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Guiding Question

Question:
[s there an (agnostic) learning problem that simultaneously...

L. ..s for learners but [9)%
learners using quantum data,

2. ..and can be from a classical
verifier to an untrusted quantum prover?’
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O. Goldreich and L. Levin, STOC 1989

E. Kushilevitz and Y. Mansour, SIAM J. Comput. 22.6 (1993)

EENEINEENES)

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning 12


https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/3519935.3519981
https://doi.org/10.1145/73007.73010
https://doi.org/10.1137/0222080
https://arxiv.org/abs/2306.04843

Boolean Fourier Analysis Crash Course

Example applications of Fourier-based (classical) learning:
* Realizably learning functions with low-degree Fourier concentration

3.4
* Realizably learning Fourier-sparse functions such as DNFs or decision
trees (from queries) [5,6]

» Agnostic parity learning (folklore, from queries)

N. Linal, Y. Mansour, and N. Nisan, J. ACM 40.3, 607-620 (1993)
A. Eskenazis and P. Ivanisvili, STOC 2022

O. Goldreich and L. Levin, STOC 1989

E. Kushilevitz and Y. Mansour, SIAM J. Comput. 22.6 (1993)

EENEINEENES)

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning 12


https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/3519935.3519981
https://doi.org/10.1145/73007.73010
https://doi.org/10.1137/0222080
https://arxiv.org/abs/2306.04843

Boolean Fourier Analysis Crash Course

Example applications of Fourier-based (classical) learning:

* Realizably learning functions with low-degree Fourier concentration
3.4

* Realizably learning Fourier-sparse functions such as DNFs or decision
trees (from queries) [5,6]

» Agnostic parity learning (folklore, from queries)
* 2-agnostic Fourier-sparse learning (from queries) |2]

N. Linal, Y. Mansour, and N. Nisan, J. ACM 40.3, 607-620 (1993)

A. Eskenazis and P. Ivanisvili, STOC 2022

O. Goldreich and L. Levin, STOC 1989

E. Kushilevitz and Y. Mansour, SIAM J. Comput. 22.6 (1993)

2] M.C.C., M. Hinsche, M. Ioannou, A. Nietner, and R. Sweke; arXiw:2306.04843

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning 12

EENEINEENES)



https://doi.org/10.1145/174130.174138
https://doi.org/10.1145/3519935.3519981
https://doi.org/10.1145/73007.73010
https://doi.org/10.1137/0222080
https://arxiv.org/abs/2306.04843

Learning From Superposition Examples

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

YD)
YD)

YD)

Oct 17, 2023 - IPAM

M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

’¢D> ‘¢D> — 2($jy)g{(),1}n+l \/D(Cl?,y) \x,y) [7]
YD)

YD)

[7] N.H. Bshouty and J.C. Jackson; SIAM Journal on Computing 28.3, 1136-1153 (1998)

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

hLD) ‘¢D> — 2($jy)g{(),1}n+l \/D(Cl?,y) \x,y) [7]
YD)

YD)

[7] N.H. Bshouty and J.C. Jackson; SIAM Journal on Computing 28.3, 1136-1153 (1998)

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

YD)
YD)

YD)

Oct 17, 2023 - IPAM

M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

YD)
YD)

YD)

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

YD)
YD)

YD)

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

YD)
YD)

YD)

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

13


https://doi.org/10.1145/225298.225312

Learning From Superposition Examples

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

14


https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1103/PhysRevA.99.032314
https://doi.org/10.1007/s11128-020-02661-1
https://doi.org/10.1145/225298.225312
https://doi.org/10.26421/QIC19.15-16-1
https://doi.org/10.22331/q-2021-11-24-587

Learning From Superposition Examples

Quantum Fourier
sampling central to

learning from [P )

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning

14


https://doi.org/10.1137/S0097539796300921
https://doi.org/10.1103/PhysRevA.99.032314
https://doi.org/10.1007/s11128-020-02661-1
https://doi.org/10.1145/225298.225312
https://doi.org/10.26421/QIC19.15-16-1
https://doi.org/10.22331/q-2021-11-24-587

Learning From Superposition Examples

Quantum Fourier
sampling central to

learning from [P )

* Parity learning |8,9,10]

18] E. Bernstein and U. Vagirani; SIAM Journal on Computing 26.5, 1411-1478 (1997)
9] A.B. Grilo, I. Kerenidis, and T. Zijlstra; Phys. Rev. A 99, 0525314 (2019)
[10] M.C.C.; Quantum Information Processing 19, 172 (2020)
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8] E. Bernstein and U. Vazirani; SIAM Journal on Computing 26.5, 1411-1478 (1997)
9] A.B. Grilo, I. Kerenidis, and T. Zijlstra; Phys. Rev. A 99, 032514 (2019)

10] M.C.C.; Quantum Information Processing 19, 172 (2020)

7] N.H. Bshouty and J.C. Jackson; SIAM Journal on Computing 28.3, 1136-1153 (1998)
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Fourier-sparse learning |12]

E. Bernstein and U. Vazirani; SIAM Journal on Computing 26.5, 1411-1473 (1997)
A.B. Grilo, I. Kerenidis, and T. Zijlstra; Phys. Rev. A 99, 032314 (2019)

M.C.C.; Quantum Information Processing 19, 172 (2020)
N.H. Bshouty and J.C. Jackson; SIAM Journal on Computing 28.8, 1186-1153 (1998)
V. Kanade, A. Rocchetto, and S. Severini; QIC 19.15616, 1261-1278 (2019)
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Mixture-of-Superpositions (MoS) Examples

One quantum / MoS Oracle for D \

example, please!

e | Random function f ~ Fy
? [¥eun)
Y (Unsf) \ /
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Definition:

Here, Fp is the distribution that D induces over all functions:
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pD =

i [V, ) Wa, p

Here, Fp is the distribution that D induces over all functions:

P~ P~
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Mixture-of-Superpositions (MoS) Examples

Definition:

Here, Fp is the distribution that D induces over all functions:

P~ P~

PfNF’D [f — f] — HzEXn ]P)(a:,y)ND[f(Z) — y|33' — Z]

Sanity checks:

1. ItD = (Uy, f), then pp = Y, n )P a,.pl-
2. Measuring pp in the computational basis = Sampling from D.

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning 17
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Quantum Fourier Sampling from MoS

Quantum Fourier No quantum Fourier sampling

sampling central to known for learning from |Yp)

learning from [Yq r)) unless D = (U, f) up to noise
Theorem:
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Quantum Fourier Sampling from MoS

Quantum Fourier No quantum Fourier sampling

sampling central to known for learning from |Yp)

learning from [Yq r)) unless D = (U, f) up to noise
Theorem:

Given pp for D = (U, ), perform Hadamard gates on all qubits,
measure in the computational basis to obtain outcome (¢, b) € {0,1}**1.
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Quantum Fourier Sampling from MoS

Quantum Fourier No quantum Fourier sampling

sampling central to known for learning from |Yp)

learning from [Yq r)) unless D = (U, f) up to noise
Theorem:

Given pp for D = (U, ), perform Hadamard gates on all qubits,
measure in the computational basis to obtain outcome (¢, b) € {0,1}**1.

1. IP[sz]z%:IP)[bzl]
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Quantum Fourier Sampling from MoS

Quantum Fourier No quantum Fourier sampling

sampling central to known for learning from |Yp)

learning from [Yq r)) unless D = (U, f) up to noise
Theorem:

Given pp for D = (U, ), perform Hadamard gates on all qubits,
measure in the computational basis to obtain outcome (¢, b) € {0,1}**1.

1. Plb=0 =§=1p>[b=1]

2 |Ple=sb =11 - (¢(s))

1
-
= 5n
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What is quantum Fourier sampling from MoS good for?
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Let € > 2 -G ) With 0(1/&*) copies of pp for D = (U, @), we can
efficiently produce a ¢:{0,1}"* - [—1,1] such that
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Theorem:

Let € > 2 -G ) With 0(1/&*) copies of pp for D = (U, @), we can
eff101ently produce a ¢:{0,1}" - [—1,1] such that
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Fourier Approximation from MoS

What is quantum Fourier sampling from MoS good for?

Theorem:

Let € > 2 -G ) With 0(1/&*) copies of pp for D = (U, @), we can
efficiently produce a ¢:{0,1}"* - [—1,1] such that

1. ||p — quoo < ¢, and
% Mo S (eiz)
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Fourier Approximation from MoS

What is quantum Fourier sampling from MoS good for?

Theorem:

Let € > 2 -G ) With 0(1/&*) copies of pp for D = (U, @), we can
efficiently produce a ¢:{0,1}"* - [—1,1] such that

1 qb—gb”oo < ¢, and
% Mo S (eiz)
with high success probability:.

Oct 17, 2023 - IPAM M.C.C., Classical Verification of Quantum Learning 19




Fourier Approximation from MoS

What is quantum Fourier sampling from MoS good for?

Theorem:

Let € > 2 -G ) With 0(1/&*) copies of pp for D = (U, @), we can
efficiently produce a ¢:{0,1}"* - [—1,1] such that

1 qb—gb”oo < ¢, and
% Mo S (eiz)
with high success probability:.

For the next results, all € are € > 2 (__2).
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Fourier Approximation from MoS

Proof Idea:
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Fourier Approximation from MoS

Proof Idea:
_ 2
 We can sample from a distribution that is close to {(qb(s)) } up

1 g2 S
to error — < —.
2n 16
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Fourier Approximation from MoS

Proof Idea:
_ 2
 We can sample from a distribution that is close to {(qb(s)) } up
1 g2 S

to error — < —.
2n 16

* The DKW Theorem [13] (discrete version [14]) implies:
: : o7 1
With high probability, O

T—z) samples suffice to approximate the
probability distribution to accuracy t.

[13] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, Ann. Math. Stat. 27.3, 642-669 (1956)
[14] M.R. Kosorok, Introduction to empirical processes and semiparametric inference (2008)
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Fourier Approximation from MoS

Proof Idea:
_ 2
 We can sample from a distribution that is close to {(qb(s)) } up
1 g2 S

to error — < —.
2n 16

* The DKW Theorem [13] (discrete version [14]) implies:
: : o7 1
With high probability, O

T—z) samples suffice to approximate the
probability distribution to accuracy t.
2
e Use DKW with 7 = % relying on the approximate sampling.

[13] A. Dvoretzky, J. Kiefer, and J. Wolfowitz, Ann. Math. Stat. 27.3, 642-669 (1956)
[14] M.R. Kosorok, Introduction to empirical processes and semiparametric inference (2008)
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Agnostic Parity and Fourier-Sparse
Quantum Learning from MoS

What is quantum Fourier approximation from MoS good for?

Corollary (1-Agnostic Proper Parity Learning from MoS):
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Quantum Learning from MoS

What is quantum Fourier approximation from MoS good for?
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Using O (814) copies of pp, we can etficiently produce a bit string
s € {0,1}" such that
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Quantum Learning from MoS

What is quantum Fourier approximation from MoS good for?

Corollary (1-Agnostic Proper Parity Learning from MoS):

Using O (814) copies of pp, we can etficiently produce a bit string
s € {0,1}" such that

P ooplb£s -2l < min P pplb£t- .
(¢,0)~D|b # $ 93]_1561%%1’{1}?1 (eb)~DlbF T x|+ ¢
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Agnostic Parity and Fourier-Sparse
Quantum Learning from MoS

What is quantum Fourier approximation from MoS good for?

Corollary (1-Agnostic Proper Parity Learning from MoS):

Using O (814) copies of pp, we can etficiently produce a bit string
s € {0,1}" such that

P ooplb£s -2l < min P pplb£t- .
(¢,0)~D|b # $ 93]_1561%%1’{1}?1 (eb)~DlbF T x|+ ¢

Note: This is (at least) LPN-hard from classical examples!
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What is quantum Fourier approximation from MoS good for?
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Agnostic Parity and Fourier-Sparse
Quantum Learning from MoS

What is quantum Fourier approximation from MoS good for?

Corollary (2-Agnostic Fourier-Sparse Learning from MoS):
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Agnostic Parity and Fourier-Sparse
Quantum Learning from MoS

What is quantum Fourier approximation from MoS good for?

Corollary (2-Agnostic Fourier-Sparse Learning from MoS):

. =~ (k*
Using O (8—4

hypothesis h:{0,1}"* — {0,1} such that

copies of pp, we can etficiently produce a randomized
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Agnostic Parity and Fourier-Sparse
Quantum Learning from MoS

What is quantum Fourier approximation from MoS good for?

Corollary (2-Agnostic Fourier-Sparse Learning from MoS):

. =~ (k*
Using O (5_4

hypothesis h:{0,1}"* — {0,1} such that

Py b # () <2 _ min Pizp)y~plb # f(x)] + €.
f:X,—{0,1}
Fourier—k—sparse

copies of pp, we can etficiently produce a randomized
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Guiding Question

Question:

[s there an (agnostic) learning problem that simultaneously...

1. ..1s

for learners but

learners using quantum data,

2. ..and can be

verifier to an untrusted quantum prover?’

by

from a classical

Oct 17, 2023 - IPAM

M.C.C., Classical Verification of Quantum Learning
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Interactive Classical Veritication of
Quantum Learning

How classical clients can verifiably delegate learning to quantum servers
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Veritying Quantum Learners

L 7

Q. Stat. queries ! ! Statistical queries ! I
’ |

Client oracle

-—
A

Q. Stat. queries ‘! !!I

Quantum examples, ! l’ Random examples,

Server oracle
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1. D= (U,, ) has no small non-zero Fourier coetficients:

DeDy,.>9 = {(Umﬁp) o £0 = ¢ > 79}

2. D= (U,,p) has L,-bounded bias:
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Two Assumptions

1. D= (U,, ) has no small non-zero Fourier coetficients:

D € Do = {Un, ) | 6 £ 0 = |9 > 0]

2. D= (U,,p) has L,-bounded bias:
D € Dy, jfa2,52) = { Uns ¥) | Eonas, [(6(2))7] € [a®, 7] }

Note: Both are satisfied (for suitable 9, a, and b) if D is known to
correspond to a noisy parity or Fourier-sparse function.
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Two Assumptions

1. D= (U,, ) has no small non-zero Fourier coetficients:

D € Do = {Un, ) | 6 £ 0 = |9 > 0]

2. D= (U,,p) has L,-bounded bias:
D € Dy, jfa2,52) = { Uns ¥) | Eonas, [(6(2))7] € [a®, 7] }

Note: Both are satisfied (for suitable 9, a, and b) if D is known to
correspond to a noisy parity or Fourier-sparse function.

» Classical agnostic learning is hard in these settings!
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Central ingredient in our quantum learning procedures:

Quantum Fourier sampling + Fourier spectrum approximation
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Interactive Verification of Fourier
Spectrum Approximation

Central ingredient in our quantum learning procedures:
Quantum Fourier sampling + Fourier spectrum approximation

»Can we classically verify this quantum subroutine?
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Interactive Verification of Fourier
Spectrum Approximation

Theorem:

Let 9 > 2_(5_3) and € > 2Vb2 — a?. There is a classical-quantum pair
(V, P) that, for any D € Dy, ;>9 N Dyy_.[q2 p2], achieves:
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Theorem:

Let 9 > 2_(5_3) and € > 2Vb2 — a?. There is a classical-quantum pair
(V, P) that, for any D € Dy, ;>9 N Dyy_.[q2 p2], achieves:

1. P uses O ( ) copies of pp and time O (194)
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Interactive Verification of Fourier
Spectrum Approximation

Theorem:

Let 9 > 2_(5_3) and € > 2Vb2 — a?. There is a classical-quantum pair
(V, P) that, for any D € Dy, ;>9 N Dyy_.[q2 p2], achieves:

1. P uses O ( ) copies of pp and time O (194)
e

4
2. V uses O ( ) classical examples and time O (nb ),

c494
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Interactive Verification of Fourier
Spectrum Approximation

Theorem:

Let 9 > 2_(5_3) and € > 2Vb2 — a?. There is a classical-quantum pair
(V, P) that, for any D € Dy, ;>9 N Dyy_.[q2 p2], achieves:

1. P uses O ( ) copies of pp and time O (04)

4 4
2. V uses 0 (Sf S 4) classical examples and time 9] (;:9 4),

3. If V interacts with P, then V outputs ¢ s.t. Hc/J — q5H1 < ¢ and
|8l < 0(55) with high probability.
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Interactive Verification of Fourier
Spectrum Approximation

Theorem:

Let 9 > 2_(5_3) and € > 2Vb2 — a?. There is a classical-quantum pair
(V, P) that, for any D € Dy, ;>9 N Dyy_.[q2 p2], achieves:

1. P uses O ( ) copies of pp and time O (194)

4 4
2. V uses 0 (Sf S 4) classical examples and time 9] (;139 4),

3. If V interacts with P, then V outputs ¢ s.t. Hc/J — g5H1 < ¢ and
|8l < 0(5;) with high probability.

4. If V interacts with any P’, then V accepts and outputs Hqﬁ ng > &
only with small probablhty
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Interactive Verification of Fourier
Spectrum Approximation

Proof idea:
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Interactive Verification of Fourier
Spectrum Approximation

Proof idea:
1. V asks P to send a list of all non-zero Fourier coefficients.

2. P uses Fourier approximation from MoS to create such a list
and sends it to V.
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Interactive Verification of Fourier
Spectrum Approximation

Proof idea:
1. V asks P to send a list of all non-zero Fourier coefficients.

2. P uses Fourier approximation from MoS to create such a list
and sends it to V.

3. V uses classical examples to produce their own Fourier
coetficient estimates for the coefficients that P sent.
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Interactive Verification of Fourier
Spectrum Approximation

Proof idea:
1. V asks P to send a list of all non-zero Fourier coefficients.

2. P uses Fourier approximation from MoS to create such a list
and sends it to V.

3. V uses classical examples to produce their own Fourier
coetficient estimates for the coefficients that P sent.

4. If the total accumulated Fourier weight of the estimates is large
enough, V is happy. Otherwise, I rejects.
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Interactive Verification of Quantum
Agnostic Learning
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Interactive Verification of Quantum
Agnostic Learning

Theorem:

Let 9 > 2_(5_3) and € > 2Vb?% — a?. There is a classical-quantum pair (V, P)
that, for any D € Dy ;>9 N Dy 142 p27, achieves:
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Agnostic Learning
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Let 9 > 2_(5_3) and € > 2Vb?% — a?. There is a classical-quantum pair (V, P)
that, for any D € Dy ;>9 N Dy 142 p27, achieves:

1. P uses O (é) copies of pp and time O (%),
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Let 9 > 2_(5_3) and € > 2Vb?% — a?. There is a classical-quantum pair (V, P)
that, for any D € Dy ;>9 N Dy 142 p27, achieves:

1. P uses O (é) copies of pp and time O (%),
~ [ p% . ) ~ ( nb*
2. V uses O ((’E 75 4) classical examples and time O (‘E = 4),
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Interactive Verification of Quantum
Agnostic Learning

Theorem:

Let 9 > 2_(5_3) and € > 2Vb?% — a?. There is a classical-quantum pair (V, P)
that, for any D € Dy ;>9 N Dy 142 p27, achieves:

=~ (1 : . =
1. P uses O (E) copies of pp and time O (%),

~ [ p% i ) ~ ( nb*
2. V uses O ((’E 75 4) classical examples and time O (‘E = 4),

3. If V interacts with P, then V outputs a bit string s € {0,1}" s.t.

Puyy~pls - x #y] < trg)lcr,ll Pxy)~plt - x # y] + € with high prob.
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Interactive Verification of Quantum
Agnostic Learning

Theorem:

Let 9 > 2_(5_3) and € > 2Vb?% — a?. There is a classical-quantum pair (V, P)
that, for any D € Dy ;>9 N Dy 142 p27, achieves:

[]
)

=~ (1 : . =
1. P uses O (E) copies of pp and time O (%),

~ [ p% i ) ~ ( nb*
2. V uses O ((’E 75 4) classical examples and time O (‘E = 4),

3. If V interacts with P, then V outputs a bit string s € {0,1}" s.t.
Puyy~pls - x #y] < min Pxy)~plt - x # y] + € with high prob.
4. If V interacts with any P’, then V accepts and outputs a bit string s €

10,1} s.t. Py yyopls - x #y] > ggjlcn P yy~plt - x # y] + € with low prob.
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Interactive Verification of Quantum
Agnostic Learning

Theorem:

Let 9 > 2_(5_3) and € > 4kVb? — a?. There is a classical-quantum pair (V, P) that,
for any D € Dy, >9 N Dy 142 p2), achieves:
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We did, so we looked into it for the parity case:

Theorem:

The interactive verification guarantees cannot at the same time

 work for all £ > =vb? — aZ?, and

* have a verifier V with n-independent sample complexity.
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» Classical distinguisher between random noisy parities and fully
uniform distribution

»Violating a known Q(n) sample complexity lower bound ,
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Now: What can MoS examples not do?

Theorem:

The quantum sample complexity of distribution-independent

: : : .~ (VCdi ] )
agnostic learning from copies of pq is @( : lmzzog(l/ )).

* This equals the classical sample complexity up to log-factors.

 This is (almost) the same limitation as for superposition examples [16].

[16] S. Arunachalam and R. de Wolf; JMLR 19.1, 28792878 (2018)
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“Usetulness” ot MoS for Distribution-
Independent Agnostic Learning

Proof Idea: We write d = VCdim, let m be the number of copies.
1. QMI(4; pp™) = (log(24)) = Q(d)

2. QMI(4; pS™) < m - QMI(4; pp,)

3. QMI(4; pp,) < O(e?log(d))
* This step uses the specific distributions D, and involves a
detailed eigenvalue analysis for the resulting MoS states.
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“Uselessness” of MoS for Verifying
Distribution-Independent Agnostic Learning

S0, MoS don’t help with distribution-independent agnostic learning...

How much can they help a verifier interacting with an MoS prover?

Theorem (Consequence of [15]):

The sample complexity of a verifier interacting with an MoS prover
for distribution-independent agnostic learning is at most
quadratically better than what the verifier can achieve alone.

[15] S. Mutreja and J. Shafer, COLT 2023
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“Uselessness” of MoS for Verifying
Distribution-Independent Agnostic Learning

S0, MoS don’t help with distribution-independent agnostic learning...

How much can they help a verifier interacting with an MoS prover?

Theorem (Consequence of [15]):

The sample complexity of a verifier interacting with an MoS prover
for distribution-independent agnostic learning is at most
quadratically better than what the verifier can achieve alone.

[15] showed that interacting with a classical prover can also lead to
an at most quadratic sample complexity improvement.

[15] S. Mutreja and J. Shafer, COLT 2023
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Conclusion and Outlook

What we talked about and where to go from here
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Guiding Question

Question:

[s there an (agnostic) learning problem that simultaneously...

1. ..1s

for learners but

learners using quantum data,

2. ..and can be

verifier to an untrusted quantum prover?’

by

from a classical
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Sumimary

* We proposed the mizture-of-superpositions (MoS) quantum oracle
and demonstrated its power and limitations in agnostic learning.
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Problem type

Oracle type Fourier Heavy FF)urler 1-agnostic 2—a.gnostlc
sampling cogfﬁcu?nt parity learning Fourler—-sparse
estimation learning
superposition examples
= v v v v
Functional mixt ure—of—spperp ositions
superposition QSQ

= Probably X v v v

mixture-of-superpositions QSQ
superposition examples ? ? ? ?
Distributional ' superposition QSQ Probably X ? ? ?
mixture-of-superpositions v v v v
mixture-of-superpositions QSQ || Probably X v v v
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Sumimary

* We proposed the mizture-of-superpositions (MoS) quantum oracle
and demonstrated its power and limitations in agnostic learning.

* We identified learning problems that
* are believed to be classically hard,

* but that become efficiently solvable for a classical verifier
interacting with an untrusted quantum prover.
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* Provable separation between superposition examples and mixture-
of-superpositions examples for agnostic learning?

 Verification in other quantum learning scenarios, e.g., distribution
learning or learning with vs. w/o quantum memory (-> ongoing

work)?

e NISQ-friendly variants of our framework, e.g., for variational
quantum machine learning or for NISQ) verifiers?
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