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• We have seen substantial recent progress on efficiently learning to predict quantum states.


• Are there efficient algorithms for learning to predict quantum circuits / processes?

Motivation
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• In this work, we focus on training an ML model to learn and predict 
                                                , 

where  is an input quantum state,  is an (unknown) CPTP map, and  is an observable.


• This includes any function computable by a quantum computer (in exponential time).

ρ, O ↦ fℰ(ρ, O) = Tr(Oℰ(ρ))
ρ ℰ O

The Setting



Example 1
Predicting outcomes of

physical experiments

 initial state given by classical input ρ : x

 the physical process in the experimentℰ :

 what the scientist measureO :
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Example 1 Example 3

Predicting outcomes of

physical experiments

Speeding up 
complex quantum dynamics

 initial state given by classical input ρ : x

 the physical process in the experimentℰ :

 what the scientist measureO :

 initial state of the physical systemρ :

 the quantum dynamics to speed upℰ :

 the property we want to predictO :

Example 2
Training


quantum neural networks

 input state encoding classical input ρ : x

 the quantum neural network to learnℰ :

 a single fixed observableO :

The Setting
• In this work, we focus on training an ML model to learn and predict 

                                                , 

where  is an input quantum state,  is an (unknown) CPTP map, and  is an observable.


• This includes any function computable by a quantum computer (in exponential time).
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Given an -qubit CPTP map  that represents a high-complexity quantum processn ℰ

1010011000111
1000101000011
1110011010100
0101001001101
1110001001000

?
A high-complexity quantum process

Learning …

Properties of
the input state

0010111011001
0101010101010
0001110001111
1000011111111
0010101110111

A low-complexity
learned model

Properties of
the output state

Some Repetitions

A Classical
Dataset

Classical machine

A Learned 
Model

The goal of this work



• A classical version of the quantum problem


• A restricted version of the quantum problem


• Generalization to the original quantum problem

Overview
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A Classical Problem
• Given an unknown classical Boolean circuit  mapping  bits to  bits.


• The input is now an -bit string .


• The 1st output bit of  for input  is equal to .

C n n

n x ∈ {−1,1}n

C x fC(x) = Tr(Z1C(|x⟩⟨x|))

?
A high-complexity classical circuit

Z1

x ∈ {−1,1}n



Worst-case hardness
• The function  is equiv. to an exponentially long vector  with no structure.


• To learn a model , such that , 
we must query   for all input . Query complexity: .

fC {−1,1}2n

h(x) h(x) − fC(x)
2

< 0.5,∀x ∈ {−1,1}n

fC(x) x Θ(2n)

?
A high-complexity classical circuit

x ∈ {−1,1}n

Z1



Average-case hardness
• The function  is equiv. to an exponentially long vector  with no structure.


• To learn a model , such that , 
we must query   for at least half of all . Query complexity: .

fC {−1,1}2n

h(x) 𝔼x∼{−1,1}n h(x) − fC(x)
2

< 0.5
fC(x) x Θ(2n)

?
A high-complexity classical circuit

x ∈ {−1,1}n

Z1



Average-case hardness for 
shallow classical circuits

• [AGS19] showed that learning , such that , 
is computationally hard (for both classical & quantum computers), even when the 
classical Boolean circuit is constant-depth (with majority gates, i.e., ).

h(x) 𝔼x∼{−1,1}n h(x) − fC(x)
2

< 0.5

TC0

Z1

?
A shallow classical circuit

x ∈ {−1,1}n
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A Classical Problem

?
A high-complexity classical circuit

Z1

x ∈ {−1,1}n

Input:

This is hard!



?
A high-complexity quantum process

A Quantum Problem

Z1

n

⨂
i=1

|ψi⟩ ∈ (ℂ2)⊗n

Input:

Is this harder?
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A Quantum Problem

Z1

n

⨂
i=1
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Input:

Is this harder?

O = ℰ†(Z1)



?
A high-complexity quantum process

Some Repetitions

A Classical Dataset

• Each repetition prepares a random product state, and measures the 1st qubit in the Z basis

O = ℰ†(Z1)



A Classical Dataset

Classical Dataset about O

 

for .

|ψℓ⟩ =
n

⨂
i=1

|ψℓ,i⟩ ↦ yℓ, 𝔼[yℓ] = ⟨ψℓ|O|ψℓ⟩

ℓ = 1,…, N

• Each repetition prepares a random product state, and measures the 1st qubit in the Z basis



The Prediction Task

Classical Dataset about O

 

for .

|ψℓ⟩ =
n

⨂
i=1

|ψℓ,i⟩ ↦ yℓ, 𝔼[yℓ] = ⟨ψℓ|O|ψℓ⟩

ℓ = 1,…, N

Given a new state , 

how to predict  accurately?

|ψ⟩ =
n

⨂
i=1

|ψi⟩ ∈ (ℂ2)⊗n

⟨ψ|O|ψ⟩



Worst-case hardness

• To learn a model , such that  

the problem is at least as hard as the classical problem.


• Hence, the query complexity is .

h(|ψ⟩) h(|ψ⟩) − ⟨ψ|O|ψ⟩
2

< 0.5,∀|ψ⟩ =
n

⨂
i=1

|ψi⟩,

Ω(2n)

?
A high-complexity quantum process

Z1

|ψ⟩ =
n

⨂
i=1

|ψi⟩

O = ℰ†(Z1)



Average-case hardness?

• To learn a model , such that , 
is the problem still exponentially hard?


• Surprisingly, the answer is no. The problem can be done in quasi-polynomial time.

h(|ψ⟩) 𝔼|ψ⟩=⨂n
i=1 |ψi⟩ h(|ψ⟩) − ⟨ψ|O|ψ⟩

2
< 0.5

?
A high-complexity quantum process

Z1

|ψ⟩ =
n

⨂
i=1

|ψi⟩

O = ℰ†(Z1)



Low-weight approximation

Lemma (Low-weight approximation): . 

Interpretation: For most product state , .

𝔼|ψ⟩=⨂n
i=1 |ψi⟩ ⟨ψ|O|ψ⟩ − ⟨ψ|O(low)|ψ⟩

2
<

1
3k

|ψ⟩ =
n

⨂
i=1

|ψi⟩ ⟨ψ|O|ψ⟩ ≈ ⟨ψ|O(low)|ψ⟩

O = ∑
P∈{I,X,Y,Z}⊗n

αPP O(low) = ∑
|P|≤k

αPP
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Low-weight approximation

• Low-weight approximation does not hold in the classical version of this problem

Lemma (Low-weight approximation): . 

Interpretation: For most product state , .

𝔼|ψ⟩=⨂n
i=1 |ψi⟩ ⟨ψ|O|ψ⟩ − ⟨ψ|O(low)|ψ⟩

2
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Low-weight approximation

O(low) = ∑
|P|≤k

αPPO = ∑
P∈{I,X,Y,Z}⊗n

αPP

Classical Input:

Quantum Input:

Classical inputs are perfectly distinguishable. 
But quantum state inputs are not. 



Basic Idea for the ML model

Classical Dataset

 

for .

|ψℓ⟩ =
n

⨂
i=1

|ψℓ,i⟩ ↦ yℓ, 𝔼[yℓ] = ⟨ψℓ|O|ψℓ⟩

ℓ = 1,…, N

Basic idea: Learn the low-weight observable  for a small .


Lemma (Fourier transform): 

O(low) = ∑
|P|≤k

αPP k

αP = 𝔼 [ 3|P|

N

N

∑
ℓ=1

yℓ⟨ψℓ |P |ψℓ⟩], ∀P ∈ {I, X, Y, Z}⊗n
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Basic idea: Learn the low-weight observable  for a small .


Lemma (Fourier transform): 

O(low) = ∑
|P|≤k

αPP k

αP = 𝔼 [ 3|P|

N

N

∑
ℓ=1

yℓ⟨ψℓ |P |ψℓ⟩], ∀P ∈ {I, X, Y, Z}⊗n

Basic Idea for the ML model

Classical Dataset

 

for .

|ψℓ⟩ =
n

⨂
i=1

|ψℓ,i⟩ ↦ yℓ, 𝔼[yℓ] = ⟨ψℓ|O|ψℓ⟩

ℓ = 1,…, N

We only need  !N = 𝒪(log n)
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Given an -qubit, -local Hamiltonian . 

Find a state  that maximizes or minimizes .

n k H = ∑
|P|≤k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

The Task

We want a guarantee on  

based on the description of 

⟨ψ|H|ψ⟩
H = ∑

|P|≤k

αPP



Given an -qubit, -local Hamiltonian . 

Find a state  that maximizes or minimizes .

n k H = ∑
|P|≤k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

Expansion property

 has an expansion coefficient  and dimension  if for every size-  region , 

the number of  with   is at most .

H ce de de R
P αP ≠ 0, dom(P) ⊆ R, R ⊆ dom(P) ce

Size-2 region R

X I I IIIII
X X Y ZIIIZ
Z Z I IIIII



Given an -qubit, -local Hamiltonian . 

Find a state  that maximizes or minimizes .

n k H = ∑
|P|≤k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

Expansion property

Example 1

Geometrically-local Hamiltonian

, ce = 𝒪(1) de = 1

Example 2

General -local Hamiltoniank

, ce = 4k de = k

Example 3

Degree-  2-body Hamiltoniand

, ce = 16d de = 1

 has an expansion coefficient  and dimension  if for every size-  region , 

the number of  with   is at most .

H ce de de R
P αP ≠ 0, dom(P) ⊆ R, R ⊆ dom(P) ce



Given an -qubit, -local Hamiltonian . 

Find a state  that maximizes or minimizes .

n k H = ∑
|P|≤k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

Theorem

If  has an expansion coefficient  and dimension , then for , 

we have an algorithm that either finds a maximizing product state , 

                         , 

or finds a minimizing product state  with a similar guarantee ( , ).

H ce de r = 2de/(de + 1) ∈ [1,2)
|ψ⟩

⟨ψ|H|ψ⟩ ≥ 𝔼|ϕ⟩:Haar⟨ϕ|H|ϕ⟩ +
1

c1/2de
e 2Θ(k log k) ∑

P≠I

|αP |r

1/r

|ψ⟩ + → − ≥ → ≤



Given an -qubit, -local Hamiltonian . 

Find a state  that maximizes or minimizes .

n k H = ∑
|P|≤k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

Theorem

If  has an expansion coefficient  and dimension , then for , 

we have an algorithm that either finds a maximizing product state , 

                         , 

or finds a minimizing product state  with a similar guarantee ( , ).

H ce de r = 2de/(de + 1) ∈ [1,2)
|ψ⟩

⟨ψ|H|ψ⟩ ≥ 𝔼|ϕ⟩:Haar⟨ϕ|H|ϕ⟩ +
1

c1/2de
e 2Θ(k log k) ∑

P≠I

|αP |r

1/r

|ψ⟩ + → − ≥ → ≤

Improved over existing results



Given an -qubit, -local Hamiltonian . 

Find a product state  that approximately optimizes .

n k H = ∑
|P|≤k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

The Algorithm



Given an -qubit, -local Hamiltonian . 

Find a product state  that approximately optimizes .

n k H = ∑
|P|=k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

The Algorithm
Select a slice with the largest value of αP



Given an -qubit, -local Hamiltonian . 

Find a product state  that approximately optimizes .

n k H = ∑
|P|=k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

The Algorithm

Replica 1

Replica 2

Replica 3

Random product states
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n k H = ∑
|P|=k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩
Replica 1

Replica 2

Replica 3

The Algorithm
Lift -qubit  to  qubitsn H nk

pol(H) = ∑
|P|=k

αPpol(P) ∈ ℂ2nk×2nk
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αPP
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Replica 3

The Algorithm

Optimize Optimize Optimize Optimize Optimize
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using a weighted sum



Given an -qubit, -local Hamiltonian . 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Given an -qubit, -local Hamiltonian . 

Find a state  that maximizes or minimizes .

n k H = ∑
|P|≤k

αPP

|ψ⟩ ⟨ψ|H|ψ⟩

Theorem

If  has an expansion coefficient  and dimension , then for , 

we have an algorithm that either finds a maximizing product state , 

                         , 

or finds a minimizing product state  with a similar guarantee ( , ).

H ce de r = 2de/(de + 1) ∈ [1,2)
|ψ⟩

⟨ψ|H|ψ⟩ ≥ 𝔼|ϕ⟩:Haar⟨ϕ|H|ϕ⟩ +
1

c1/2de
e 2Θ(k log k) ∑

P≠I

|αP |r

1/r

|ψ⟩ + → − ≥ → ≤
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Theorem
Given an observable  with an expansion coefficient  and dimension . 

     for  .

O = ∑
|P|≤k

αPP ce de

∥O∥∞ ≥
1

c1/2de
e 2Θ(k log k) (∑

P

|αP |r )
1/r

r =
2de

de + 1
∈ [1,2)

Proof ideas: 
(1) Use the guarantee from the algorithm for optimizing quantum Hamiltonians. 
(2) Adapt by noting that , where  is the state found by the algo.∥O∥∞ ≥ |⟨ψ|O|ψ⟩ | |ψ⟩



Theorem
Given an observable  with an expansion coefficient  and dimension . 

     for  .

O = ∑
|P|≤k

αPP ce de

∥O∥∞ ≥
1

c1/2de
e 2Θ(k log k) (∑

P

|αP |r )
1/r

r =
2de

de + 1
∈ [1,2)

Example 1

A sum of geometrically-local terms

, ce = 𝒪(1) de = 1
∑

P

|αP | ≤ 𝒪 (∥O∥∞)



Theorem
Given an observable  with an expansion coefficient  and dimension . 

     for  .

O = ∑
|P|≤k

αPP ce de

∥O∥∞ ≥
1

c1/2de
e 2Θ(k log k) (∑

P

|αP |r )
1/r

r =
2de

de + 1
∈ [1,2)

Example 2

A sum of -local termsk

, ce = 4k de = k

∥ ⃗α ∥ 2k
k + 1

≤ 2𝒪(k log k)∥O∥∞

A quantum analogue of 
the Bohnenblust-Hille inequality
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?
A high-complexity quantum process

A Quantum Problem

Z1

n

⨂
i=1

|ψi⟩ ∈ (ℂ2)⊗n

Input:
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A Classical Problem

?
A high-complexity classical circuit

Z1

x ∈ {−1,1}n

Input:

Exponentially 
hard!



?
A high-complexity quantum process

A Quantum Problem
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⨂
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|ψi⟩ ∈ (ℂ2)⊗n

Input:

Quasi-polynomially 
easy!
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Z1

n

⨂
i=1

|ψi⟩ ∈ (ℂ2)⊗n



The Original Problem

?
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State 

ρ

Observable 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B = ∑
P

βPP

∥B∥∞ ≤ 1



A Classical Dataset for Learning ℰ

?
A high-complexity quantum process

Some Repetitions



A Classical Dataset for Learning ℰ

?
A high-complexity quantum process

Some Repetitions

This can be seen as the classical shadow of 
quantum process  [RLC21, KTC+21]ℰ



A Classical Dataset for Learning ℰ

Classical Dataset

 

for .

|ψℓ⟩ =
n

⨂
i=1

|ψℓ,i⟩ ↦ |ϕℓ⟩ =
n

⨂
i=1

|ϕℓ,i⟩

ℓ = 1,…, N
This can be seen as the classical shadow of 

quantum process  [RLC21, KTC+21]ℰ



How to make prediction?

Classical Dataset

 

for .

|ψℓ⟩ =
n

⨂
i=1

|ψℓ,i⟩ ↦ |ϕℓ⟩ =
n

⨂
i=1

|ϕℓ,i⟩

ℓ = 1,…, N

?
A high-complexity quantum process

Observable 



with 

B = ∑
P

βPP

∥B∥∞ ≤ 1

State 
ρ
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State 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Almost back to the previous problem
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Low-weight approximation

Lemma (Low-weight approximation): . 

The lemma holds for any distribution  over any quantum state  

as long as  is flat under single-qubit rotations.

𝔼ρ∼𝒟 Tr(Oρ) − Tr(O(low)ρ)
2

<
1

1.5k

𝒟 ρ
𝒟

O = ∑
P∈{I,X,Y,Z}⊗n

αPP O(low) = ∑
|P|≤k

αPP

Example:  is the ground/thermal state of a generic geometrically-local Hamiltonian.ρ
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The ML algorithm
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The ML algorithm

 

for .
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Predict Tr (Ô(low)ρ) ≈ Tr (Bℰ(ρ))
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Surprising aspects of the ML algorithm

• We can learn to predict -qubit exponential-size quantum circuits up to a const. 

relative error from only  samples.


• The algorithm is computationally efficient (polynomial time for a const. relative error; 
quasi-polynomial time for a small error).


• After learning from product state inputs, the algorithm can predict entangled states.


• The prediction is classical after we obtain the classical shadows of the input state.

n
𝒪(log n)
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Surprising aspects of the ML algorithm

• We can learn to predict -qubit exponential-size quantum circuits up to a const. 

relative error from only  samples.


• The algorithm is computationally efficient (polynomial time for a const. relative error; 
quasi-polynomial time for a small error).


• After learning from product state inputs, the algorithm can predict entangled states.


• The entire algorithm can be run on a classical computer.

n
𝒪(log n)



Conclusion
• We give a computationally-efficient ML algorithm that can learn to predict the output 

of a quantum process with arbitrary complexity.


• Our results highlight the potential that ML models can predict outcomes of a 
complex quantum dynamics much faster than the process itself.


