

Quantum Speedups of Continuous Sampling and Optimization Problems

Ruizhe Zhang

Simons Institute

CQC 2023 Workshop I

Complexity of Sampling

Giving black-box access to a function $f: \mathbb{R}^d \to \mathbb{R}$, what is the minimum number of queries required to approximately sample from the distribution with density $\pi(x) \propto e^{-f(x)}$ in \mathbb{R}^d ?

A fundamental problem with wide applications:

- Statistical physics
 - > f(x) represents the energy of a state x and the equilibrium distribution over states is the Gibbs distribution whose density $\propto e^{-f(x)/T}$ (T is the temperature of the system).
- Bayesian inference

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{\int_{\mathbb{R}^d} p(x|\theta')p(\theta')d\theta'}$$

- Convex body volume estimation
 - ▶ Given access to the membership oracle of a convex body $\mathcal{K} \subseteq \mathbb{R}^d$, estimate $vol(\mathcal{K})$.
 - Reduce to uniformly sample a point inside some convex body.

Sampling $(\pi \propto e^{-f})$

Log-concave

Classical: easy (Langevin diffusion)

Quantum:

Volume estimation: (Chakrabarti et al.'23)

(Li-Zhang'22)

General case: (Childs et al.'22)

Optimization $(\min f(x))$

Convex

global minimum

Classical: easy (gradient descent)

Quantum:

- General case: (Chakrabarti et al.'19, van Apeldoorn et al.'20)
- Quantum LP/SDP: (Brandão-Svore'17, • van Apeldoorn et al.'20, ...)

Non-convex

local minima

Classical: NP-hard in general, algorithms works well in practice.

Quantum: Some recent works (Liu et al.'22, Gong et al.'22, ...) show quantum advantages over *specific* classical algorithms (e.g., SGD).

Childs, Li, Liu, Wang, Z. Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants. (*NeurIPS* 22, *QIP* 23)

Li, Z. Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits. (*NeurIPS* 22) October 5, 2023

Non-log-concave

Classical: hard (Langevin diffusion takes exponential time), efficient algorithms for some family of distributions

Quantum: open

Log-Concave Distribution

Definition (Log-concave distribution)

A probability distribution $\pi(dx) \propto e^{-f(x)}$ is log-concave if $f: \mathbb{R}^d \to \mathbb{R}$ is a convex function. We further assume that f is μ -strongly convex and L-smooth:

$$\frac{\mu}{2} \|x - y\|^2 \le f(y) - f(x) - \nabla f(x)^\top (y - x) \le \frac{L}{2} \|x - y\|^2 \quad \forall x, y \in \mathbb{R}^d.$$

Let $\kappa \coloneqq L/\mu$ be the condition number.

Examples

- 1. High-dimensional Gaussian distribution $\mathcal{N}(\theta, \Sigma)$ for positive definite Σ .
- 2. Uniform distribution $\pi(x) \propto \mathbf{1}_{\mathcal{K}}(x)$ for a convex and compact $\mathcal{K} \subset \mathbb{R}^d$.

Langevin diffusion: $dX_t = -\nabla f(X_t) dt$ + $\sqrt{2} dB_t$ >Stationary distribution is π gradient flowBrownian motion

Metropolis Adjusted Langevin Algorithm (MALA)

To sample from the log-concave distribution, we need to simulate the Langevin diffusion.

$$dX_t = -\nabla f(X_t)dt + \sqrt{2}dB_t \xrightarrow{\text{discretize}} X_{i+1} = X_i - h\nabla f(X_i) + \sqrt{2h}z_i \qquad z_i \sim \mathcal{N}(0, I)$$

However, the stationary distribution of the discretized process is not π .

MALA combines the Langevin dynamics with the *Metropolis–Hastings accept/reject mechanism*:

- 1. Initialize $x_0 \sim \mu_0$
- 2. For i = 0, 1, 2, ...:
 - I. Propose $z_{i+1} \sim \mathcal{N}(x_i h \nabla f(x_i), 2hI)$
 - II. Accept $x_{i+1} \leftarrow z_{i+1}$ with probability

$$\min\left\{1, \frac{\exp(-f(z_{i+1}) - \|x_i - z_{i+1} + h\nabla f(z_{i+1})\|^2/(4h))}{\exp(-f(x_i) - \|z_{i+1} - x_i + h\nabla f(x_i)\|^2/(4h))}\right\}$$

- > Stationary distribution π
- > $polylog(1/\epsilon)$ -dependence
- Gradient oracle query

Quantum speedup for MALA?

Quantum sampling

Ideally, we want to generate a quantum state (qsample) to represent a classical distributions:

$${\pi(x)}_{x\in\Omega} \leftrightarrow |\pi\rangle = \int_{\Omega} \sqrt{\pi(x)} |x\rangle \,\mathrm{d}x.$$

Reference	Complexity	Method	
(Zalka'98, Grover-Rudolph'02, Kaye- Mosca'01)	$O(\log 1/\epsilon)$	controlled rotations only for efficiently integrable density functions	
(Abaranay Ta Shma'02)	Qsampling is hard in general unless SZK \subseteq BQP		
(Anaranov-ra-Shima 05)	$O(1/\delta)$	adiabatic evolution for Markov chains	
(Wocjan-Abeyesinghe'08)	$Oig(1/\sqrt{\delta}ig)$	Szegedy's quantum walks + amplitude amplification	
(Low-Yoder-Chuang'14, Ozols-Roetteler- Roland'13, Wiebe-Granade'15)	$0^*(1/\sqrt{\epsilon})$	quantum rejection sampling (Bayesian, Gibbs)	

 δ is the spectral gap of Markov chain and ϵ is the approximation error.

Discrete-Time Quantum Walk (DTQW)

 A classical Markov chain over Ω can be represented by stochastic transition operator P such that

$$\sum_{y\in\Omega}P(x,y)=1\quad\forall x\in\Omega.$$

• A probability distribution π is stationary if

$$\sum_{y\in\Omega}\pi(x)P(x,y)=\pi(y)\quad\forall y\in\Omega.$$

Transition operator P

Acting on two registers $(x, y) \in \Omega \times \Omega$

• Step 1:

$$(x,y) \xrightarrow{(s)} (x,y_{\star}) \quad y_{\star} \in N(x)$$

• Step 2:

$$(x, y_{\star}) \to (y_{\star}, x)$$

Quantum walk operator W Acting on two quantum registers $|x\rangle|y\rangle$

• Step 1:

reflect $|y\rangle$ through $\sum_{z\in\Omega} \sqrt{P(x,z)} |z\rangle$

• Step 2: $|x\rangle|y'\rangle \rightarrow |y'\rangle|x\rangle$

Szegedy's Quantum Walk Operator

We assume that *P* is symmetric, i.e.,

 $P(x, y) = P(y, x) \ \forall x, y \in \Omega.$ In general, we should consider $D(x, y) = \sqrt{P(x, y)P(y, x)}.$

- Define $|\psi_x\rangle \coloneqq |x\rangle \sum_{y\in\Omega} \sqrt{P(x,y)} |y\rangle$ for any $x \in \Omega$.
- $\Pi = \sum_{x \in \Omega} |\psi_x\rangle \langle \psi_x|$ is the projection to the subspace span{ $|\psi_x\rangle}_{x \in \Omega}$.
- $S = \sum_{x \in \Omega} \sum_{y \in \Omega} |y, x\rangle \langle x, y|$ is the swap operator for the two quantum registers.
- The quantum walk operator can be defined as

 $W \coloneqq S(2\Pi - I) = S \cdot U \cdot (2(I \otimes |0\rangle \langle 0|) - I) \cdot U^{\dagger},$

where *U* implementes the QW update:

 $U|x,0\rangle = |\psi_x\rangle \quad \forall x \in \Omega.$

• Connection to QSVT: let $W' \coloneqq U^{\dagger} \cdot W \cdot U$. Then, ${W'}^k$ is a block-encoding of $T_k(P)$, the k-th Chebyshev polynomial, i.e.,

 $(I \otimes \langle 0 |) W'^k (I \otimes |0\rangle) = T_k(P).$

Spectrum of Quantum Walk Operator

• W has phase gap $\Delta = \Theta(\sqrt{\delta})$, where δ is the spectral gap of P.

DTQW for Searching

DTQW can quadratically speed up the hitting time of a reversible MC.

- Hitting time: the expected time to hit a marked vertex starting from the stationary distribution.
- Reversible: *P* satisfies the *detailed balance* condition: $\pi(x) \cdot P(x, y) = \pi(y) \cdot P(y, x) \quad \forall x, y \in \Omega$, which is required by the spectral analysis of *P*.

Examples of gapped systems:

- Johnson graph J(n,m): $\delta = \frac{n}{m(n-m)}$.
- Ising model with Glauber dynamics:

 $\pi(x) \propto \exp(x^{\top}Jx + h^{\top}x) \qquad \forall x \in \{\pm 1\}^n.$

There are numerous classical papers studying the spectral gaps in different parameter regimes, e.g., (Dobrushin'68, Jerrum-Sinclair'93, Mossel-Sly'13, Chen et al.'21, Eldan et al.'21, Jain et al.'22,...).

DTQW for Sampling

Question: how to generate a sample from the stationary distribution π ?

- Classically, the #steps needed in the worst-case is the *mixing time* of the Markov chain.
- For a reversible MC, the mixing time is bounded by $1/\delta \cdot \log(1/\min_{x \in \Omega} \pi(x))$.
- DTQW can be used to prepare the quantum sample (qsample) of the stationary distribution:

$$|\pi\rangle = \int_{\Omega} \sqrt{\pi(x)} |x\rangle \mathrm{d}x.$$

In the most general case, the cost is $1/\sqrt{\delta} \cdot 1/\sqrt{\min \pi(x)}$.

Can we do better under some assumptions?

Speedup for Slowly-Varying Markov Chains

Theorem (Wocjan-Abeyesinghe'08)

Let M_0, M_1, \dots, M_r be classical reversible Markov chains with stationary distribution $\pi_0, \pi_1, \dots, \pi_r$ such that

- 1. Each chain has spectral gap $\geq \delta$.
- 2. $|\langle \pi_i | \pi_{i+1} \rangle|^2 \ge p$ for all $i \in \{0, 1, ..., r-1\}$ (Quantum Simulated Annealing (QSA) condition).
- 3. $|\pi_0\rangle$ is easy to prepare.

Then $|\pi_r\rangle$ can be approximately prepared using $\tilde{O}\left(\frac{1}{\sqrt{\delta}}\cdot\frac{r}{p}\right)$ calls to the quantum walk operators.

Remark

To implement the qu

For MALA, you ca

1. Initialize $x_0 \sim \mu_0$

2. For
$$i = 0, 1, 2, ...$$
:

- I. Propose $z_{i+1} \sim \mathcal{N}(x_i h \nabla f(x_i), 2hI)$
- II. Accept $x_{i+1} \leftarrow z_{i+1}$ with probability

$$\min\left\{1, \frac{\exp(-f(z_{i+1}) - \|x_i - z_{i+1} + h\nabla f(z_{i+1})\|^2/(4h))}{\exp(-f(x_i) - \|z_{i+1} - x_i + h\nabla f(x_i)\|^2/(4h))}\right\}$$

 $|x, y\rangle = |x, y + f(x)\rangle$ $|x, y\rangle = |x, y + \nabla f(x)\rangle$

Intractable Spectral Gap in Continuous Space

In continuous space, the spectral gap of "useful" Markov chains (e.g., MALA) are difficult to bound, since it characterizes the mixing behavior in the worst-case (i.e., for any initial distribution).

Classically, there are several techniques to overcome the spectral gap barrier:

- Discounting the ill-effect of small (and problematic) sets in measuring mixing time (in the average-case).
 - → s-conductance (Lovász-Simonovits'93), average conductance (Lovász-Kannan'99), blocking conductance (Kannan-Lovász-Montenegro'06), approximate spectral gap (Atchadé'19)
- Only focusing on "good" distributions with some warmness $\beta \ge \sup \left\{ \frac{\pi_0(A)}{\pi(A)} : A \subseteq \Omega \right\}$.
 - → For MALA with a "warm-start", see e.g. (Lee-Shen-Tian'20, Wu-Schmidler-Chen'22)

Can we adapt these techniques to the quantum walk?

Effective Spectral Gap for Warm-Start

Lemma (Childs-Li-Liu-Wang-Zhang'22, Chakrabarti et al.'23)

Let *M* be a Markov chain with stationary distribution π . Let π_0 be an initial distribution mixing in *t* steps. Furthermore, assuming π_0 is a warm-start with respect to π . Then, those "bad" eigenvalues in $[1 - t^{-1}, 1)$ will not be effective during the quantum walk on $|\pi_0\rangle$.

Childs, Li, Liu, Wang, Z. Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants. (*NeurIPS* 22, *QIP* 23) Chakrabarti, Childs, Hung, Li, Wang, Wu. Quantum algorithm for estimating volumes of convex bodies. *ACM Trans. Quantum Computing* (2023) October 5, 2023

Quantum MALA with Warm-Start

Theorem (Childs-Li-Liu-Wang-**Zhang**'22)

Let π_0 be a warm start for the log-concave distribution $\pi \propto e^{-f}$. Given access to a unitary U_I that prepares the initial state $|\pi_0\rangle$, there is a quantum algorithm that outputs a state $|\tilde{\pi}\rangle$ that is ϵ -close to $|\pi\rangle$ with query complexity to the evaluation oracle \mathcal{O}_f and gradient oracle $\mathcal{O}_{\nabla f}$:

 $\tilde{O}(\sqrt{\kappa}d^{1/4}).$

Classically, $t_{\text{mix}} = \tilde{O}(\kappa \sqrt{d})$ for MALA with a warm-start (Wu-Schmidler-Chen'22). \succ

A special instance of state preparation with large initial overlap. The (query) cost of our algorithm is sublinear in log(system size).

Wu, Schmidler, Chen. Minimax mixing time of the Metropolis-adjusted Langevin algorithm for log-concave sampling. JMLR (2022) October 5, 2023 15

Quantum MALA without Warm-Start

A warm-start MALA is not always accessible. What about starting from a Gaussian distribution?

- $\beta = \kappa^{d/2}$ and $t = \tilde{O}(\kappa d)$ (Lee et al.'21, Chen et al.'21).
- We cannot directly apply our theorem since the overlap $|\langle \pi_0 | \pi \rangle| \sim \kappa^{-d/4}$ is too small!

Idea: using a simulated annealing process to construct a slowly-varying MCs.

- > $|\pi_0\rangle$ is easy to prepare. Then, we use quantum walk to evolve $|\pi_i\rangle \rightarrow |\pi_{i+1}\rangle$ for i = 0, 1, ..., M.
- > The overlaps $|\langle \pi_i | \pi_{i+1} \rangle|$ should be large for all stages.

Quantum MALA without Warm-Start

Theorem (Childs-Li-Liu-Wang-**Zhang**'22)

If we take $\sigma_{i+1}^2 = \sigma_i^2 \cdot \left(1 + \frac{1}{\sqrt{d}}\right)$ and $M = \tilde{O}(\sqrt{d})$, Quantum MALA (without warm-start) can approximately prepare the state $|\pi\rangle$ for $\pi \propto e^{-f}$ with query complexity:

> Classical query complexity of MALA is $\tilde{O}(\kappa d)$.

Application: Estimating the Normalizing Constant

Problem (Normalizing constant estimation)

Let $\pi \propto e^{-f}$ be a *d*-dimensional log-concave distribution. Define the normalizing constant:

$$Z \coloneqq \int_{\mathbb{R}^d} e^{-f(x)} \, \mathrm{d}x.$$

Given black-box access to f, output $\tilde{Z} \in \mathbb{R}$ such that $\tilde{Z} \in (1 \pm \epsilon)Z$.

This problem is also called the partition function estimation in statistical physics and has been studied in both classical (Dyer et al.'91, Gelman-Meng'98, Brosse et al.'18, Ge-Lee-Lu'21, ...) and quantum (Montanaro'15, Harrow-Wei'20, Arunachalam et al.'21, Cornelissen-Hamoudi'23).

- Prior quantum algorithms mainly focused on discrete systems.
- > We focus on the continuous version of this problem.

Simulated Annealing + Log-Concave Sampling

Annealing schedule:

Ge, Lee, Lu. Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds. (STOC 21) October 5, 2023 19

Quantum MALA for Estimating Normalizing Constant

Theorem (Childs-Li-Liu-Wang-**Zhang**'22)

Let Z be the normalizing constant. There is a quantum algorithm which outputs an estimate \tilde{Z} , such that $\tilde{Z} \in (1 \pm \epsilon)Z$ with high probability using $\tilde{O}(d^{3/2}\kappa^{1/2}\epsilon^{-1})$ queries to the evaluation oracle \mathcal{O}_f and gradient oracle $\mathcal{O}_{\nabla f}$.

Proof idea:

It suffices to estimate each ratio $\frac{Z_{i+1}}{Z_i} = \mathbb{E}_{\pi_i}[g_i]$ within error $\frac{\epsilon}{M}$ with $M = \tilde{O}(\sqrt{d})$.

- i. By the non-destructive mean estimation (Harrow-Wei'21, Chakrabarti et al.'21), we need $\tilde{O}\left(\frac{M}{\epsilon}\right)$ copies of $|\tilde{\pi}_{i-1}\rangle$ and $\tilde{O}(\sqrt{\kappa d} M/\epsilon)$ calls of the quantum walk operator W_i .
- ii. We need to apply W_i for $\tilde{O}(\sqrt{\kappa d})$ times to evolve each state $\left|\tilde{\pi}_{i-1}^{(j)}\right|$ to $\left|\tilde{\pi}_i^{(j)}\right|$.

Query complexity:
$$\tilde{O}(\sqrt{d}) \times \tilde{O}(M/\epsilon) \times \tilde{O}(\sqrt{\kappa d}) \times O(1) = \tilde{O}(d^{3/2}\kappa^{1/2}\epsilon^{-1}).$$

#stages #qsamples Q-MALA cost of W_i

October 5, 2023

Further Improvements?

Langevin dynamics can also be simulated by the randomized midpoint method for underdamped Langevin diffusion (ULD-RMM) (Shen-Lee'19, Durmus-Moulines'17).

Methods	Sampling	Estimation	
MALA	кd	$\kappa d^2 \epsilon^{-2}$	
ULD-RMM	$\kappa^{7/6} d^{1/6} \epsilon^{-1/3} + \kappa d^{1/3} \epsilon^{-2/3}$	$\kappa^{7/6} d^{7/6} \epsilon^{-2} + \kappa d^{4/3} \epsilon^{-2}$	

Classical query complexities. log factors are omitted.

- In the log-concave sampling problem, ULI $v_{t+h}^h = e^{-2h}v_t^h + \frac{h}{L}e^{-2(1-\alpha)h}\nabla f(y_t^h) + \frac{2}{\sqrt{L}}W_{1,t}^h$, $dv_t = -\gamma v_t dt - \nabla f(x_t) dt + \sqrt{2\gamma u} dW_t$, $\log(1/\epsilon)$ $dx_t = v_t dt$, $dx_t = v_t dt$, $dx_t = v_t dt$,
- Multi-level Monte-Carlo method is used by $y_{t+h}^h = x_t^h + \frac{1}{2}(1 e^{-2\alpha h})v_t^h + \frac{1}{2L}[\alpha h (1 e^{-2\alpha h})]\nabla f(x_t^h) + \frac{1}{\sqrt{L}}W_{3,t}^h$, dependence for ULD-RMM. ULD-RMM

Multi-Level Monte Carlo (MLMC)

• Consider estimating $\frac{Z_{i+1}}{Z_i} = \mathbb{E}_{\pi_i}[g_i]$. We can express it as a telescoping sum:

 $\mathbb{E}[g_i(X)] = \mathbb{E}[g_i(X_0)] + \mathbb{E}[g_i(X_1) - g_i(X_0)] + \mathbb{E}[g_i(X_2) - g_i(X_1)] + \dots + \mathbb{E}[g_i(X_l) - g_i(X_{l-1})]$

The variance $Var[g_i(X_j) - g_i(X_{j-1})]$ is decreasing

The sampling cost of X_i is increasing

- X_j is sampled by simulating the Langevin dynamics with time step size η_j . MLMC chooses different number of samples N_j to balance the total cost.
- (An et al.'21) developed a quantum-accelerated MLMC (QA-MLMC), which can quadratically reduce the ϵ -dependence of the sample complexity of MLMC.

Theorem (Childs-Li-Liu-Wang-Zhang'22)

There exist quantum algorithms for estimating Z with relative error ϵ using the quantum inexact ULD-RMM with $\tilde{O}(\kappa^{7/6}d^{7/6}\epsilon^{-1} + \kappa d^{4/3}\epsilon^{-1})$ queries to \mathcal{O}_f .

An, Linden, Liu, Montanaro, Shao, Wang. Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. *Quantum* (2021)

Quantum Log-Concave Sampling and Estimation

Problem	Method	Complexity	Oracle	
Log-concave sampling	MALA	$\kappa d \\ \kappa \sqrt{d}$ (warm)	$\mathcal{O}_f, \mathcal{O}_{ abla f}$	
	Q-MALA	$\sqrt{\kappa}d$ $\sqrt{\kappa}d^{1/4}$ (warm)	$\mathcal{O}_f, \mathcal{O}_{ abla f}$	
Normalizing constant estimation	MALA	$\kappa d^2 \epsilon^{-2}$	$\mathcal{O}_f,\mathcal{O}_{ abla f}$	
	Q-MALA	$\kappa^{1/2} d^{3/2} \epsilon^{-1}$	$\mathcal{O}_f,\mathcal{O}_{ abla f}$	
	ULD-RMM	$\kappa^{7/6} d^{7/6} \epsilon^{-2} + \kappa d^{4/3} \epsilon^{-2}$	$\mathcal{O}_f, \mathcal{O}_{ abla f}$	
	Q-ULD-RMM	$\kappa^{7/6} d^{7/6} \epsilon^{-1} + \kappa d^{4/3} \epsilon^{-1}$	\mathcal{O}_{f}	
	Quantum query complexity lower bound: $\epsilon^{1-o(1)}$			

log factors are omitted.

Quantum Query Complexity Lower Bound

Theorem (Childs-Li-Liu-Wang-Zhang'22)

Given query access to a function $f: \mathbb{R}^d \to \mathbb{R}$ that is 1.5-smooth and 0.5-strongly convex, the quantum query complexity of estimating the normalizing constant *Z* with relative error ϵ with probability at least 2/3 is $\epsilon^{-1+o(1)}$.

Proof idea:

- The construction of f is motivated by (Ge-Lee-Lu'21).
- A hypercube is partitioned into *n* cells with two types (blue and yellow). Estimating normalizing constant is reduced to approximately counting the number of blue cells.
- Then, we apply the quantum lower bound on the Hamming weight problem (Nayak-Wu'99): given x ∈ {0,1}ⁿ, decide whether |x| is ℓ₁ or ℓ₂.

Recent Progress in Log-Concave Sampling

- Very recently, (Fan-Yuan-Chen'23) and (Altschuler-Chewi'23) concurrently improved the classical query complexity of log-concave sampling to $\tilde{O}(\kappa\sqrt{d})$, without a warm-start.
- Our Q-MALA has query complexity $\tilde{O}(\sqrt{\kappa}d)$. •
 - Can be improved to $\tilde{O}(\sqrt{\kappa}d^{3/4})$ by directly quantizing (Fan-Yuan-Chen'23). \rightarrow
 - The extra \sqrt{d} factor comes from the length of the annealing schedule. \rightarrow

Open question 1: is there a quantum log-concave sampling algorithm that beats classical algorithms in both κ and d?

Open question 2: can ULD or ULD-RMM, which are irreversible MCs, be quantumly sped up?

(Chewi et al.'23) proved an $\tilde{\Omega}(\log \kappa)$ query complexity lower bound for log-concave sampling.

Open question 3: quantum query complexity lower bound? Tighter classical lower bound?

Fan, Yuan, Chen. Improved dimension dependence of a proximal algorithm for sampling. (COLT 23) Altschuler, Chewi. Faster high-accuracy log-concave sampling via algorithmic warm starts. (FOCS 23) Chewi, de Dios Pont, Li, Lu, Narayanan. Query lower bounds for log-concave sampling. (FOCS 23) October 5, 2023

Approximately Convex Optimization

Problem (Approximately convex optimization)

We say $F: \mathbb{R}^d \to \mathbb{R}$ is approximately convex over a convex set \mathcal{K} if there is a convex function $f: \mathcal{K} \to \mathbb{R}$ such that

$$\sup_{x \in \mathcal{K}} |F(x) - f(x)| \le \frac{\epsilon}{d}.$$

Given access to the evaluation oracle of *F*, find an $x^* \in \mathcal{K}$ such that

$$F(x^*) - \min_{x \in \mathcal{K}} F(x) \le \epsilon.$$

Stochastic Convex Optimization

Problem (Stochastic convex optimization)

We say $F: \mathcal{K} \to \mathbb{R}$ is a stochastic convex function if

 $F(x) = f(x) + \epsilon_x \quad \forall x \in \mathcal{K}$

for some convex function $f: \mathcal{K} \to \mathbb{R}$ and ϵ_x is a sub-Gaussian random variable.

Given access to the stochastic evaluation oracle $\mathcal{O}_f^{\text{stoc}}$, find an x^* such that

 $f(x^*) - \min_{x \in \mathcal{K}} f(x) \le \epsilon.$

Applications:

- Optimization with private data (Belloni et al.'15)
- Stochastic programming (Dyer et al.'13)
- Online learning (Rakhlin et al.'12, Lattimore'20, ...)

Overview of Our Results

Approximately convex optimizer

- > The best classical algorithm due to (Belloni et al.'15) has query complexity $\tilde{O}(d^{4.5})$.
- > (Li-Zhang'22) gives a quantum algorithm with query complexity $\tilde{O}(d^3)$.

Stochastic convex optimizer

- > The best classical algorithm uses $\tilde{O}(d^{7.5}/\epsilon^2)$ queries.
- > We show a quantum algorithm with $\tilde{O}(d^5/\epsilon)$ queries to the quantum stochastic oracle:

$$\mathcal{O}_{f}^{\text{stoc}}|x\rangle|0\rangle = |x\rangle \int_{\mathbb{R}} \sqrt{g_{x}(\xi)} |f(x) + \xi\rangle \,\mathrm{d}\xi$$

where g_x is the density of sub-gaussian random variable ϵ_x .

Belloni, Liang, Narayanan, Rakhlin. Escaping the local minima via simulated annealing: Optimization of approximately convex functions. (*COLT* 15) Li, Z. Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits. (*NeurIPS* 22) October 5, 2023

Application: Stochastic Bandit Problem

We consider the **quantum version** of the zeroth-order stochastic convex bandit problem:

Definition: Let $f: \mathcal{K} \to [0,1]$ be a convex function over $\mathcal{K} \subseteq \mathbb{R}^d$. An online quantum learner and environment interact alternatively over *T* rounds. In each round:

The goal is to minimize the regret: $R_T = \mathbb{E}\left[\sum_{i=1}^T (f(x_i) - f^*)\right]$, where $f^* = \min_{x \in \mathcal{K}} f(x)$.

- > Classically, the regret has an upper bound $\tilde{O}(d^{4.5}\sqrt{T})$ and a lower bound $\Omega(d\sqrt{T})$.
- > We show a quantum algorithm with regret $d^5 \operatorname{poly}(\log(T))$, achieving an exponential quantum advantage in terms of T.

How to Achieve Logarithmic Regret

Quantum stochastic convex optimizer

Quantum stochastic bandit

Quantum Bandit Algorithm

- > In the next interval \mathcal{T}_{i+1} (round-2^{*i*} to round-(2^{*i*+1} - 1)), quantum learner always outputs X_i .
- > Each interval accumulates regret: $2^{i} \cdot \tilde{O}(d^{5}/2^{i-1}) = \tilde{O}(d^{5}).$
- \Rightarrow Total regret: $d^5 \cdot \operatorname{poly} \log(T)$.

Take-home message: the *exponential* improvement comes from the *quadratically* faster error-decay rate in quantum.

$$X_i \coloneqq \arg\min_j f(x_{i,j})$$

Quantum stochastic optimizer guarantees:

$$f(x_i) - \min_{x \in \mathcal{K}} f(x) \le \tilde{O}\left(\frac{d^5 \log(T)}{2^{i-1}}\right)$$

Classically, here is $2^{(i-1)/2}$, resulting in a \sqrt{T} factor.

Optimization to Sampling Reduction

- Our goal is to find $x \in \mathcal{K}$ that minimizes F.
- Define a distribution π in \mathcal{K} with density $\pi(dx) \propto e^{-F(x)/T}$ for the approximately convex function F and $T \in \mathbb{R}_+$.
- If we can sample from π with small enough T, then

 $\mathbb{E}_{\pi}[F(X)] \approx \min_{x \in \mathcal{K}} F(x).$

Quantum Approximately Convex Optimizer

Quantum three-level framework

• **High-level:** Perform a simulated annealing with $K = \tilde{O}(\sqrt{d})$ stages. At the *i*-th stage, the target distribution π_i has density $\propto g_i(x) = e^{-F(x)/T_i}$, where $T_i := (1 - 1/\sqrt{d})^i$.

 \rightarrow The same annealing schedule also satisfies the QSA condition.

• Middle-level: Use $N = \tilde{O}(d)$ samples from π_i to construct a linear transformation Σ_i , rounding the distribution to near-isotropic position.

 \rightarrow Maintain N copies of the qsample $|\tilde{\pi}_i\rangle$, and apply a non-destructive rounding procedure.

• Low-level: Run the hit-and-run walk to evolve from π_i to π_{i+1} with mixing time $\tilde{O}(d^3)$.

 \rightarrow Quantum walk with $\tilde{O}(d^{1.5})$ queries to obtain $|\tilde{\pi}_{i+1}\rangle$.

• Finally, measure the N copies of $|\tilde{\pi}_K\rangle$ to obtain N classical samples and output the best one.

Total quantum query complexity: $\tilde{O}(\sqrt{d}) \times \tilde{O}(d) \times \tilde{O}(d^{1.5}) = \tilde{O}(d^3)$.

Hit-and-run walk

In each iteration,

- 1. Pick a uniformly distributed random line ℓ through the current point.
- 2. Move to a random point y along the line ℓ chosen from the restricted distribution π_{ℓ} .

Quantum Speedup for Stochastic Convex Optimization

• Classically, (Belloni et al.'15) gave an algorithm with $\tilde{O}(d^{7.5}/\epsilon^2)$ queries:

$$\tilde{O}(d^3/\epsilon^2) \times \tilde{O}(d^{4.5}) = \tilde{O}(d^{7.5}/\epsilon^2)$$
Reduction cost approx. convex optimization cost

• (Li-Zhang'22) gives a quantum algorithm with $\tilde{O}(d^5/\epsilon)$ queries to the quantum stochastic oracle:

$$\mathcal{O}_{f}^{\text{stoc}}|x\rangle|0\rangle = |x\rangle \int_{\mathbb{R}} \sqrt{g_{x}(\xi)} |f(x) + \xi\rangle \,\mathrm{d}\xi,$$

where g_x is the density of sub-gaussian random variable ϵ_x .

Proof idea:

- We use the quantum sub-gaussian mean estimator (Hamoudi'21) to improve the reduction cost to $\tilde{O}(d^2/\epsilon)$ queries.
- > Quantum approximately convex optimization costs $\tilde{O}(d^3)$ queries.

Open Questions

- 1. Is there a quantum log-concave sampling algorithm that beats classical algorithms in both κ and d?
- 2. Can ULD or ULD-RMM, which are irreversible MCs, be quantumly sped up?
- 3. Quantum query complexity lower bound for log-concave sampling? Tighter classical lower bound?
- 4. Is it possible to achieve exponential quantum advantages in some sampling problems?
- 5. Apply classical techniques (e.g., warm-start, average-conductance,...) to analyze the mixing time of some Lindbladians?
- 6. Quantum algorithm for stochastic differential equations (SDEs)?
- 7. More applications of provable quantum algorithms for reinforcement learning or online learning?
- 8. Near-term or early fault-tolerant quantum algorithm for sampling? End-to-end cost analysis for quantum algorithms for sampling problems in practice?

Thank you! Questions?