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Motivation

® \We have seen substantial recent progress on efficiently learning to predict quantum states.

® Are there efficient algorithms for learning to predict quantum circuits / processes?

A high-complexity quantum process
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The Setting

® |n this work, we focus on training an ML model to learn and predict

p,0 = fe(p, 0) = TH(OE(p)),

where p is an input quantum state, & is an (unknown) CPTP map, and O is an observable.

® This includes any function computable by a quantum computer (in exponential time).
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The Setting

® |n this work, we focus on training an ML model to learn and predict

p,0 = fe(p, 0) = TH(OE(p)),

where p is an input quantum state, & is an (unknown) CPTP map, and O is an observable.

® This includes any function computable by a quantum computer (in exponential time).

Example 1 Example 2 Example 3

Predicting outcomes of Training Speeding up
physical experiments quantum neural networks complex quantum dynamics

p : initial state given by classical input x p : input state encoding classical input x p : initial state of the physical system
& : the physical process in the experiment & : the quantum neural network to learn & : the quantum dynamics to speed up

O : what the scientist measure O : a single fixed observable &% O : the property we want to predict
SN




The goal of this work

Given an n-qubit CPTP map & that represents a high-complexity quantum process

Some Repetitions

A high-complexity quantum process
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Overview

® A classical version of the quantum problem
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® Generalization to the original quantum problem
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® A classical version of the quantum problem



A Classical Problem

e Given an unknown classical Boolean circuit C mapping 7 bits to n bits.
e The input is now an n-bit string x € {—1,1}".

e The 1st output bit of C for input x is equal to f(x) = Tr(Z,C(|xXx|)).

A high-complexity classical circuit

xe {-1,1}"



Worst-case hardness

e The function £ is equiv. to an exponentially long vector {—1,1}* with no structure.

2
e Tolearn a model h(x), such that |h(x) — f(x)|” < 0.5.Vx € {-1,1}",
we must query f-(x) for all input x. Query complexity: @(2").

A high-complexity classical circuit

xe {-1,1}"



Average-case hardness

e The function £ is equiv. to an exponentially long vector {—1,1}* with no structure.

2
h(x) - f(x) |~ < 0.5,
we must query f-(x) for at least half of all x. Query complexity: ®(2").

e Tolearn a model A(x), such thatE, ;|\

A high-complexity classical circuit

xe {-1,1}"



Average-case hardness for
shallow classical circuits

2
o [AGS19] showed that learning A(x), such that E ;). |h(x) —fC(x)| < 0.5,

is computationally hard (for both classical & quantum computers), even when the

classical Boolean circuit is constant-depth (with majority gates, i.e., TC,).

A shallow classical circuit

xe {-1,1}"




Overview

® A classical version of the quantum problem



Overview

® A classical version of the quantum problem

® A restricted version of the quantum problem



A Classical Problem

Input: l l

A high-complexity classical circuit

x € {-1,1}" This is hard!



A Quantum Problem

A high-complexity quantum process

Is this harder?



A Quantum Problem

A high-complexity quantum process

Is this harder?



A Classical Dataset

Some Repetitions

A high-complexity quantum process

Each repetition prepares a random product state, and measures the 1st qubit in the Z basis




A Classical Dataset

$ Classical Dataset about O

Each repetition prepares a random product state, and measures the 1st qubit in the Z basis




The Prediction Task

* Classical Dataset about O

ly,) = ® i) = Yo Elvel = (el Olyy)
=1

for =1,..., N.

Given a new state |y) = ® ARS (C*)®",
i=1
how to predict (y|O|y) accurately?



Worst-case hardness

o n
. To learn a model A(|y)), such that |h(h//)) — (y|O|y) | < 0.5,V|y) = ® w ),
i=1
the problem is at least as hard as the classical problem.

e Hence, the query complexity is €2(2").

A high-complexity quantum process

) = é) i)
=1



Average-case hardness?

2
e To learn a model h(|y)), such that = lA=Q v |h(h//)) — (Y| O|y) | < 0.5,
is the problem still exponentially hard?

e Surprisingly, the answer is no. The problem can be done in quasi-polynomial time.

A high-complexity quantum process

) = é) i)
=1



Low-weight approximation

O(IOW) — Z CXPP
|P|<k

Lemma (Low-weight approximation):

- |l//>=®?=1 ;)

(wlOly) — (w| 0" |y)




Low-weight approximation

0= 3

Pe{1,X.,Y,Z)®"

Lemma (Low-weight approximation): =) =Q lwe)

(wlOly) — (w| 0" |y)

n
Interpretation: For most product state |y) = ® ), (w|O|w) =~ (w| O™ |y).

=1



Low-weight approximation

Z apP

PE{L.X,Y,Z}®"

Lemma (Low-weight approximation): £, ,_g |, (w|Oly) — (w0 | < —.

n
Interpretation: For most product state |y) = ® ), (w|O|w) =~ (w| O™ |y).
i=1

Low-weight approximation does not hold in the classical version of this problem




Low-weight approximation

0= Z Classical inputs are perfectly distinguishable.

PE{1X,Y.Z)®"

But quantum state inputs are not.

Classical Input: l l

|0) |0) |0) |0) |0)

Quantum In P ut: e / yaves A 7~ R s )

ey ey ey ey ey




Basic Idea for the ML model

Basic idea: Learn the low-weight observable O!°%) = Z apP tor a small k.
|P|<k

3Pl &
Lemma (Fourier transform): a, = [E [T ZyLﬂ(l//f | P | Wg)] , VP e {LX,Y,Z}®"
=1

* Classical Dataset

) = Q) lwz) = ver Elyd = (wOlyy)
=1

for =1,...,N.




Basic Idea for the ML model

Basic idea: Learn the low-weight observable O!°") = Z apP for a small .
|P|<k

Lemme ,Z}(Xm

How large should the data size N be?

) = Q) lwz) = ver Elyd = (wOlyy)
=1

for=1,...,N.



Basic Idea for the ML model

Basic idea: Learn the low-weight observable O!°") = Z apP for a small .
|P|<k

remme We only need N = O(logn) ! 21"

) = Q) lwz) = ver Elyd = (wOlyy)
=1

for=1,...,N.



An interlude

Optimizing
Quantum Hamiltonians
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The Task

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

Find a state |y) that maximizes or minimizes (w|H|y).

We want a guarantee on (y|H|y)

based on the description of H = Z apP
|P|<k




Expansion property

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

H has an expansion coefticient ¢, and dimension d, if for every size-d, region R,

the number of P with ap # 0, dom(P) C R, R C dom(P) is at most c..
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Expansion property

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

H has an expansion coefticient ¢, and dimension d, if for every size-d, region R,

the number of P with ap # 0, dom(P) C R, R C dom(P) is at most c..

Example 1 Example 2 Example 3

Geometrically-local Hamiltonian General k-local Hamiltonian Degree-d 2-body Hamiltonian

c,=0(),d, =1 c,=4%d, =k c,=16d,d, =1




Theorem

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k
It H has an expansion coefficient ¢, and dimension d,, then forr =2d,/(d,+ 1) € [1,2),

we have an algorithm that either finds a maximizing product state |y),
1/r

1 r
AHIY) 2 B gl PHI9) + o ;I\apw ,

or finds a minimizing product state |y) with a similar guarantee (+ - —, > — <).



Theorem

Improved over existing results

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k
It H has an expansion coefficient ¢, and dimension d,, then forr =2d,/(d,+ 1) € [1,2),

we have an algorithm that either finds a maximizing product state |y),
1/r

1 r
AHIY) 2 B gl PHI9) + o ;I\apw ,

or finds a minimizing product state |y) with a similar guarantee (+ - —, > — <).



The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k

Find a product state |y) that approximately optimizes (y|H|y).



The Algorithm

Select a slice with the largest value of ap

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Find a product state |y) that approximately optimizes (y|H|y).



The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Replica 1 | \; X { ) O 1 1 ). \

Random product states

[ |

j0) j0) 10) 0) 10)

Re ICa 2 | | “ | |
X X X X X

[1) [1) |1} (1)

[0) [0) |0} [0)

Replica 3



The Algorithm

Lift n-qubit H to nk qubits

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Replica 1

Replica 2 e o] k) pol(H) = ||2 appol(P) € C

Replica 3 iy Ly Ly oy
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Lift n-qubit H to nk qubits
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The Algorithm

Lift n-qubit H to nk qubits

Given an n-qubit, k-local Hamiltonian H = Z apP.

|P|=k
Replica 1 '
" '::,z o
Replica 2 2 pol(H) = Z appol(P) € €=
: 7 y |P|=k
Repiica s ) P=Z XY |



The Algorithm

Lift n-qubit H to nk qubits

Given an n-qubit, k-local Hamiltonian H = Z apP.

|P|=k
Replica 1 *
T : nk,~nk
- bl ol(H) = ) appol(P) € C*"
Replica 2 ; P PP
AT/ |P|=k
Replica 3 - P=ZXYII



The Algorithm

Lift n-qubit H to nk qubits

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Replica 1

Replica 2 e o] k) pol(H) = ||2 appol(P) € C

Replica 3 iy Ly Ly oy




The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.

|P|=k
Replica 1 ~ { ‘ f | (S \
| | | _ 2nk><2nk
Replica 2 b\ N M v bo pol(H) = Z appol(P) € C
: X X X X Pl

Replica 3 Optimize Optimize Optimize Optimize Optimize

1)



The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

Replica 1 X \; | { S 1 i ). \

! | lO) | IO) | O) | lO) | _ 2nk><2nk
Replica 2 X \ ., (. ") Pl pol(H) = Z appol(P) € C
A pS Sl : ¥ * |P|=k

Replica 3 t ), () ), o ¢



The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

R ‘ 2 y N\ ﬁ g Combine the Bloch vectors
@B 2 7\ s & . y o | using a weighted sum




The Algorithm

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|=k

R Combine the Bloch vectors

using a weighted sum



Theorem

Given an n-qubit, k-local Hamiltonian H = Z apP.
|P|<k
It H has an expansion coefficient ¢, and dimension d,, then forr =2d,/(d,+ 1) € [1,2),

we have an algorithm that either finds a maximizing product state |y),
1/r

1 r
AHIY) 2 B gl PHI9) + o ;I\apw ,

or finds a minimizing product state |y) with a similar guarantee (+ - —, > — <).



Another interlude

Generalized Quantum
Bohnenblust-Hille Inequality
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Theorem

Given an observable O = Z apP with an expansion coefficient ¢, and dimension d,.
|P|<k

1/r
1 2d
> E 4 — < .
HOHOO — Cel/zde 2®(k10gk) ( - ‘aP‘ ) fOI‘ I de + 1 = [192)

Proof ideas:

(1) Use the guarantee from the algorithm for optimizing quantum Hamiltonians.

(2) Adapt by noting that ||O||, = | (w|O|y) |, where |y) is the state found by the algo.




Theorem

Given an observable O = Z apP with an expansion coefficient ¢, and dimension d,.

|P|<k
1/r

0] .. > : Z lap | f 20, e [1,2)
> 94 or r = 9 & )

o0 Cel/Zde 2@(k10g k) > P de + 1

Example 1
A sum of geometrically-local terms Z ‘ap‘ <0 (HOHOO)
¢, = O(1),d, =1 r




Theorem

Given an observable O = Z apP with an expansion coefficient ¢, and dimension d,.

|P|<k
1/r
o] p— Yol | f e e
> o or r = 2).
® T JPewkionh \ & P d + 1
Example 2
A sum of k-local terms Ha)uk%r_kl < 2@(k10gk)H0Hoo

A quantum analogue of

the Bohnenblust-Hille inequality



Back to the original talk

Learning to predict
arbitrary quantum processes

Presenter: Hsin-Yuan Huang (Robert)
Joint work with Sitan Chen and John Preskill
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A Quantum Problem

A high-complexity quantum process




Basic Idea for the ML model

Basic idea: Learn the low-weight observable O!°%) = Z apP tor a small k.
|P|<k

3Pl &
Lemma (Fourier transform): a, = [E [T ZyLﬂ(l//f | P | Wg)] , VP e {LX,Y,Z}®"
=1

* Classical Dataset

) = Q) lwz) = ver Elyd = (wOlyy)
=1

for =1,...,N.




Basic Idea for the ML model

Basic idea: Learn the low-weight observable O!°") = Z apP for a small .
|P|<k

Lemme ,Z}(Xm

How large should the data size N be?

) = Q) lwz) = ver Elyd = (wOlyy)
=1

for=1,...,N.



Insight from Quantum BH inequality

Insight 1: Learn the low-weight observable OV = Z apP tor a small k.
|P|<k

Insight 2: The Pauli coef. in 0" js approximately sparse as \\7\\kz+zcl < 2@(klogk)H0(1°W)Hoo.

This idea is also used in classical learning theory [Al22]

* Classical Dataset

) = Q) lwz) = ver Elyd = (wOlyy)
=1

for =1,...,N.




The ML algorithm

Insight 1: Learn the low-weight observable O!°%) = Z apP for a small .
|P|<k

Insight 2: The Pauli coef. in 0% is approximately sparse as \\7\\kz+zcl < 20klog glow))|

* Classical Dataset For all |P| <k,
" S e Pl
set ap Yewe | P ).
w,) = ® h//f,i> = Ve, Elygl = (wy| Olyy) N 23
i=1 It apis small, set ap < 0.

for =1,...,NN.

The learned observable is 01" = 2 apP.
|P|<k



Guarantee for learning O/

For any small constant ¢, given a training set size N = O(log n), the prediction error is

R 2
=@l | WO Ny) = 10Ny | < el 002,
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Guarantee for learning O

For any small constant ¢, €', given a training set size N = (O(log n), the prediction error is

R 2
=& 1w | WO w) = (wlOly) | < e+ €JOVIZ,.

* Classical Dataset For all |P| <k,
" S e Pl
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i=1 It apis small, set ap < 0.

for =1,...,NN.

The learned observable is 01" = 2 apP.
|P|<k



Guarantee for learning O

For any ¢, €/, given a training set size N = log(n) 0 Oog(l/e)log(1/e) the prediction error is

R 2
=& 1w | WO w) = (wlOly) | < e+ €JOVIZ,.

* Classical Dataset For all |P| <k,
" S e Pl
set ap Yewe | P ).
w,) = ® h//f,i> = Ve, Elygl = (wy| Olyy) N 23
i=1 It apis small, set ap < 0.

for =1,...,NN.

The learned observable is 01" = 2 apP.
|P|<k



A Classical Problem

Input: l l

A high-complexity classical circuit

Exponentially
hard!

xe {-1,1}"



A Quantum Problem

Input:

A high-complexity quantum process

Quasi-polynomially
easy!



Overview

® A classical version of the quantum problem

® A restricted version of the quantum problem



Overview

® A classical version of the quantum problem
® A restricted version of the quantum problem

® Generalization to the original quantum problem



The Restricted Problem

A high-complexity quantum process

X lw) € (€H®"
=1



The Original Problem

A high-complexity quantum process

Entangled Observable
State B = ZﬁPP
p P

with [|B||, < 1




A Classical Dataset for Learning &

Some Repetitions

A high-complexity quantum process

?




A Classical Dataset for Learning &

Some Repetitions

A high-complexity quantum process

7] 2] 1=

?

— |
This can be seen as the classical shadow of

quantum process & [RLC21, KTC+21]



A Classical Dataset for Learning &

$ Classical Dataset

) = ® i) = b)) = ® (s )

forf—l ., V.

This can be seen as the classical shadow of

quantum process & [RLC21, KTC+21]



How to make prediction?

A high-complexity quantum process

Observable
B= ) ppP
P

with ||B]|.. < 1

State

* Classical Dataset

) = ® W) = o) = ® bs,)

forf—l ., V.




Construct a dataset with classical shadow

A high-complexity quantum process

Observable
B= ) ppP
P
with |[B][, < 1

State

* A New Classical Dataset
Properties [HKP20]:

lw,) = ® h/ff,i> -y, =1Ir <B® (3‘¢f,i><¢f,i‘ — I)) [y, = TT(B%(WKXWKD)
i=1 i=1

forc=1,...,N. Vel < Bl ghad




Construct a dataset with classical shadow

A high-complexity quantum process

State

* A New Classical Dataset

) = @ lw) =y, =Tr <B® (3¢ X il = 1))
=1 =1

for =1,...,N.

Observable
B= ) ppP
P
with |[B][, < 1

Properties [HKP20]:

[y, =Tr(BE(w, Xy, |))
Varly,] < | B thadow



Construct a dataset with classical shadow

A high-complexity quantum process

Observable
B= ) ppP
P
with |[B][, < 1

State

For any sum of local observables B, || B||aqow < @(HEHI) < 0(|B]| )
using the generalized quantum BH inequality.

B 3|y Xppil =1 [yl = Tr(BE(w, Xw,|))
| Var[y,] <|I1BllZ.q00

=1



Construct a dataset with classical shadow

A high-complexity quantum process

Observable
B= ) ppP
P
with |[B][, < 1

State

For any sum of local observables B, || B||aqow < @(HEHI) < 0(|B]| )
using the generalized quantum BH inequality.

B ’:’ 3‘¢f,i><¢f,i‘ —1 [y ] = Tr(BE(lyy Xy l))
i=1 Varly,] = O(1)




Construct a dataset with classical shadow

A high-complexity quantum process

State

* A New Classical Dataset

) = @ lw) =y, =Tr <B® (3¢ X il = 1))
=1 =1

for =1,...,N.

Observable
B= ) ppP
P
with |[B][, < 1

Properties [HKP20]:

“[y,] = Te(BE(ly,Xyyl))

Varly,| = O(1)



Almost back to the previous problem

A high-complexity quantum process

Observable
B= ) ppP
P
with |[B][, < 1

State

* Classical Dataset for O

) = ® i) = Yo Elyel = (el Olyy)
=1

for =1,..., N.




Low-weight approximation

O= )  apP

Pe{l.X,Y,Z)®"

Lemma (Low-weight approximation): | ,_,

Tr(Op) — Tr(0"")p)

2 1
< .
1.5k

The lemma holds for any distribution & over any quantum state p

as long as U is flat under single-qubit rotations.

Example: p is the ground/thermal state of a generic geometrically-local Hamiltonian.



The ML algorithm

A high-complexity quantum process

Observable
B= ) ppP
P

with ||B]|.. < 1

State

* Classical Dataset

) = ® W) = o) = ® bs,)

forz,”—l ., V.




The ML algorithm

A high-complexity quantum process

Observable
B= ) ppP
P
with |[B][, < 1

State




The ML algorithm

A high-complexity quantum process

Observable
B= ) ppP
P
with |[B][, < 1

State

For all |P| <k,

3P &
set ap < Z)’f(V/f\P [ y)-
N 2o

If &p is small, set ap <« 0.

The learned observable is 01V = Z apP.
|P|<k



The ML algorithm

A high-complexity quantum process

Observable
B= ) ppP
P
with |[B][, < 1

State

Predict Tr (@(low)p) ~ Tr (B%(p))




Surprising aspects of the ML algorithm

® We can learn to predict n-qubit exponential-size quantum circuits up to a const.

relative error from only O(log n) samples.
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Surprising aspects of the ML algorithm

® We can learn to predict n-qubit exponential-size quantum circuits up to a const.

relative error from only O(log n) samples.

® The algorithm is computationally efficient (polynomial time for a const. relative error;

quasi-polynomial time for a small error).
® After learning from product state inputs, the algorithm can predict entangled states.

® The entire algorithm can be run on a classical computer.



Conclusion

® We give a computationally-efficient ML algorithm that can learn to predict the output
of a quantum process with arbitrary complexity.

® Our results highlight the potential that ML models can predict outcomes of a
complex quantum dynamics much faster than the process itself.
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