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How we do science - a learning perspective

McClean et al. J. Chem. Phys. 155, 150901 (2021)

Reagents / Reactants
(Input chemicals)

⨉ N → ∞

Products
(Output chemicals)

How long does this typically take? 
(reaction rates)

Does this ever happen? 
(synthesizability)

F=ma

(sometimes just 1 copy)

Wait

?



Quantum simulation and fast-forwarding

Rapidly developing field - numerically exact evolutions in time sublinear in # basis functions*!

Exact classical competition is a hard exponential wall - entanglement truncation challenging

Even a quantum computer has limits - No Fast-Forwarding Theorem**

Chemical reaction times ~ hours? 

* Babbush, Berry, McClean, Neven, NPJ Quantum Information Vol 5 No. 92 (2019)
** Berry, Ahokas, Cleve, Sanders, Communications in Mathematical Physics 270, 359 (2007)



Why do we focus on stationary states so often?

Dynamics - BQP Stationary(often ground) States - QMA

t → ∞ is predictive of t >> 1, I actually care about 

Thermodynamics is predictive of longer time behavior

Limited to physical time scales Makes predictions on time scales 
much longer than physical

+

Thermo can’t be better for all systems (physical systems special? e.g. overlap assumptions in QPE)
Worst cases are like state enumeration / diagonalization (is this a useful perspective?)



The predictive power of (free) energies

Undecidability formally broken by advice in some cases

Data is a restricted form of advice

Can all physically interesting questions be answered by some reduced model?

Undecidable

Recent*
- Does a system thermalize?
- Does a system have an electronic gap?
- Will molecule X ever form from constituents Y?

* Infinite systems specified by unit and translational invariance
Cubitt, Perez-Garcia, Wolf Nature Vol. 528, pg 207–211 (2015)
Shiraishi, Matsumoto arXiv:2012.13889 (2020)

Physical undecidability** - as the system evolves in time, there are sudden, qualitative 
changes that cannot be predicted in any way except evolving forward in time and seeing if it 
happens, and no answer in finite time can indicate if it will never happen (for all systems).

** Unpredictability and undecidability in dynamical systems 
Moore, Phys. Rev. Lett. 64, 2354 (1990)



Quantum machine learning & data advantage

Data limited problems - Limited by availability of data, 
no computation possible to overcome lack of data

Transduced quantum state
Analog simulation state
Output of computation
…

(limited copies)

Copies ~ exp(n)

Copies ~ n

Compute ~ ?

Compute ~ ?

Computationally limited problems - Simple inputs, known computational procedure 

Key to factor
Hamiltonian to simulate
… Compute ~ exp(n)

Compute ~ n

Data assisted problems - Known 
computational procedure, complexity 
can change with available data 
(~advice)



A motivating example for data assisted problems

Some data

Arbitrary length quantum circuit Hermitian operator

Direct simulation at least as hard as BQP, 
must be a powerful function of          !

At most quadratic function on entries 
of         with p2 coefficients!

(More generally, need  ~                   data pts)

No data - hard quantum circuit
With data - Almost trivial learning task!

Task - compute

Given  circuit & some input



The power of data in quantum machine learning*

* Hsin-Yuan (Robert) Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush, Sergio Boixo, Hartmut 
Neven, Jarrod R. McClean “Power of data in quantum machine learning” Nature Communications, Vol.12, 
No. 2631 (2021)



Quantum memory and quantum-enhanced experiments

Quantum advantage in learning from experiments
Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean
Science 376, 6598 (2022)

This work - Exponential advantage with exactly 2 copies on 2 different tasks and efficient classical 
compute (and additional proofs)



What’s the simplest task we can have an advantage on?
Task - 

Collect classical data signature of state

Take any measurements you want on the N copies

Given new Pauli operator O, predict 

N copies of

Is a general n-qubit pauli operator e.g.

Form of state is known 

unknown 

Setup - 

Note - 
State is un-entangled but not factorizable
Can be realized in depth 1 Clifford circuit

(Alternatively) Given 2 candidate  Pauli operators 

Determine



The best possible conventional experiments

Result summary

Best conventional strategy requires N ~ 

to predict                        to additive error < .25 

with probability > .8 

Sketch of proof

Reduction to discrimination task

Null hypothesis Alternate hypothesis

random

-Optimal discriminating POVM can be bounded using hypothesis structure
-Is independent of previous measurements
-Gives exp vanishing returns



The simplest quantum-enhanced experiment

Computation time ~ nNSamples ~ 

2n classical bits for N rounds creates Bell sketch of state 

Estimate of 

Depth 1 
clifford gates

n qubits

n qubits

Bell measurements

…

…

=



Summarizing the scale of the separation

Copies ~ Compute ~ n x Copies  

Copies  

Collect classical data signature of state

Take any measurements you want on the N copies

Given new Pauli operator O, predict                        to error
N copies of



Bell measurements as a feature in learning

n qubits

n qubits …

…

2n classical bits for N rounds creates Bell sketch of state 

Could we use this “feature” of a quantum state to learn this task?

Can state specific noise or features boost the performance? Or the 
performance of an adversary?

Supervised Unsupervised



Using our chip to understand performance on real data

n qubits

n qubits …

…

“Transduction” “Data Processing”



Experimental demonstration of advantage

Trained on noiseless data n < 8

N copies of
Given 2 candidate  Pauli operators 

Determine

Test on n up to 20 (= 40 physical qubits)



We’ve learned about states… how about processes?
Given access to a process       N times, determine if
(a) random time-reversal symmetric evolution
(b) random unitary

n qubits

n qubits …

…

Bell prep Bell measurement



Unsupervised discovery

…

Trials

…

Avg and Variance

Feature vector for 
each process

Squared exp kernel

Kernel PCA



SWAPs and virtual distillation to the quantum PCA

Corrupted 
quantum data

Uncorrupted data Orthogonal errors

n qubits

n qubits …

…

Recall virtual distillation
Uses destructive SWAP

1 SWAP → Virtual distillation

SWAP as a generator →                                            → Quantum PCA

This work: Proof in a conventional scenario that exponential number of copies 
are required to learn about principal component vs constant in quantum 
enhanced setting.



Truly multi-qubit quantum sensors?  Arrays?

Single qubit Ensemble of single qubits Stretched single qubits

Requirements -

Multiple coherent qubits w/ independent information
Ask more interesting questions than 1 parameter
Some limited, but essential, “quantumness” in the data



Quantum data

Punchline - IF we could find a suitable data source, our 
cloud quantum devices today allow us to learn things 
that are otherwise inaccessible.

(Recall computational vs data advantage)

This work
- Proofs of advantage in state learning, process 

learning, and quantum PCA
- Experimental demonstration of state and process 

learning using up to 40 physical qubits & 1300 gates

Outlook
- Inspire work on quantum data sources & sensors 

(beyond quadratic)
- Deeper connection to physics? Interferometry?
- Other tasks with 2-copy + Clifford advantage?
- Beyond Bell features?
- Can these proof techniques tell us something about 

existing learning tasks or quantum techniques?
- Moving away from kernel methods?



Making a gamble with classical data
Quantum data is interesting for future discovery of the universe (recall the impact of CCD cameras on telescopes - see 
“The Perfect Theory”), but most data we work with today, even from quantum systems, seems classical.

There are a few pieces of evidence that QC might help for classical data (sampling hard distributions, learning problems 
based on discrete log, linear algebra routines, …) but a lot of pieces of evidence that it will be hard to achieve in practice

Immediate path for everyone opening Nielsen and Chuang 
1. Stick N features of classical data into Log N qubits
2. Read about Holevo’s bound limiting you to Log N bits of information out, get sad

Naive amplitude encoding + expected values limits you to quadratic functions on data - pretty weak models

Rotation based encoding and calling data multiple times (Data re-uploading) can get trig functions and higher degree 
polynomials - but can be hard to design in some cases [Schuld et al 2020]

In fault tolerance, about as easy to encode data in a way that allows non-linear functions over compact intervals for each 
feature by applying a unitary to the state

Even when amplitude encoding or feature-by-feature is enough - loading data always scales with ~N, 
many successful classical algorithms scale like N or < N – advantage lost?



Current premier models

Bard - 137 billion parameters (~1011 )

GPT 3 - 175 billion parameters (~1011 )

GPT 4 - 1.76 Trillion parameters (~1012 ) (Speculated)

When # of key parameters like weights or # of data points ~ 1012  any scalings worse than linear 
can be catastrophic and determines architecture / algorithm success or failure.

The same may be true in the quantum case independent of the large Hilbert space dimension



Quantum pre-computation
Loading data always scales with ~N, most successful classical algorithms scale like N or < N – advantage lost?

Is it ever reasonable to discount the cost of data loading?  If we do, how do our wins change?

Classically we use caches, database indexes, lookup tables, not to change asymptotic complexity, but practical time to solution.

Quantum data center

(Mass production theorems)

[Kretschmer 2022]

…

User

Let ⍴ define a program, known how to consume copies of ⍴ to implement 

“Accelerating Quantum Algorithms with Precomputation” Huggins, McClean arXiv:2305.09638 (2023)

 (can also post-select)

Question - What is the full class of uniquely quantum pre-computations we can do to accelerate time to solution?



Quantum communication complexity

Alice has x, Bob has y, want to compute f(x,y), and the cost is only counted in terms of bits or qubits exchanged
x y

In spite of Holevo’s bound stating n qubits contain n bits of information, exponential 
quantum communication advantages are known. Sending log n qubits in place of n bits

Exponential communication advantaged shown for linear regression problem 
Montanaro A, Shao C. Quantum communication complexity of linear regression arXiv:2210.01601 (2022)

Raz problem

Inputs

Size N N x N N x N

Output 0(1) if Vx is close to M0(M1)

Quantum - Log N qubits
Classical - Ω(√N) bits

Some existing work in ML-like problems



Distributed quantum networks & models

…
(Computer & Repeater)

Conjecture / opinion (controversial?) - 
- The ability to make good quantum networks will be roughly coincident with really good quantum memories.  
- Requirements beyond quantum memory - heralded transduction fidelity, rate, entanglement distillation - relatively modest.  
- What we lack is compelling, end-to-end costed out applications to help motivate their development.

Gilboa , McClean “Exponential Quantum Communication Advantage in Distributed Learning”arXiv:2310.07136 (2023)

For an expressive class of functions, we find an exponential quantum 
communication advantage in the problem of inference and gradient 
determination.



Small communication advantage with ‘simple’ circuits
Raz problem

Inputs

Size N N x N N x N

Output 0(1) if Vx is close to M0(M1)

Quantum - Log N qubits
Classical - Ω(√N) bits

If M or V generated from polylog(N) ~ 
poly(n) and white box, it suffices to send 
circuit description.  

If M or V generated from polylog(N) ~ 
poly(n) and blackbox, it suffices to send 
Clifford classical shadows.  

Lack of communication advantage, does not preclude computational advantage though.  
- Suppose M or U was pseudo-random.  
- Using black box + classical communication approach requires exponential classical computation 

under cryptographic assumptions



Problem structure can degrade advantage

If the classifier is really good ( ɣ ~ 1), classical = quantum = O(1)



Exponential advantage in more general PQC models



Model expressivity and privacy



Expressivity - a double edged sword

Recall, if we want this approximation converge for each feature 
dimension separately, we can use the relatively easy to prepare state 
|x> using Log(N) Log(M) qubits 

Only contains quadratic cross-feature terms, not complete across all N dimensions

Counting arguments tell you for this you need the multi-dimensional fourier state using N Log (M) qubits, 
which is the same complexity to just send the full state x classically → no communication advantage



Summary and outlook

Punchline - IF we could find a suitable data source, our 
cloud quantum devices today allow us to learn things 
that are otherwise inaccessible.

(Recall computational vs data advantage)

Quantum data Classical data

Punchline(s) - Data changes the landscape of quantum 
advantage.  If we can accept a future where stored 
quantum data states are stable and computers 
networked, we may find significant communication and 
privacy advantages in taking advantage of quantum 
encodings. 



Acknowledgements

Hsin-Yuan (Robert) Huang Michael Broughton

Quantum advantage in learning from experiments
Huang, Broughton, Cotler, Chen, Li, Mohseni, Neven, Babbush, Kueng, Preskill, McClean
Science 376, 6598 (2022)

Brooks Foxen

Exponential Quantum Communication Advantage in Distributed Learning
Gilboa , McClean 
arXiv:2310.07136 (2023)

Accelerating Quantum Algorithms with Precomputation
Huggins, McClean 
arXiv:2305.09638 (2023)

Bill Huggins Dar Gilboa


