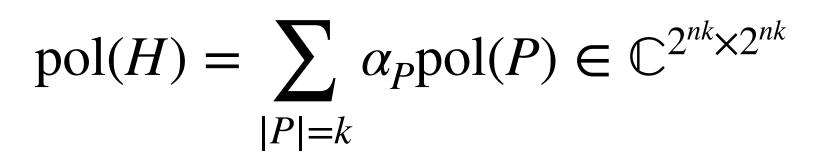


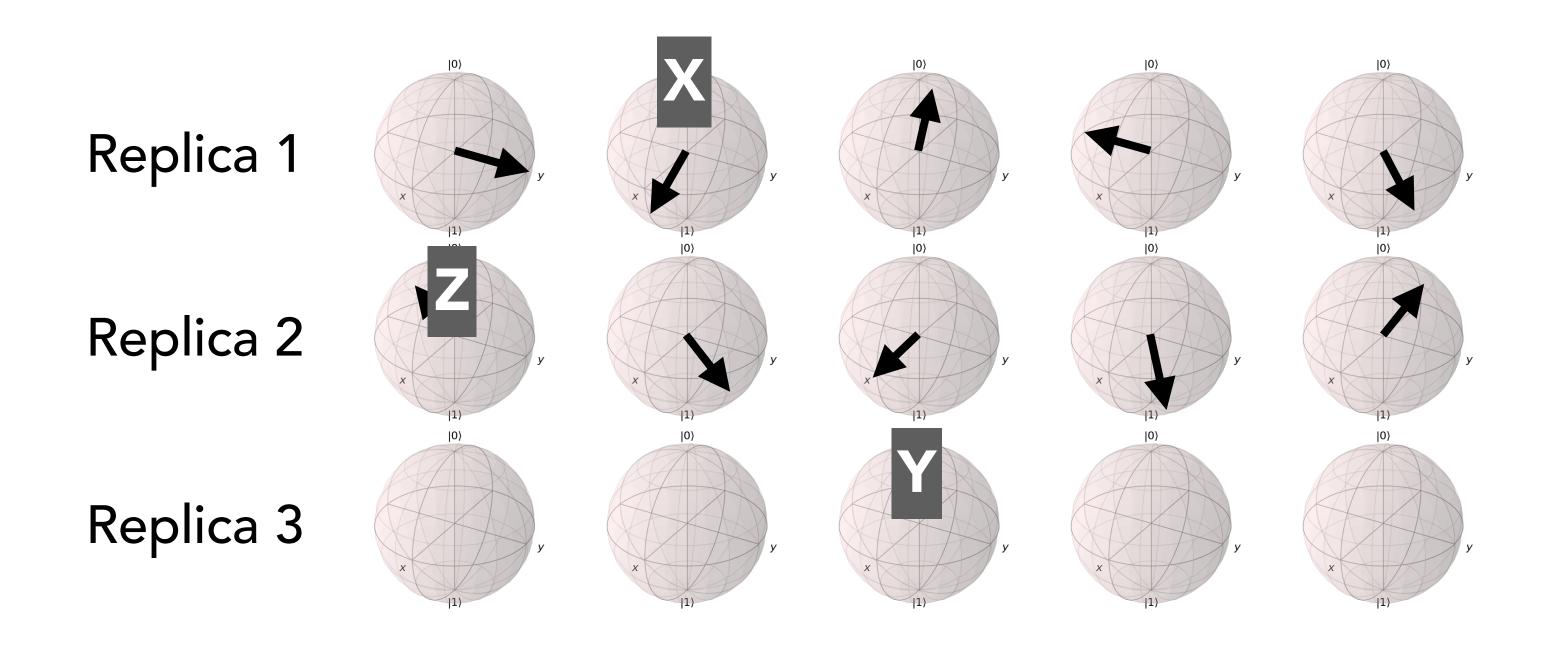
Lift *n*-qubit *H* to *nk* qubits



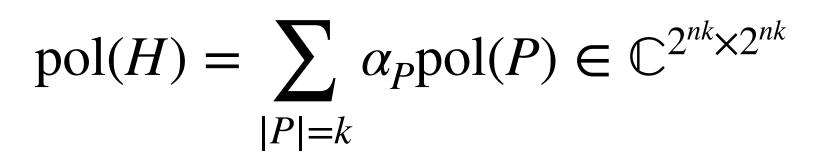


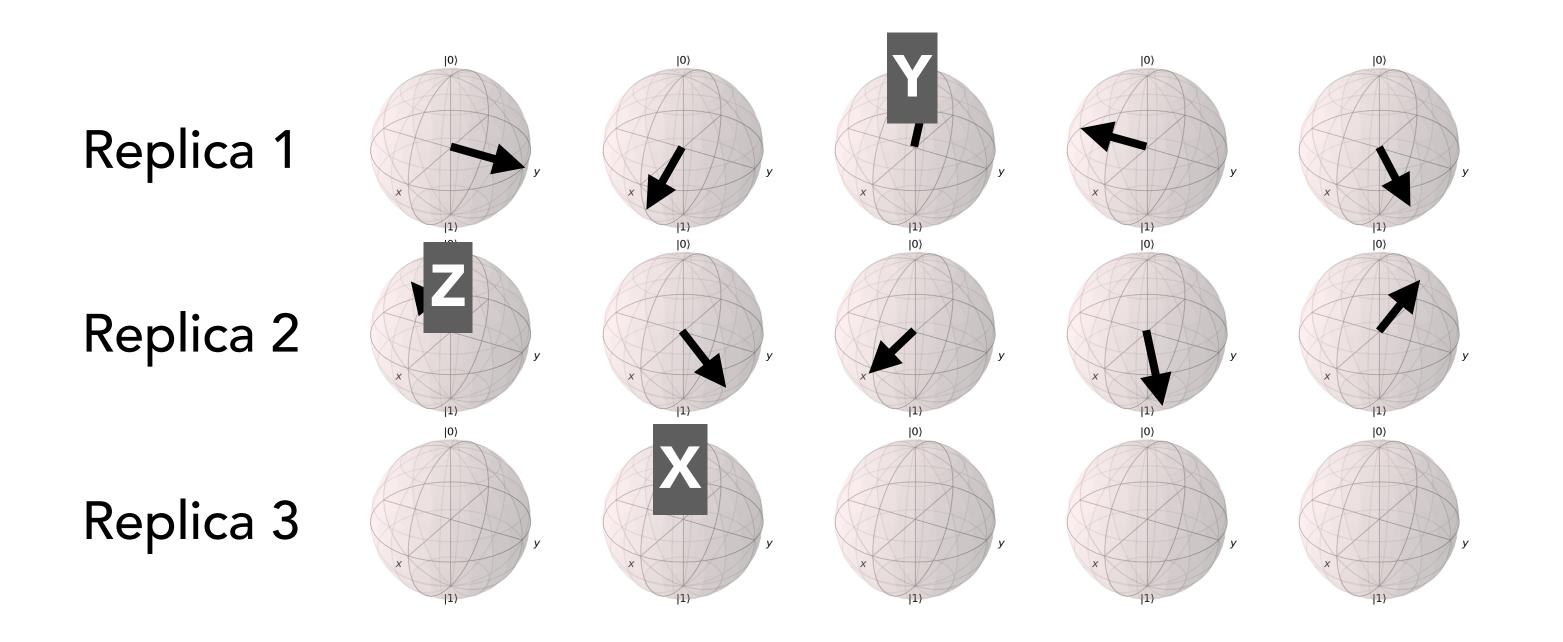
Lift *n*-qubit *H* to *nk* qubits



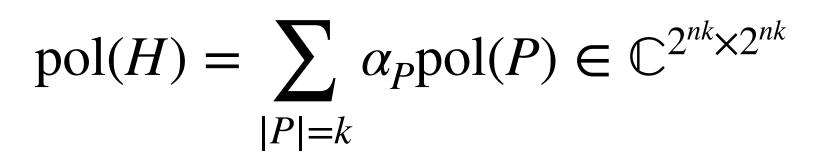


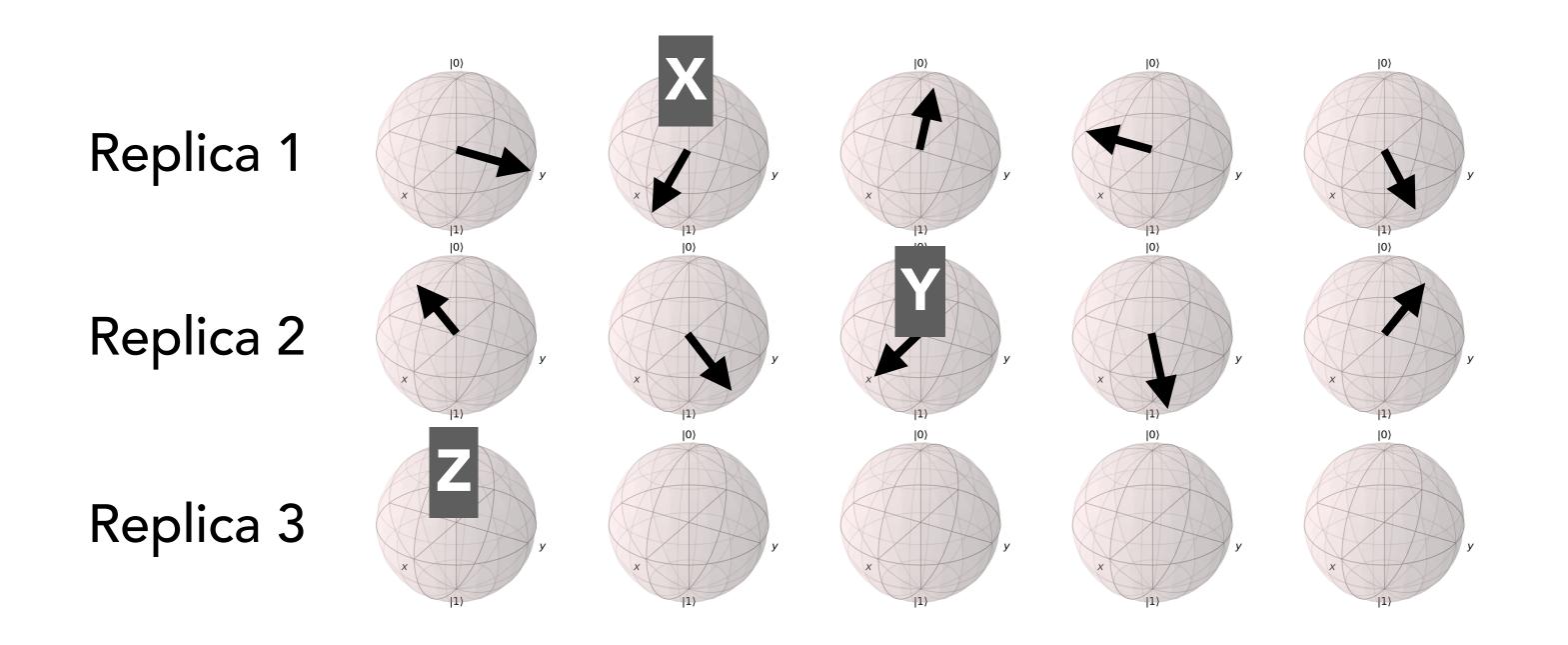
Lift *n*-qubit *H* to *nk* qubits



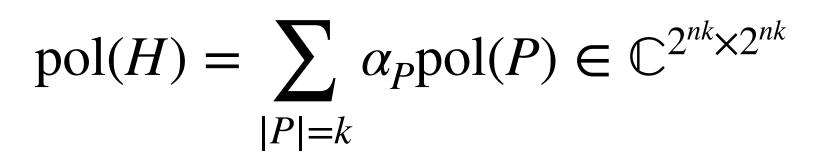


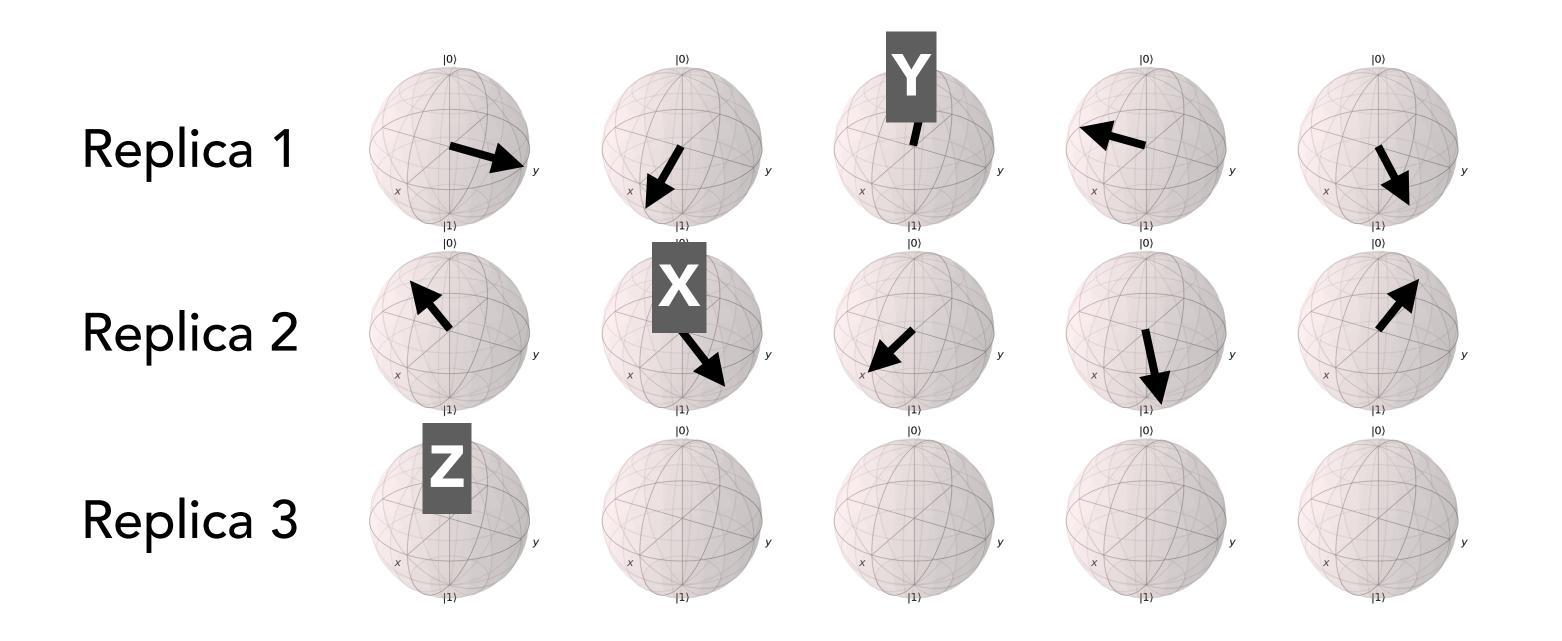
Lift *n*-qubit *H* to *nk* qubits



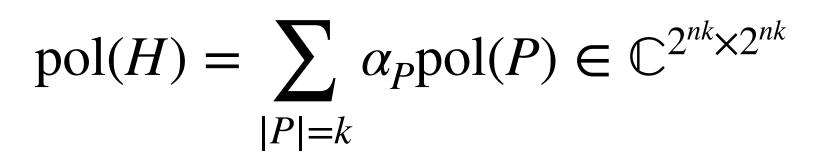


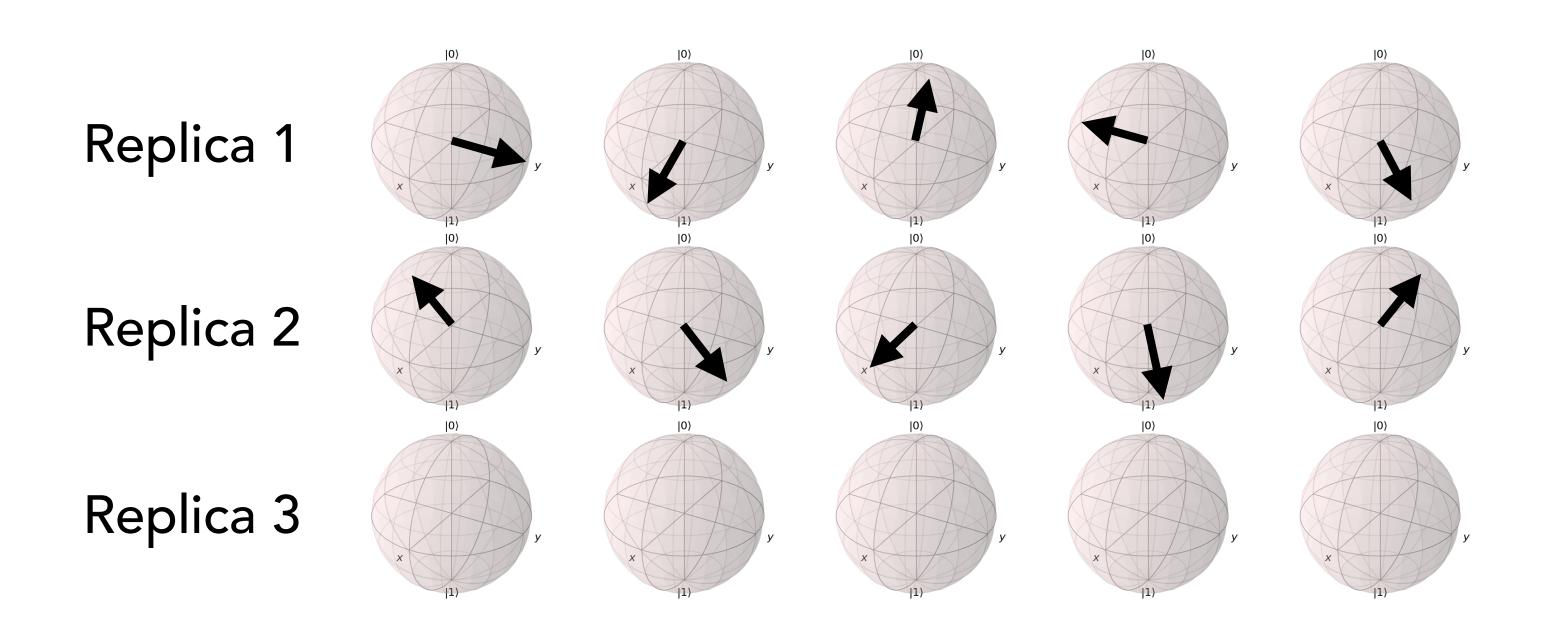
Lift *n*-qubit *H* to *nk* qubits





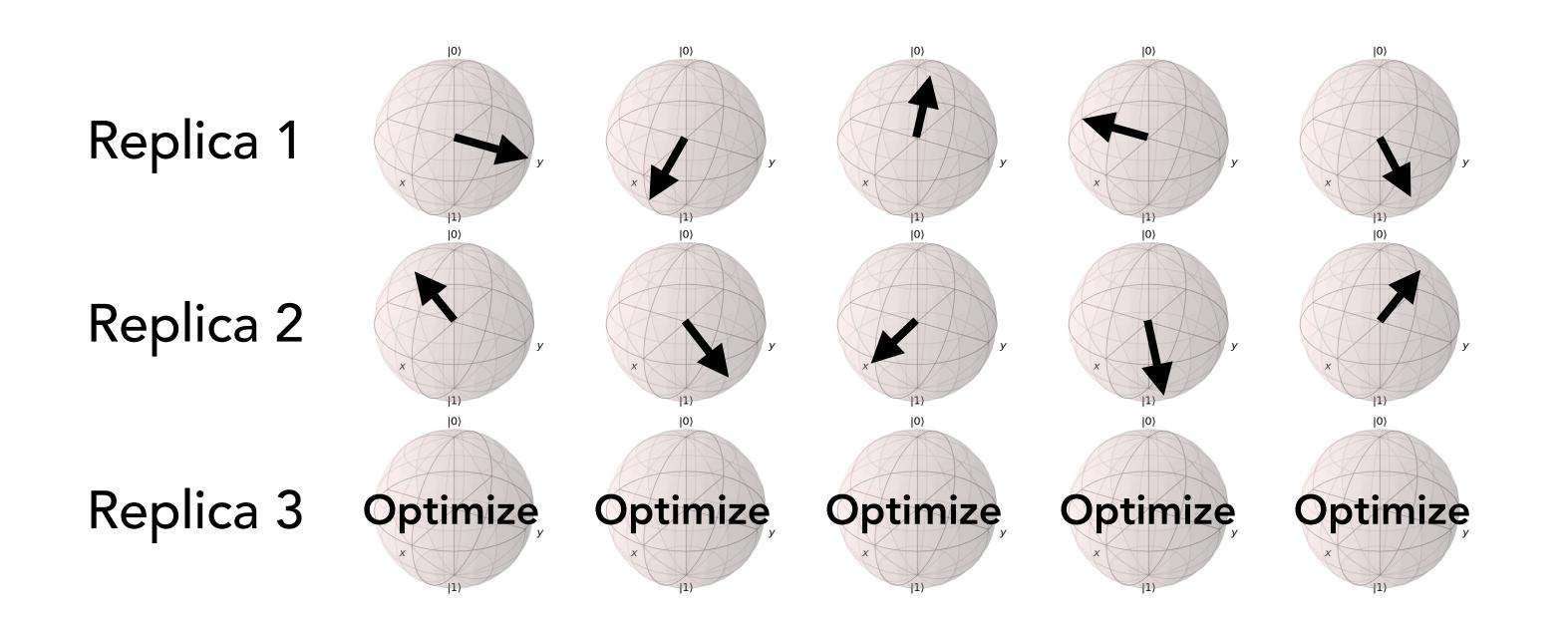
Lift *n*-qubit *H* to *nk* qubits

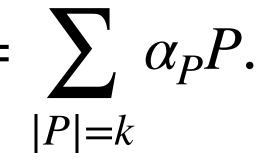


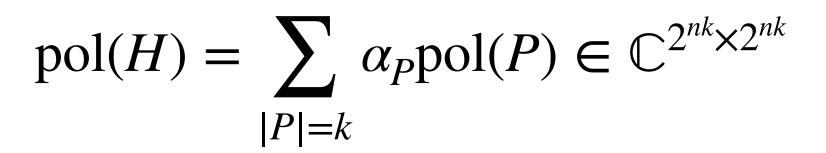


Lift n-qubit H to nk qubits

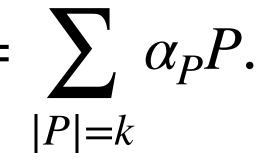
 $\operatorname{pol}(H) = \sum \alpha_P \operatorname{pol}(P) \in \mathbb{C}^{2^{nk} \times 2^{nk}}$ |P|=k





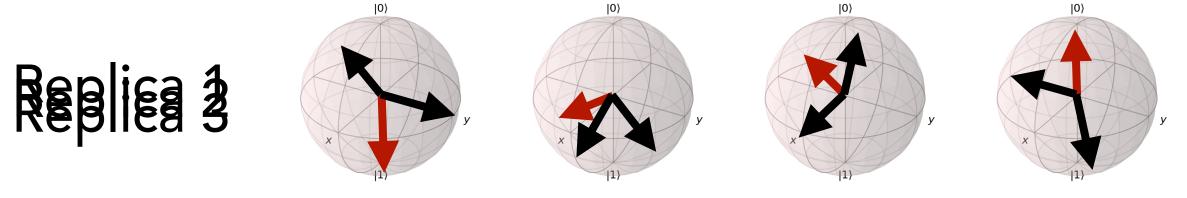


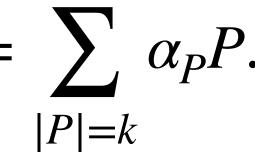


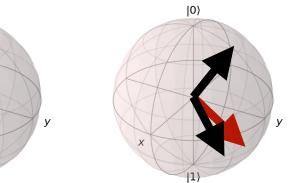


 $\operatorname{pol}(H) = \sum \alpha_P \operatorname{pol}(P) \in \mathbb{C}^{2^{nk} \times 2^{nk}}$ |P| = k

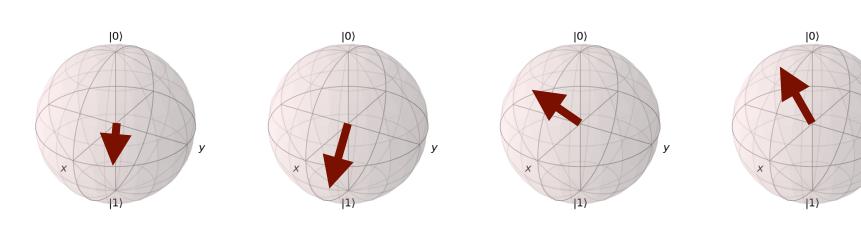
Given an *n*-qubit, *k*-local Hamiltonian $H = \sum \alpha_P P$.



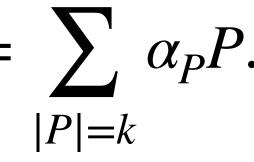


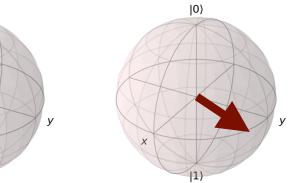


Combine the Bloch vectors using a weighted sum



Given an *n*-qubit, *k*-local Hamiltonian $H = \sum \alpha_P P$.





Combine the Bloch vectors using a weighted sum

Theorem

Given an *n*-qubit, *k*-loca

we have an algorithm that either finds a maximizing product state $|\psi\rangle$,

 $\langle \psi | H | \psi \rangle \geq \mathbb{E}_{|\phi\rangle:\text{Haar}} \langle \phi | H | \phi$

al Hamiltonian
$$H = \sum_{|P| \le k} \alpha_P P.$$

If H has an expansion coefficient c_e and dimension d_e , then for $r = 2d_e/(d_e + 1) \in [1,2)$,

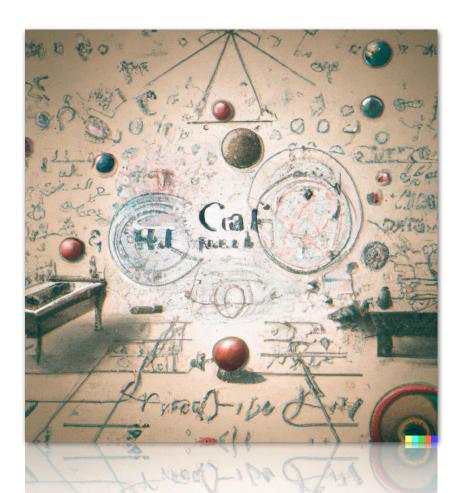
$$\phi\rangle + \frac{1}{c_e^{1/2d_e} 2^{\Theta(k\log k)}} \left(\sum_{P\neq I} |\alpha_P|^r\right)^{1/r},$$

or finds a minimizing product state $|\psi\rangle$ with a similar guarantee (+ \rightarrow -, $\geq \rightarrow \leq$).

Another interlude

Generalized Quantum Bohnenblust-Hille Inequality

Presenter: Hsin-Yuan Huang (Robert) Joint work with Sitan Chen and John Preskill



Given an observable $O = \sum \alpha_P P$ with an expansion coefficient c_e and dimension d_e . $|P| \leq k$

$$\|O\|_{\infty} \ge \frac{1}{c_e^{1/2d_e} 2^{\Theta(k\log k)}} \left(\sum_{P} |\alpha_P|^r\right)^{1/r} \text{ for } r = \frac{2d_e}{d_e + 1} \in [1, 2).$$

Proof ideas: (1) Use the guarantee from the algorithm for optimizing quantum Hamiltonians.

Theorem

(2) Adapt by noting that $||O||_{\infty} \ge |\langle \psi | O | \psi \rangle|$, where $|\psi \rangle$ is the state found by the algo.

Given an observable $O = \sum \alpha_P P$ with an expansion coefficient c_e and dimension d_e . $|P| \leq k$

$$\|O\|_{\infty} \ge \frac{1}{c_e^{1/2d_e} 2^{\Theta(k\log k)}} \left(\sum_{P} |\alpha_P|^r\right)^{1/r} \text{ for } r = \frac{2d_e}{d_e + 1} \in [1, 2).$$

Example 1

A sum of geometrically-local terms

$$c_e = O(1), d_e = 1$$

Theorem

$$\sum_{P} |\alpha_{P}| \le \mathcal{O}\left(\|O\|_{\infty}\right)$$

Given an observable $O = \sum \alpha_P P$ with an expansion coefficient c_e and dimension d_e . $|P| \leq k$

$$\|O\|_{\infty} \ge \frac{1}{c_e^{1/2d_e} 2^{\Theta(k\log k)}} \left(\sum_{P} |\alpha_P|^r\right)^{1/r} \text{ for } r = \frac{2d_e}{d_e + 1} \in [1, 2).$$

Example 2

A sum of k-local terms

$$c_e = 4^k, \, d_e = k$$

Theorem

$$\|\overrightarrow{\alpha}\|_{\frac{2k}{k+1}} \le 2^{\mathcal{O}(k\log k)} \|O\|_{\infty}$$

A quantum analogue of the Bohnenblust-Hille inequality

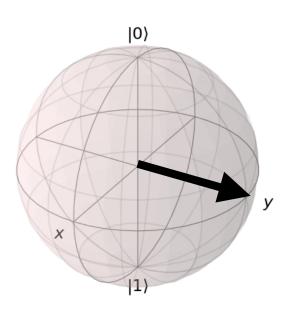
Back to the original talk

Learning to predict arbitrary quantum processes

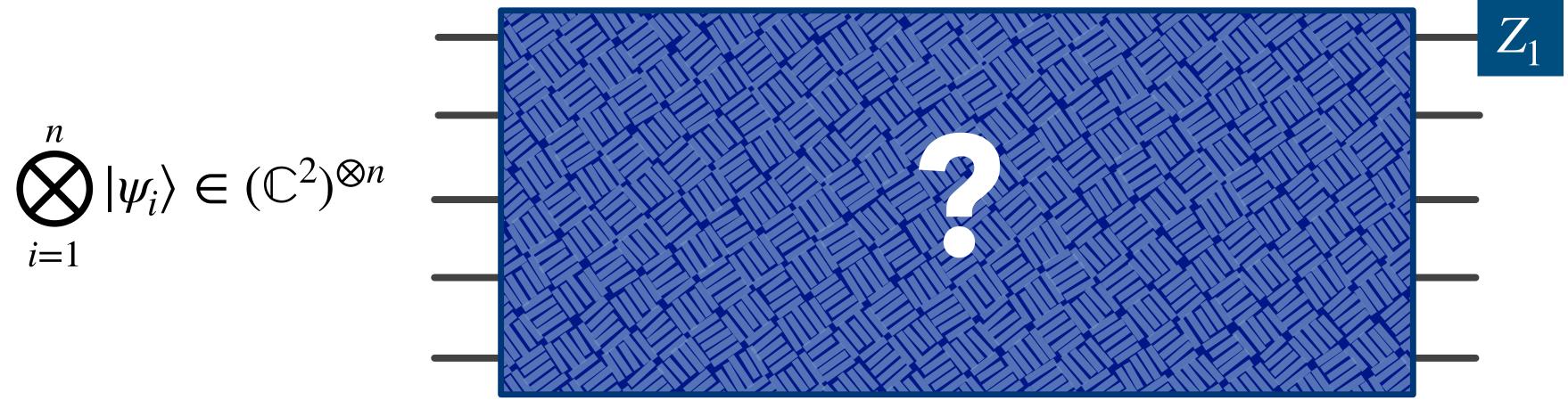
Presenter: Hsin-Yuan Huang (Robert) Joint work with Sitan Chen and John Preskill

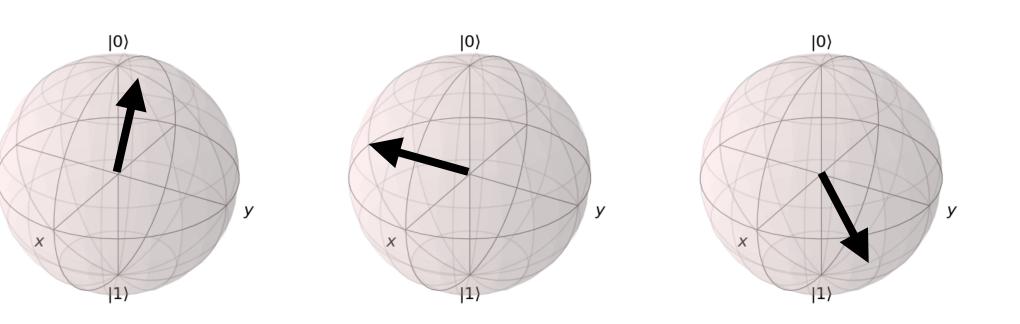


A Quantum Problem



i=1





A high-complexity quantum process

Basic Idea for the ML model

Lemma (Fourier transform): $\alpha_P = \mathbb{E}$

$$\begin{split} & \underbrace{ \left\{ \psi_{\ell} \right\} } \quad \textbf{Classical Dataset} \\ & |\psi_{\ell} \rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i} \rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell} | O | \psi_{\ell} \rangle \\ & \quad \textbf{for } \ell = 1, \dots, N. \end{split}$$

Basic idea: Learn the low-weight observable $O^{(low)} = \sum \alpha_P P$ for a small k. $|P| \leq k$

$$\frac{3^{|P|}}{N} \sum_{\ell=1}^{N} y_{\ell} \langle \psi_{\ell} | P | \psi_{\ell} \rangle \right], \, \forall P \in \{I, X, Y, Z\}^{\otimes n}$$

Basic Idea for the ML model

Lemma

$$\begin{split} & \underbrace{|\psi_{\ell}\rangle} \in \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell}|O|\psi_{\ell}\rangle \\ & \text{for } \ell = 1, \dots, N. \end{split}$$

Basic idea: Learn the low-weight observable $O^{(\text{low})} = \sum \alpha_P P$ for a small k. $|P| \leq k$

How large should the data size N be?

 $Z\}^{\otimes n}$

Insight from Quantum BH inequality

Insight 1: Learn the low-weight ob

$$\begin{split} & \underbrace{ \left\{ \begin{array}{l} \psi_{\ell} \right\} } \quad \textbf{Classical Dataset} \\ & |\psi_{\ell} \rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i} \rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell} | O | \psi_{\ell} \rangle \\ & \quad \textbf{for } \ell = 1, \dots, N. \end{split}$$

oservable
$$O^{(\text{low})} = \sum_{|P| \le k} \alpha_P P$$
 for a small k .

Insight 2: The Pauli coef. in $O^{(\text{low})}$ is approximately sparse as $\|\overrightarrow{\alpha}\|_{\frac{2k}{k+1}} \leq 2^{\mathcal{O}(k \log k)} \|O^{(\log k)}\|_{\infty}$.

This idea is also used in classical learning theory [AI22]

The ML algorithm

Insight 1: Learn the low-weight ob

$$\begin{split} & \underbrace{ \left| \psi_{\ell} \right\rangle = \bigotimes_{i=1}^{n} \left| \psi_{\ell,i} \right\rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \left\langle \psi_{\ell} | O | \psi_{\ell} \right\rangle \\ & \text{for } \ell = 1, \dots, N. \end{split}$$

oservable
$$O^{(\text{low})} = \sum_{|P| \le k} \alpha_P P$$
 for a small k .

Insight 2: The Pauli coef. in $O^{(\text{low})}$ is approximately sparse as $\|\overrightarrow{\alpha}\|_{\frac{2k}{k+1}} \leq 2^{O(k \log k)} \|O^{(\text{low})}\|_{\infty}$.

For all
$$|P| \leq k$$
,
set $\hat{\alpha}_P \leftarrow \frac{3^{|P|}}{N} \sum_{\ell=1}^N y_\ell \langle \psi_\ell | P | \psi_\ell \rangle$.
If $\hat{\alpha}_P$ is small, set $\hat{\alpha}_P \leftarrow 0$.
The learned observable is $\hat{O}^{(\text{low})} = \sum_{|P| \leq k} \hat{\alpha}_P P$.

Guarantee for learning O^(low)

For any small constant ϵ , given a training set size $N = O(\log n)$, the prediction error is

$$\mathbb{E}_{|\psi\rangle=\bigotimes_{i=1}^{n}|\psi_{i}\rangle}\left|\langle\psi|\hat{O}^{(\mathrm{low})}|\psi\rangle-\langle\psi|O^{(\mathrm{low})}|\psi\rangle\right|^{2}<\epsilon\|O^{(\mathrm{low})}\|_{\infty}^{2}.$$

$$|\psi_{\ell}\rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell}|O|\psi_{\ell}\rangle$$
for $\ell = 1, ..., N$.

For all
$$|P| \leq k$$
,
set $\hat{\alpha}_P \leftarrow \frac{3^{|P|}}{N} \sum_{\ell=1}^N y_\ell \langle \psi_\ell | P | \psi_\ell \rangle$.
If $\hat{\alpha}_P$ is small, set $\hat{\alpha}_P \leftarrow 0$.
The learned observable is $\hat{O}^{(\text{low})} = \sum_{|P| \leq k} \hat{\alpha}_P P$.

For any small constant ϵ, ϵ' , given a training set size $N = O(\log n)$, the prediction error is

$$\mathbb{E}_{|\psi\rangle=\bigotimes_{i=1}^{n}|\psi_{i}\rangle}\left|\langle\psi|\hat{O}^{(\mathrm{low})}|\psi\rangle-\langle\psi|O|\psi\rangle\right|^{2}<\epsilon+\epsilon'\|O^{(\mathrm{low})}\|_{\infty}^{2}.$$

$$|\psi_{\ell}\rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell}|O|\psi_{\ell}\rangle$$
for $\ell = 1, ..., N.$

Guarantee for learning O

For all
$$|P| \leq k$$
,
set $\hat{\alpha}_P \leftarrow \frac{3^{|P|}}{N} \sum_{\ell=1}^N y_\ell \langle \psi_\ell | P | \psi_\ell \rangle$.
If $\hat{\alpha}_P$ is small, set $\hat{\alpha}_P \leftarrow 0$.
The learned observable is $\hat{O}^{(\text{low})} = \sum_{|P| \leq k} \hat{\alpha}_P P$.

$$\mathbb{E}_{|\psi\rangle=\bigotimes_{i=1}^{n}|\psi_{i}\rangle}\left|\langle\psi|\hat{O}^{(\mathrm{low})}|\psi\rangle-\langle\psi|O|\psi\rangle\right|^{2}<\epsilon+\epsilon'\|O^{(\mathrm{low})}\|_{\infty}^{2}.$$

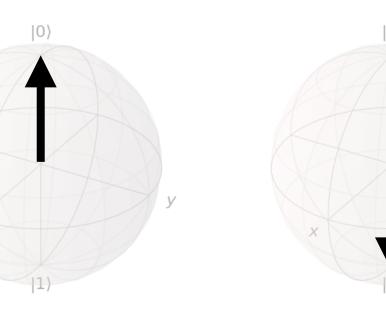
$$\begin{split} & \underbrace{ \left| \psi_{\ell} \right\rangle = \bigotimes_{i=1}^{n} \left| \psi_{\ell,i} \right\rangle \mapsto y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \left\langle \psi_{\ell} | O | \psi_{\ell} \right\rangle \\ & \text{for } \ell = 1, \dots, N. \end{split}$$

Guarantee for learning O

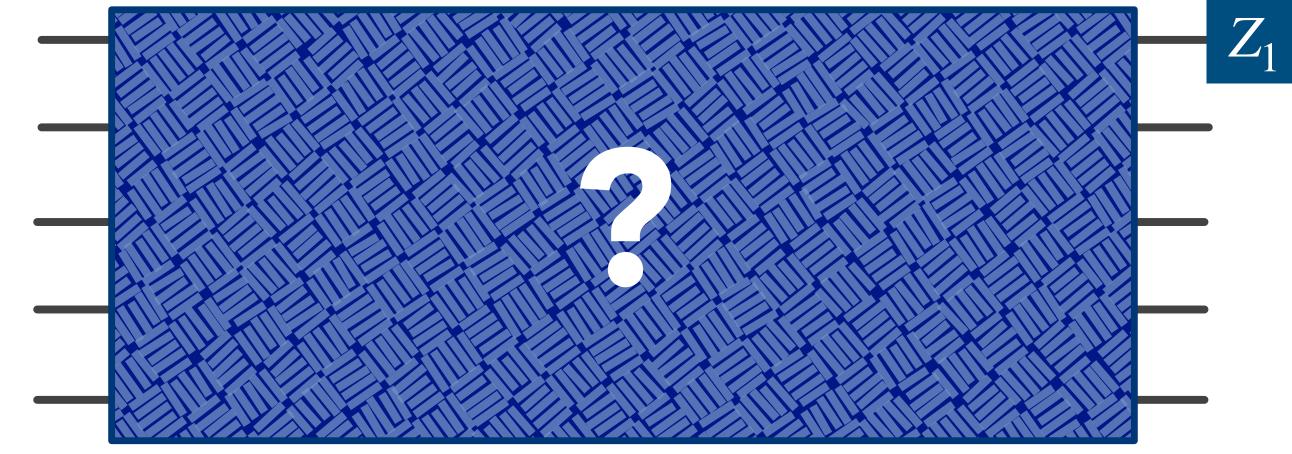
For any ϵ, ϵ' , given a training set size $N = \log(n) 2^{\tilde{O}(\log(1/\epsilon)\log(1/\epsilon'))}$, the prediction error is

For all
$$|P| \leq k$$
,
set $\hat{\alpha}_P \leftarrow \frac{3^{|P|}}{N} \sum_{\ell=1}^N y_\ell \langle \psi_\ell | P | \psi_\ell \rangle$.
If $\hat{\alpha}_P$ is small, set $\hat{\alpha}_P \leftarrow 0$.
The learned observable is $\hat{O}^{(\text{low})} = \sum_{|P| \leq k} \hat{\alpha}_P P$.

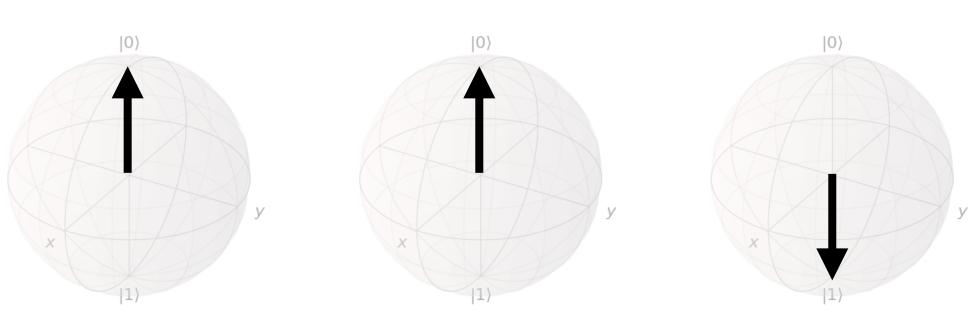
A Classical Problem



Input:



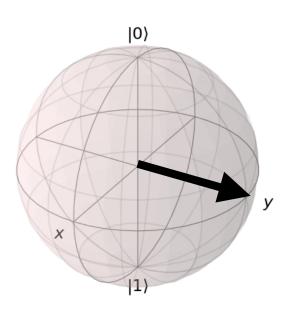
 $x \in \{-1, 1\}^n$

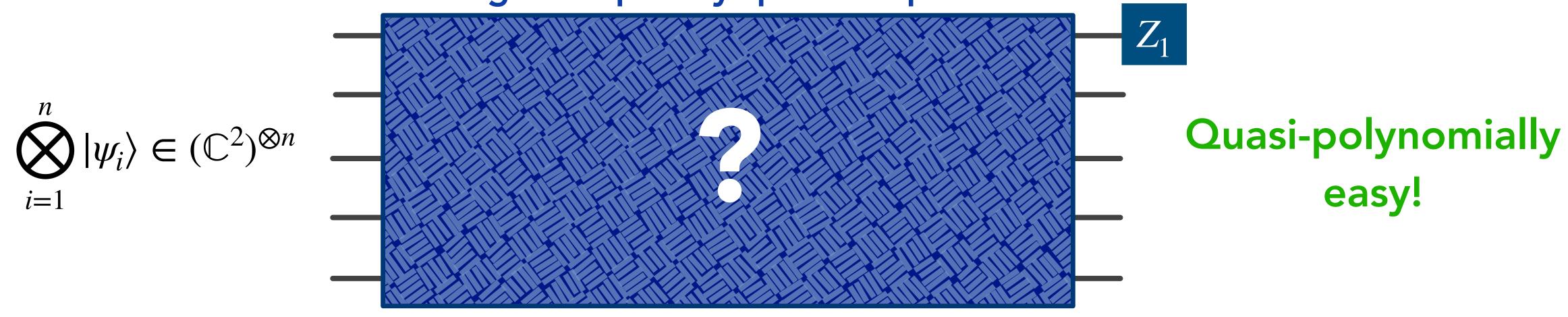


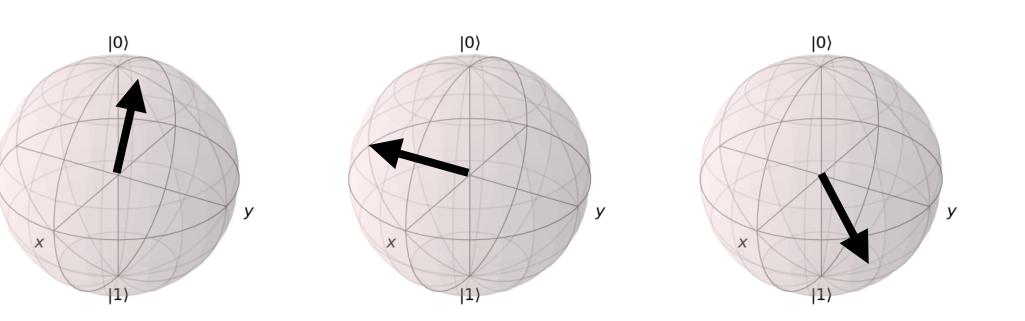
A high-complexity classical circuit

Exponentially hard!

A Quantum Problem







A high-complexity quantum process

Overview

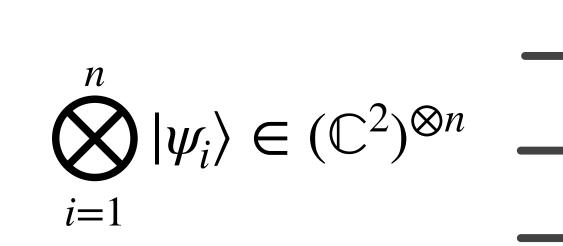
- A classical version of the quantum problem
- A restricted version of the quantum problem
- Generalization to the original quantum problem

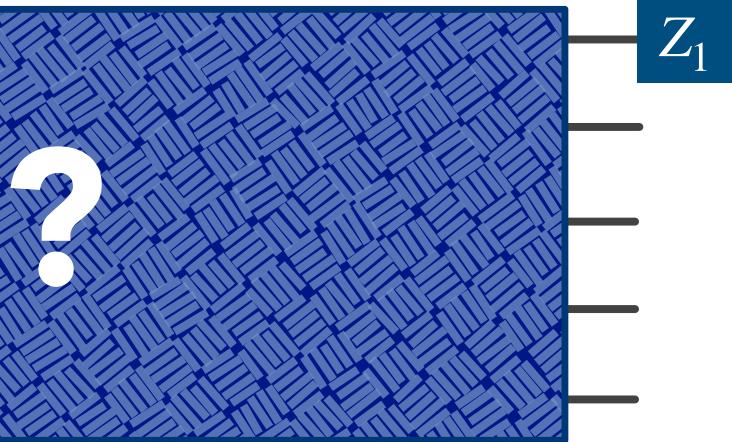
Overview

- A classical version of the quantum problem
- A restricted version of the quantum problem
- Generalization to the original quantum problem

The Restricted Problem

A high-complexity quantum process

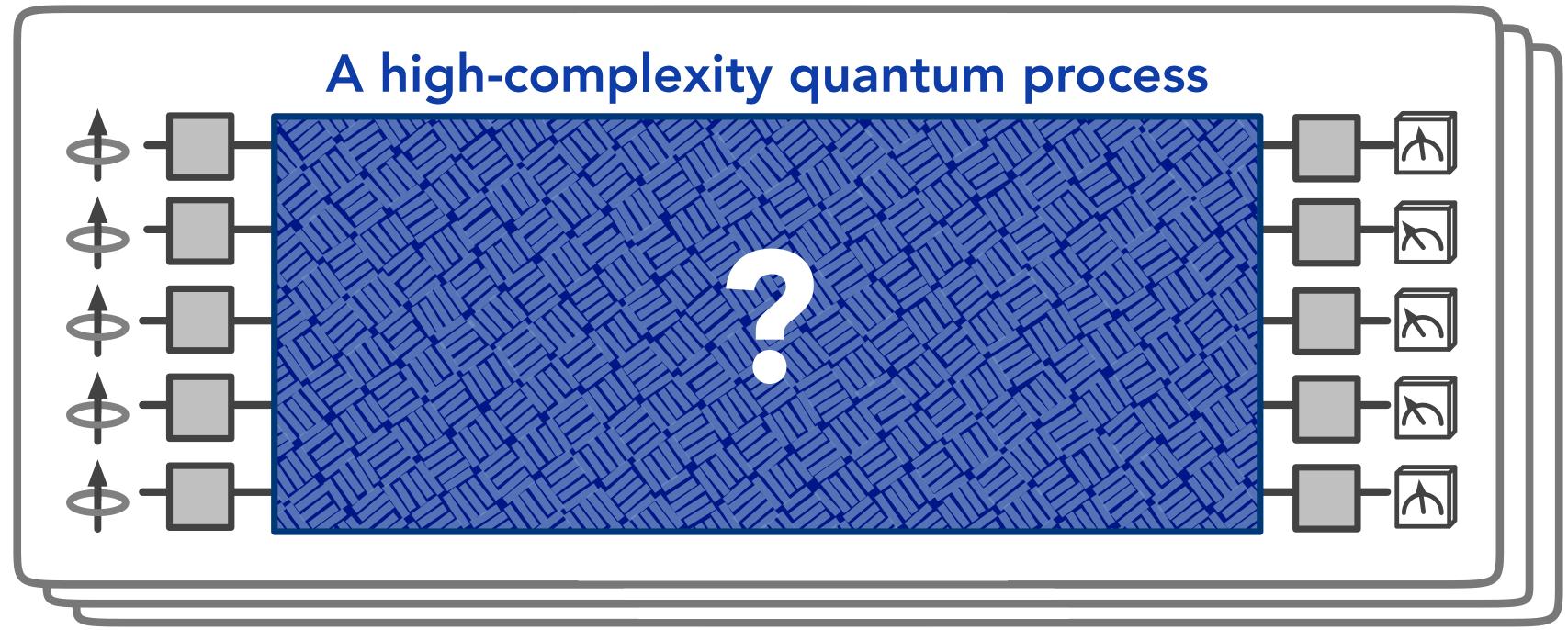




The Original Problem

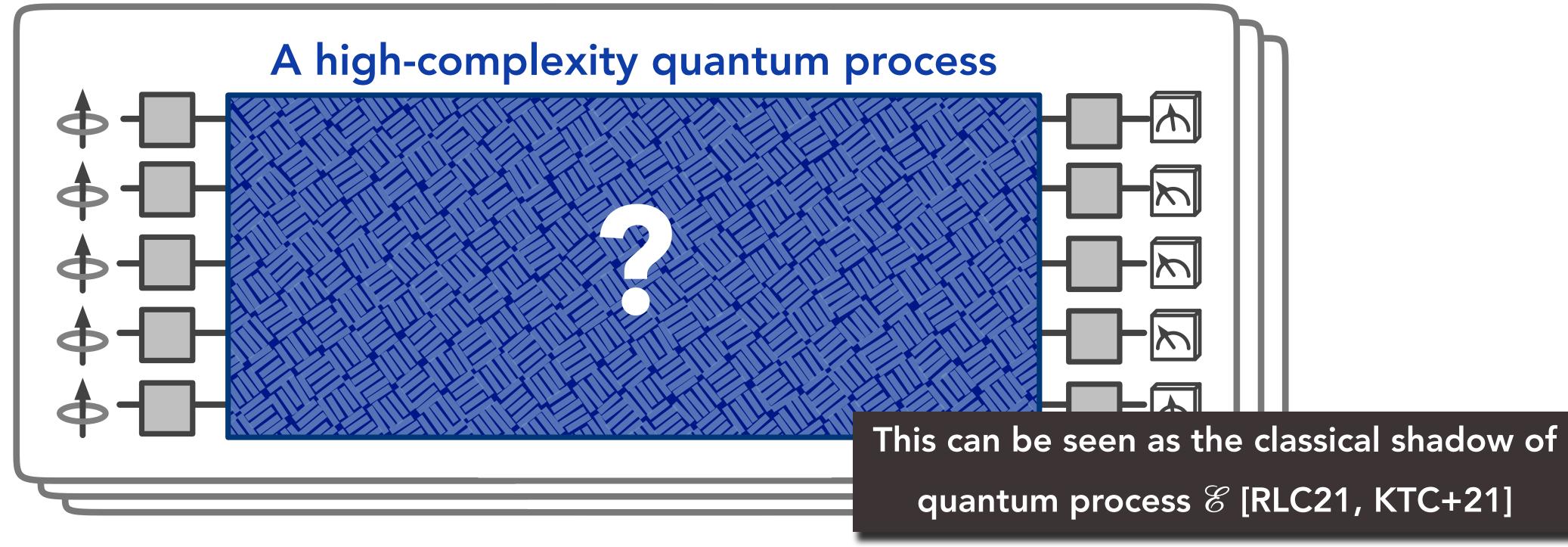
Observable $B = \sum_{P} \beta_{P} P$ with $||B||_{\infty} \leq 1$

A Classical Dataset for Learning ${\mathscr E}$



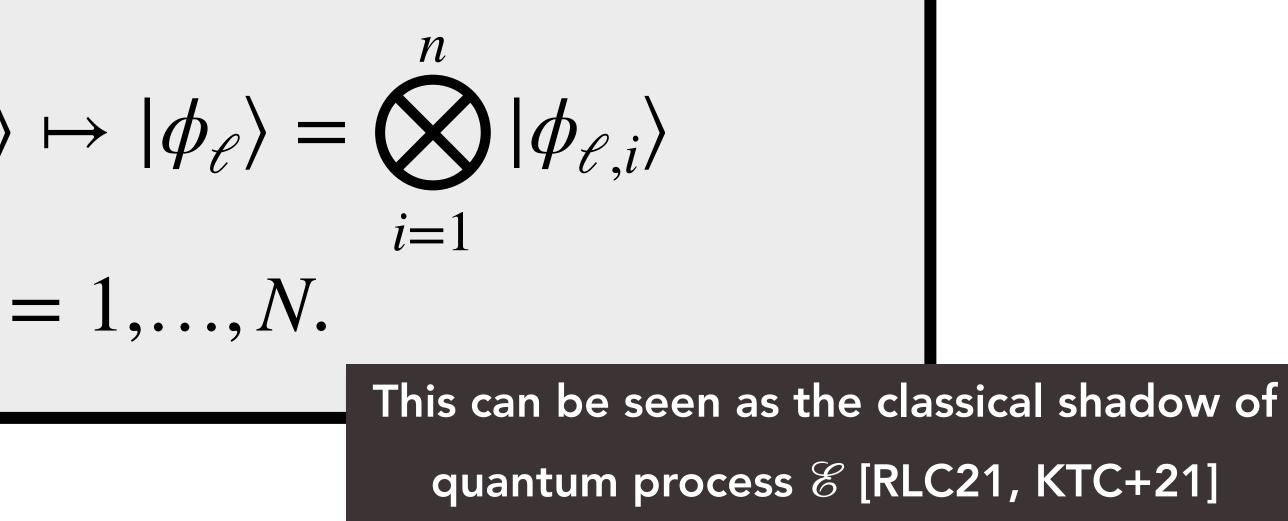
Some Repetitions

A Classical Dataset for Learning &



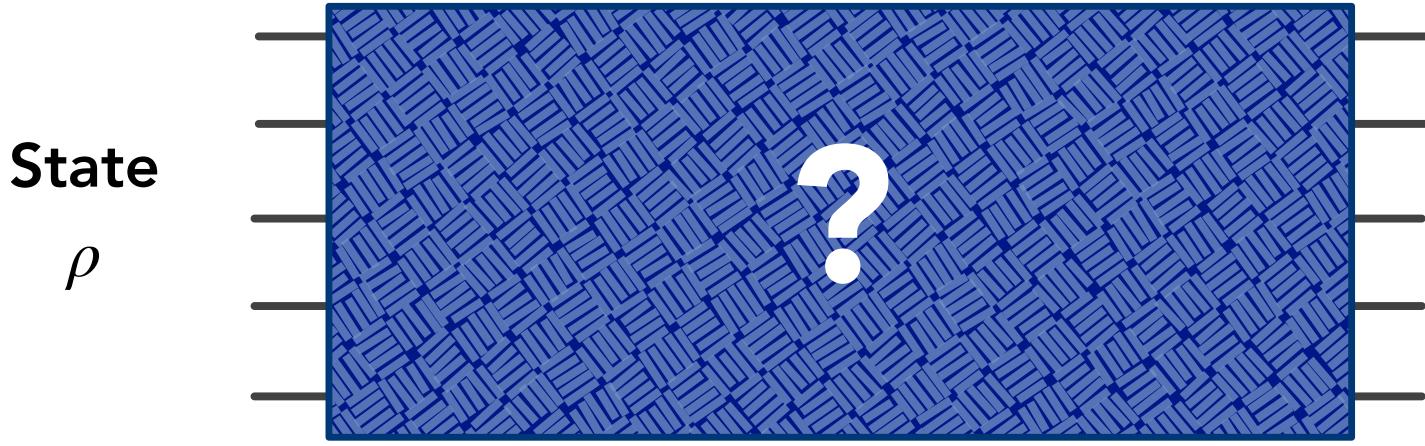
Some Repetitions

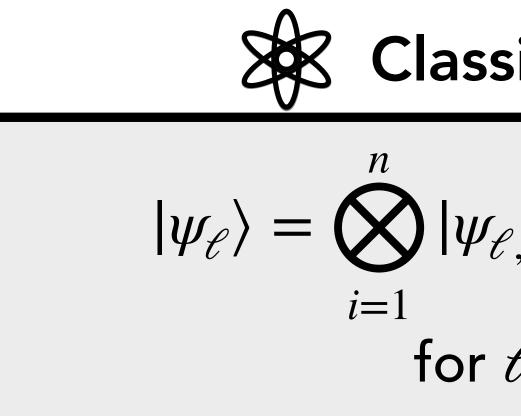
A Classical Dataset for Learning \mathscr{E} **Classical Dataset** $|\psi_{\ell}\rangle = \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto |\phi_{\ell}\rangle = \bigotimes_{i=1}^{n} |\phi_{\ell,i}\rangle$ for $\ell = 1, ..., N$.



How to make prediction?

A high-complexity quantum process



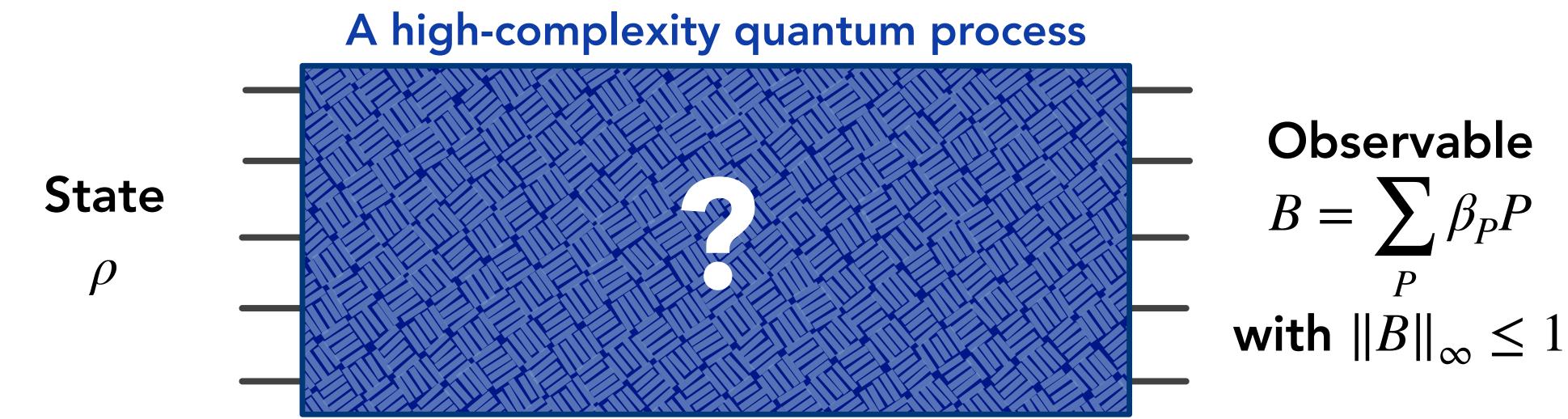


Observable $B = \sum_{P} \beta_{P} P$ Pwith $||B||_{\infty} \leq 1$

Classical Dataset

$$|\phi_{\ell}\rangle \mapsto |\phi_{\ell}\rangle = \bigotimes_{i=1}^{n} |\phi_{\ell,i}\rangle$$

 $\ell = 1, \dots, N.$



$$\begin{split} |\psi_{\ell}\rangle &= \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell} = \mathrm{Tr}\left(B\bigotimes_{i=1}^{n} \left(3|\phi_{\ell,i}\rangle\langle\phi_{\ell,i}| - I\right)\right)\\ & \text{for } \ell = 1, \dots, N. \end{split}$$

ataset

Properties [HKP20]:

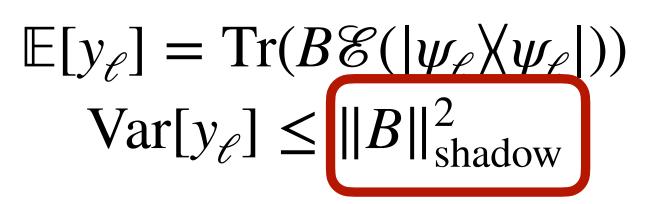
 $\mathbb{E}[y_{\ell}] = \mathrm{Tr}(B\mathscr{E}(|\psi_{\ell} X \psi_{\ell}|))$ $\operatorname{Var}[y_{\ell}] \le \|B\|_{\operatorname{shadow}}^2$

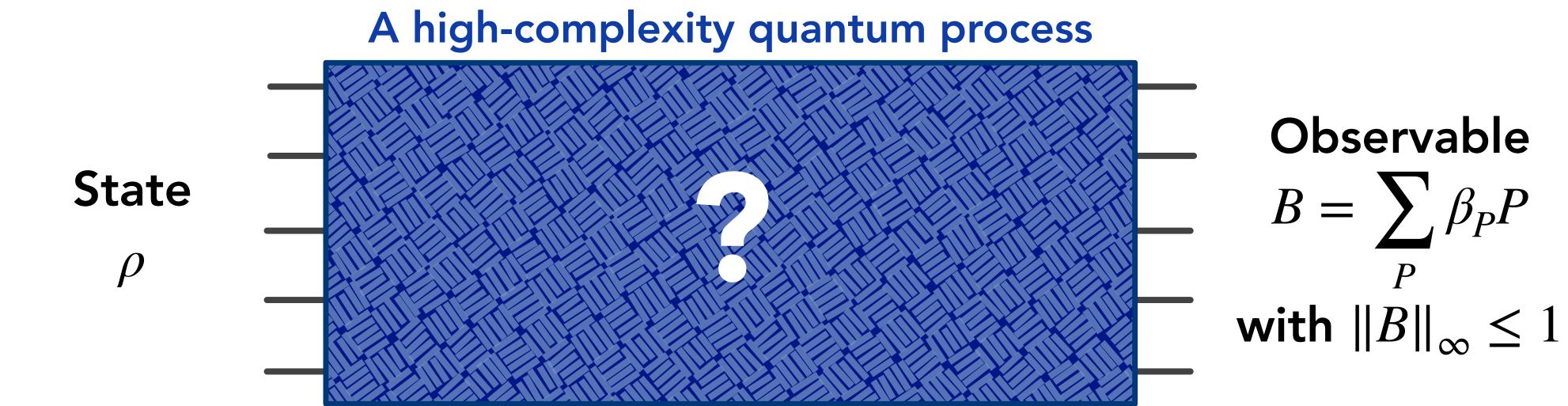
$$\begin{split} |\psi_{\ell}\rangle &= \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell} = \mathrm{Tr}\left(B\bigotimes_{i=1}^{n} \left(3|\phi_{\ell,i}\rangle\langle\phi_{\ell,i}| - I\right)\right)\\ & \text{for } \ell = 1, \dots, N. \end{split}$$

Observable $B = \sum_{P} \beta_{P} P$ with $||B||_{\infty} \leq 1$

ataset

Properties [HKP20]:



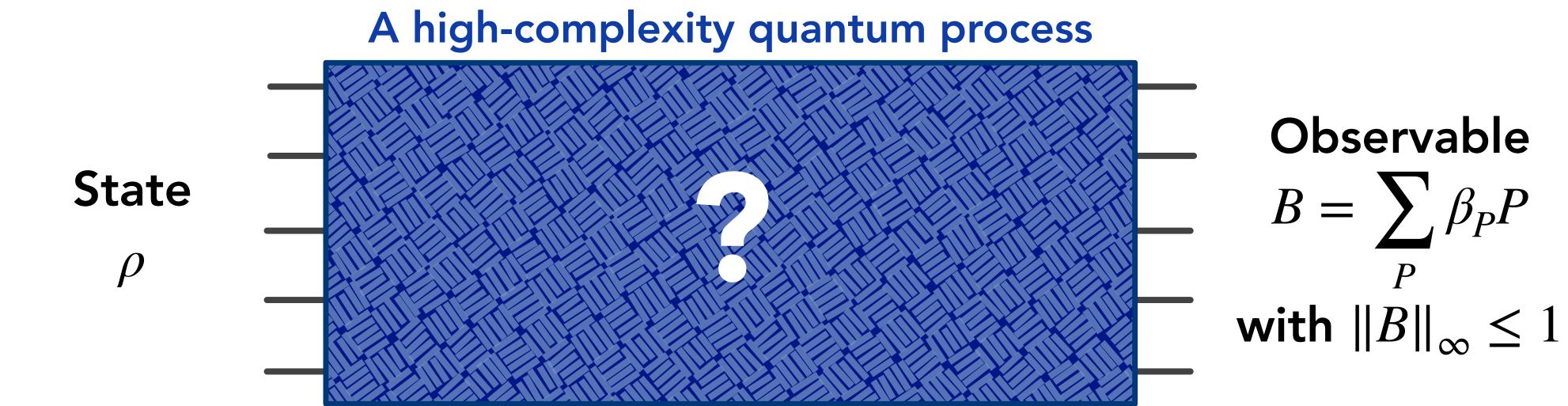


For any sum of local observables B, $||B||_{\text{shadow}} \leq \mathcal{O}(||\vec{\beta}||_1) \leq \mathcal{O}(||B||_{\infty})$ using the generalized quantum BH inequality.

$$\begin{split} |\psi_{\ell}\rangle &= \bigotimes_{i=1} |\psi_{\ell,i}\rangle \mapsto y_{\ell} = \operatorname{Tr}\left(B\bigotimes_{i=1} \left(3|\phi_{\ell,i}\rangle\langle\phi_{\ell,i}| - I\right)\right) \\ & \text{for } \ell = 1, \dots, N. \end{split}$$

$$\mathbb{E}[y_{\ell}] = \operatorname{Tr}(B\mathscr{E}(|\psi_{\ell}} \setminus \psi_{\ell}|))$$

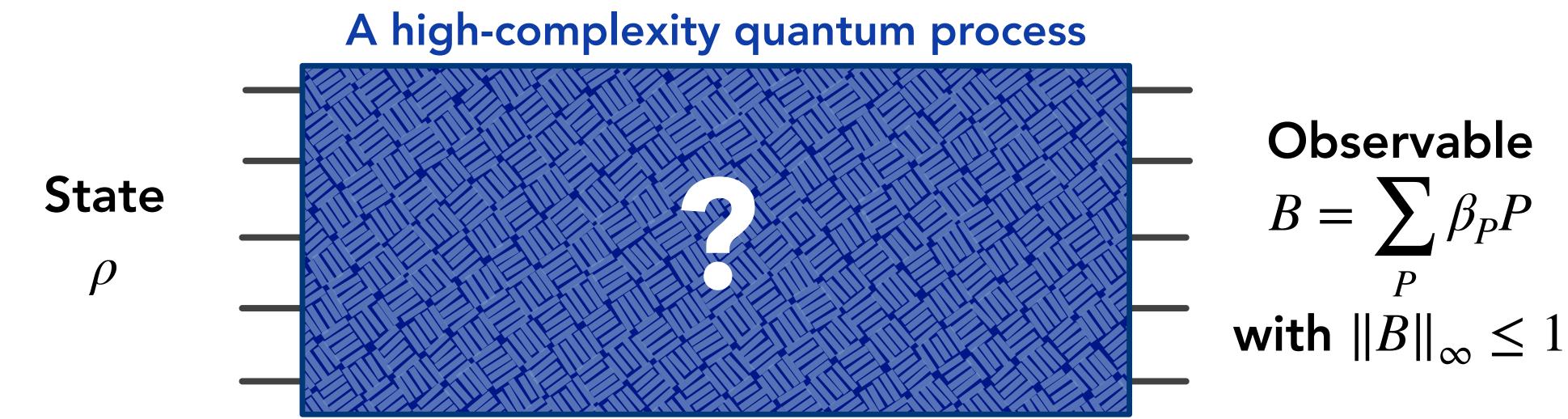
$$\operatorname{Var}[y_{\ell}] \leq ||B||_{\mathrm{shadow}}^{2}$$



For any sum of local observables B, $||B||_{shadow} \leq \mathcal{O}(||\hat{\beta}||_1) \leq \mathcal{O}(||B||_{\infty})$ using the generalized quantum BH inequality.

$$\begin{split} |\psi_{\ell}\rangle &= \bigotimes_{i=1} |\psi_{\ell,i}\rangle \mapsto y_{\ell} = \operatorname{Tr}\left(B\bigotimes_{i=1} \left(3|\phi_{\ell,i}\rangle\langle\phi_{\ell,i}| - I\right)\right) \\ & \text{for } \ell = 1, \dots, N. \end{split}$$

 $\mathbb{E}[y_{\ell}] = \operatorname{Tr}(B\mathscr{E}(|\psi_{\ell} X \psi_{\ell}|))$ $\operatorname{Var}[y_{\ell}] = \mathcal{O}(1)$



$$\begin{split} |\psi_{\ell}\rangle &= \bigotimes_{i=1}^{n} |\psi_{\ell,i}\rangle \mapsto y_{\ell} = \mathrm{Tr}\left(B\bigotimes_{i=1}^{n} \left(3|\phi_{\ell,i}\rangle\langle\phi_{\ell,i}| - I\right)\right)\\ &\text{for } \ell = 1, \dots, N. \end{split}$$

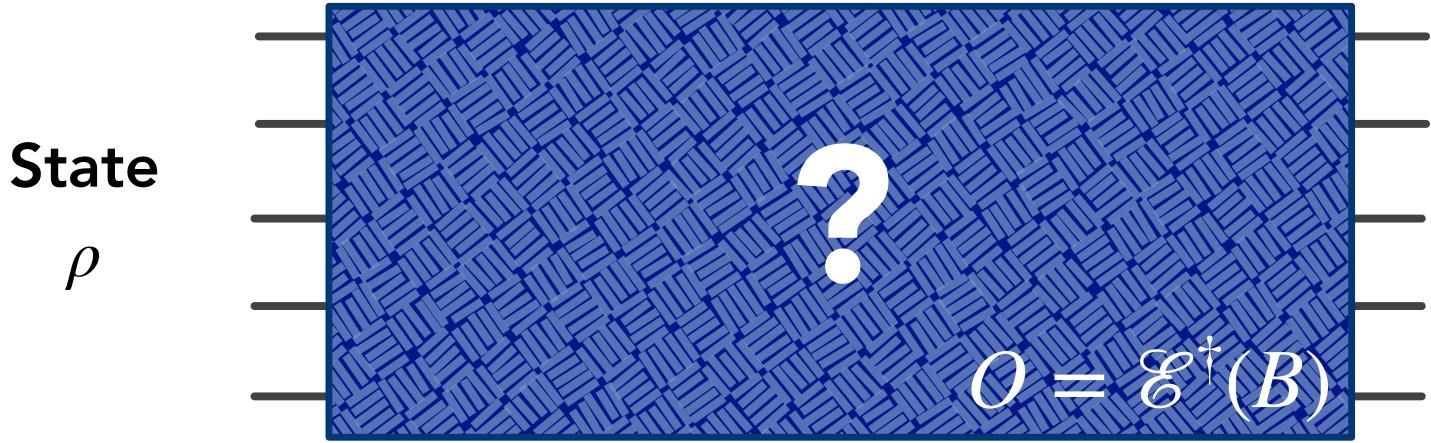
ataset

Properties [HKP20]:

 $\mathbb{E}[y_{\ell}] = \operatorname{Tr}(B\mathscr{E}(|\psi_{\ell} X \psi_{\ell}|))$ $\operatorname{Var}[y_{\ell}] = \mathcal{O}(1)$

Almost back to the previous problem

A high-complexity quantum process



i=1

for t

Observable $B = \sum_{P} \beta_{P} P$ Pwith $||B||_{\infty} \leq 1$

al Dataset for O

$$\rightarrow y_{\ell}, \quad \mathbb{E}[y_{\ell}] = \langle \psi_{\ell} | O | \psi_{\ell} \rangle$$

$$\ell = 1, \dots, N.$$

$$O = \sum_{P \in \{I, X, Y, Z\}^{\otimes n}} \alpha_P P$$
$$O^{(\text{low})} = \sum_{|P| \le k} \alpha_P P$$

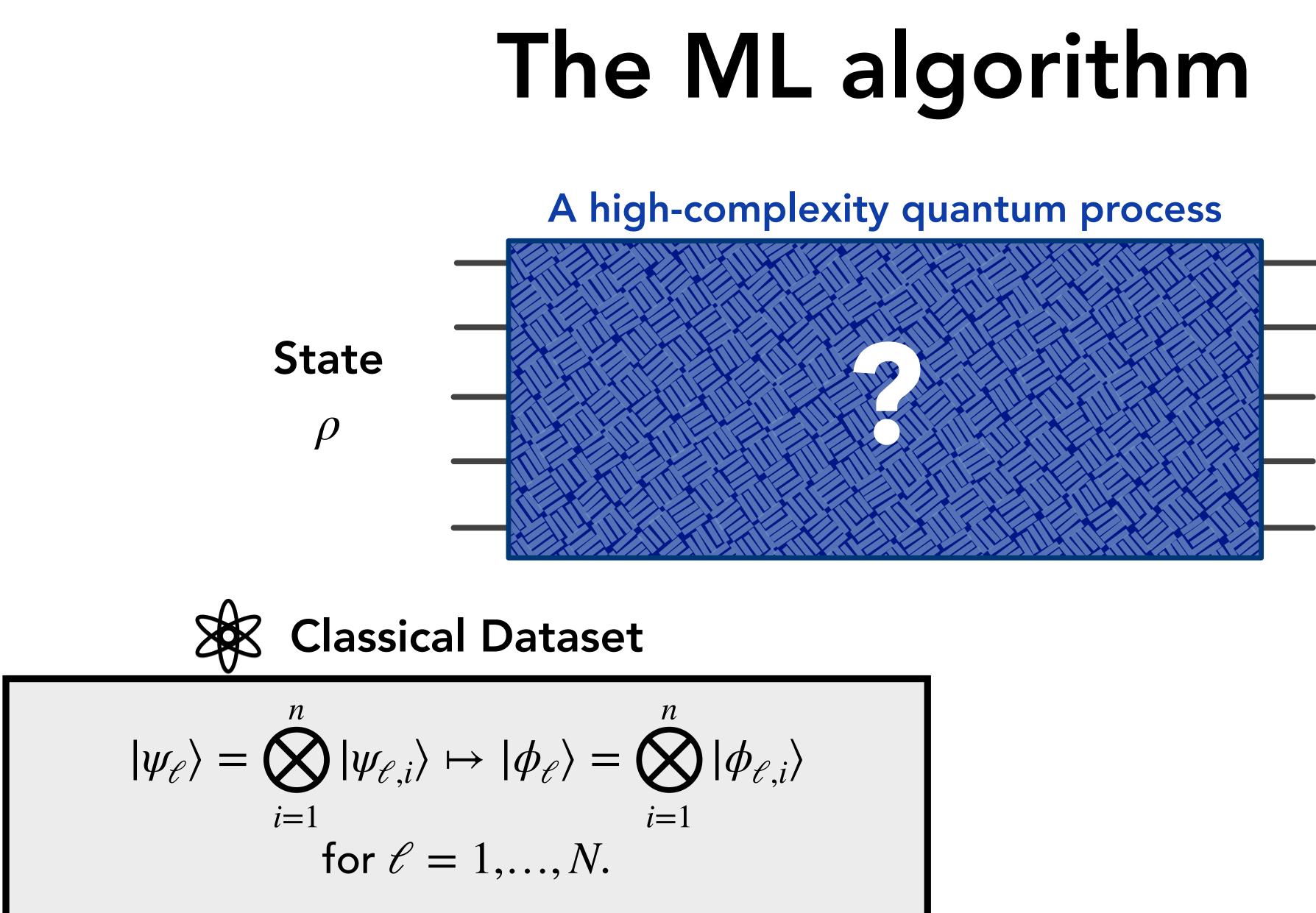
Lemma (Low-weight approximatic

- The lemma holds for any distribution \mathcal{D} over any quantum state ρ
 - as long as \mathscr{D} is flat under single-qubit rotations.

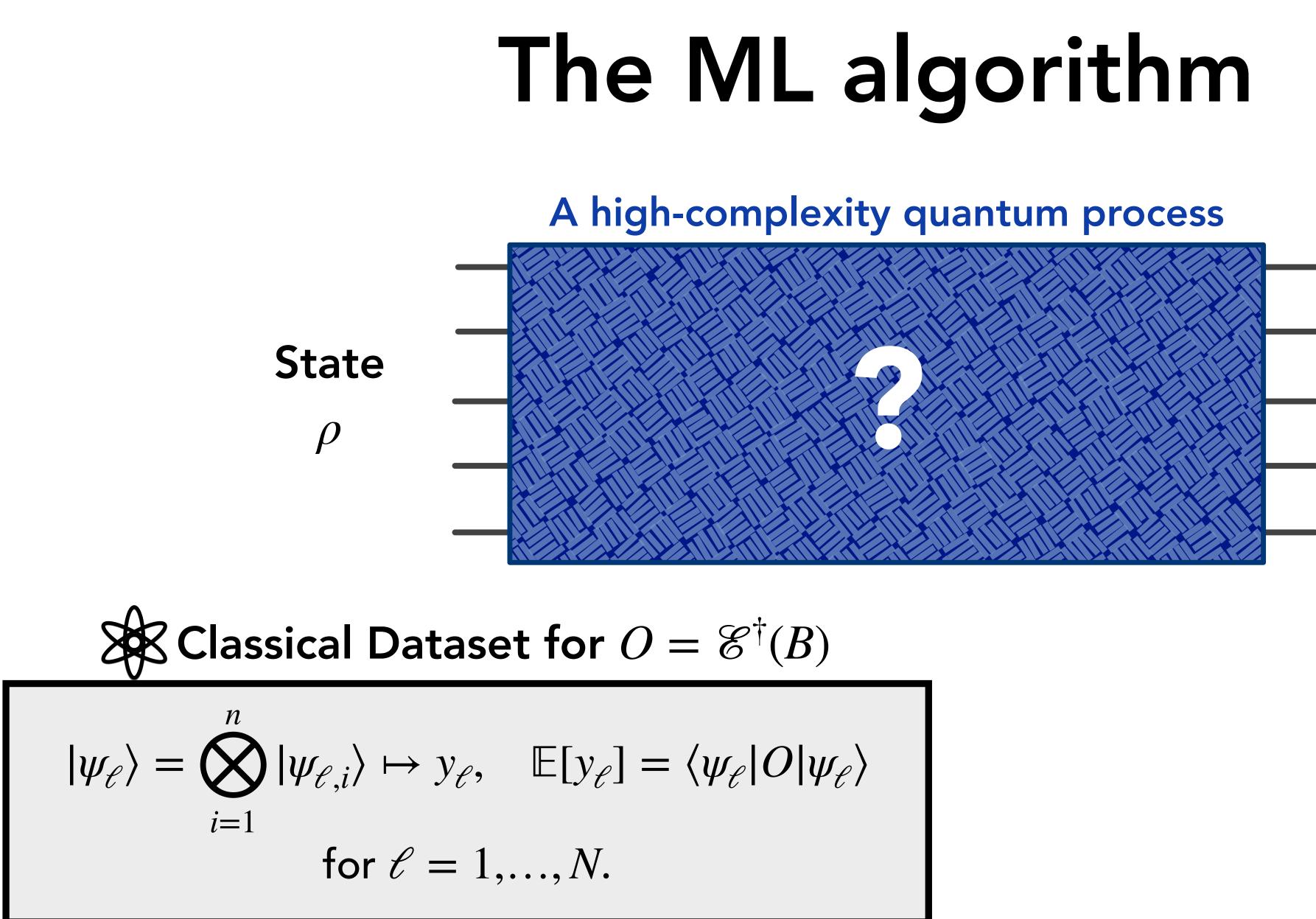
Low-weight approximation

on):
$$\mathbb{E}_{\rho \sim \mathcal{D}} \left| \operatorname{Tr}(O\rho) - \operatorname{Tr}(O^{(\operatorname{low})}\rho) \right|^2 < \frac{1}{1.5^k}.$$

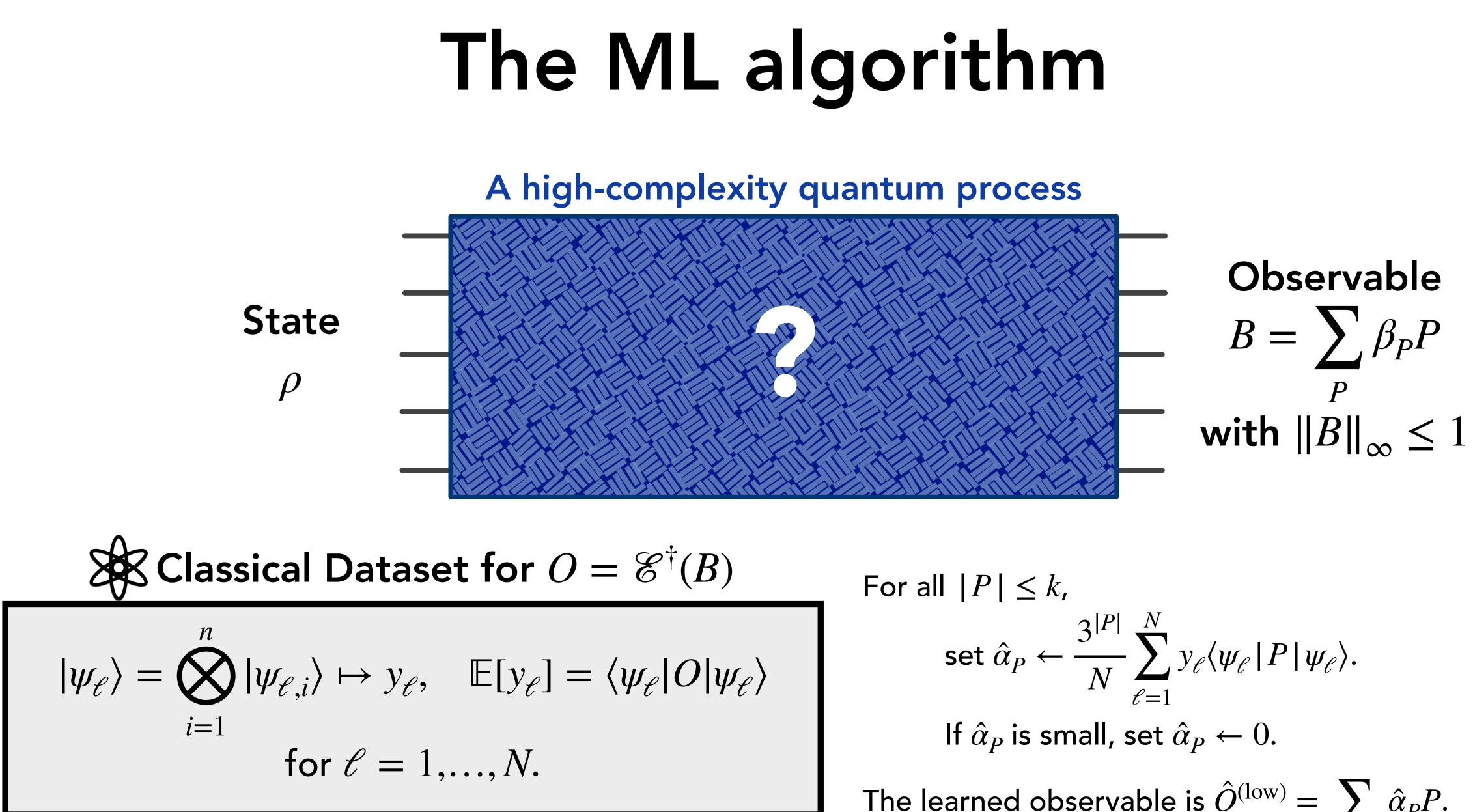
Example: ρ is the ground/thermal state of a generic geometrically-local Hamiltonian.



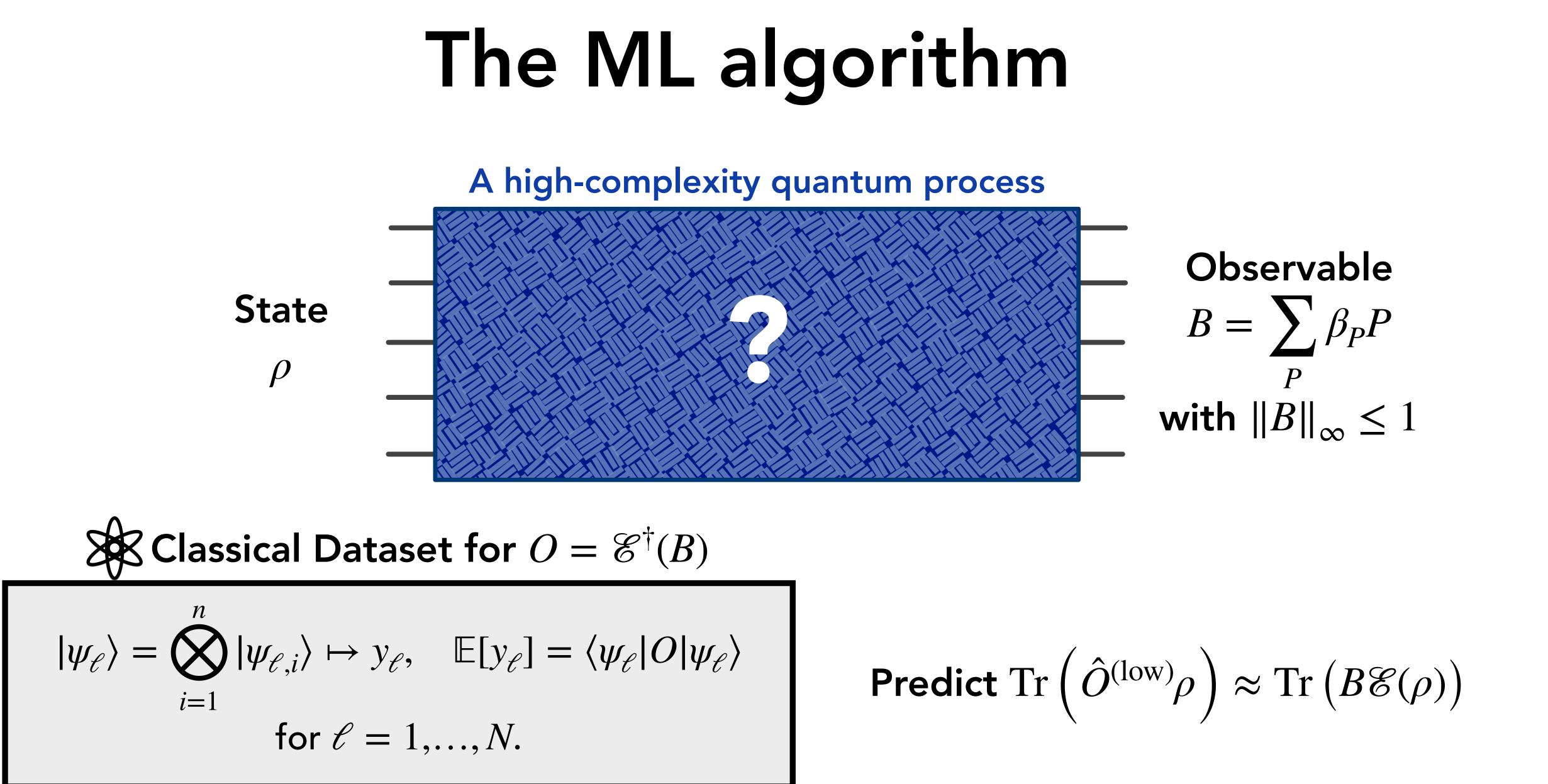
Observable $B = \sum_{P} \beta_{P} P$ with $||B||_{\infty} \leq 1$



Observable $B = \sum_{P} \beta_{P} P$ with $||B||_{\infty} \leq 1$



For all
$$|P| \leq k$$
,
set $\hat{\alpha}_P \leftarrow \frac{3^{|P|}}{N} \sum_{\ell=1}^N y_\ell \langle \psi_\ell | P | \psi_\ell \rangle$.
If $\hat{\alpha}_P$ is small, set $\hat{\alpha}_P \leftarrow 0$.
The learned observable is $\hat{O}^{(\text{low})} = \sum_{|P| \leq k} \hat{\alpha}_P P$.



relative error from only $\mathcal{O}(\log n)$ samples.

• We can learn to predict *n*-qubit exponential-size quantum circuits up to a const.

- We can learn to predict *n*-qubit exponential-size quantum circuits up to a const. relative error from only $O(\log n)$ samples.
- The algorithm is computationally efficient (polynomial time for a const. relative error; quasi-polynomial time for a small error).

- We can learn to predict *n*-qubit exponential-size quantum circuits up to a const. relative error from only $O(\log n)$ samples.
- The algorithm is computationally efficient (polynomial time for a const. relative error; quasi-polynomial time for a small error).
- After learning from product state inputs, the algorithm can predict entangled states.

- We can learn to predict *n*-qubit exponential-size quantum circuits up to a const. relative error from only $O(\log n)$ samples.
- The algorithm is computationally efficient (polynomial time for a const. relative error; quasi-polynomial time for a small error).
- After learning from product state inputs, the algorithm can predict entangled states.
- The entire algorithm can be run on a classical computer.

Conclusion

- We give a computationally-efficient ML algorithm that can learn to predict the output of a quantum process with arbitrary complexity.
- Our results highlight the potential that ML models can predict outcomes of a complex quantum dynamics much faster than the process itself.



