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Complexity of Sampling
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A fundamental problem with wide applications:
• Statistical physics

Ø 𝑓(𝑥) represents the energy of a state 𝑥 and the equilibrium distribution over states is 
the Gibbs distribution whose density ∝ 𝑒! ⁄# $ % (𝑇 is the temperature of the system). 

• Bayesian inference

𝑝 𝜃 𝑥 =
𝑝 𝑥 𝜃 𝑝(𝜃)

∫ℝ! 𝑝 𝑥 𝜃
' 𝑝 𝜃' d𝜃′

• Convex body volume estimation
Ø Given access to the membership oracle of a convex body 𝒦 ⊆ ℝ(, estimate vol(𝒦). 
Ø Reduce to uniformly sample a point inside some convex body.  

Giving black-box access to a function 𝑓:ℝ( → ℝ, what is the minimum number of 
queries required to approximately sample from the distribution with density 𝜋(𝑥) ∝
𝑒!# $  in ℝ(? 



Sampling (𝜋 ∝ 𝑒!#) Optimization (min
$
𝑓(𝑥))

Convex

Classical: easy (gradient descent)

Quantum:
• General case: (Chakrabarti et al.’19, van 

Apeldoorn et al.’20)
• Quantum LP/SDP: (Brandão-Svore’17, 

van Apeldoorn et al.’20, ...)

global minimum

Non-convex

Classical: NP-hard in general, algorithms 
works well in practice.

Quantum: Some recent works (Liu et al.’22, 
Gong et al.’22, …) show quantum advantages 
over specific classical algorithms (e.g., SGD).

local minima

Log-concave

Classical: easy (Langevin diffusion)

Quantum:
• Volume estimation: (Chakrabarti et al.’23)
• General case: open

Non-log-concave

Classical: hard (Langevin diffusion takes 
exponential time), efficient algorithms for 
some family of distributions

Quantum: open

(Childs et al.’22)

(Li-Zhang’22)

Childs, Li, Liu, Wang, Z. Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants. (NeurIPS 22, QIP 23)
Li, Z. Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits. (NeurIPS 22)
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Q-Sampling /
Quantum walk

Quantum mean 
estimators

Log-concave 
sampling

Normalizing 
constant estimation

Polynomial 
quantum 
speedup

Polynomial 
quantum 
speedup

Approximately 
convex 

optimization

Stochastic convex 
optimization

Stochastic bandit 
problem

Polynomial quantum 
speedup

Polynomial quantum 
speedup

Exponential quantum 
advantage

§ The glued tree 
problem (Rolando’s 
talk on Mon) 

§ State preparation 
(Mario’s talk on Mon)

§ Markov chains 
(Open-system day)

§ Quantum walk circuit 
implementation 
(Jingbo’s talk on Thu)

§ Mean estimation w/ 
source code (Rabin’s 
talk on Mon)



Log-Concave Distribution
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Definition (Log-concave distribution)
A probability distribution 𝜋 d𝑥 ∝ 𝑒!#($) is log-concave if 𝑓:ℝ( → ℝ is a convex function. We 
further assume that 𝑓 is 𝜇-strongly convex and 𝐿-smooth:

𝜇
2
𝑥 − 𝑦 + ≤ 𝑓 𝑦 − 𝑓 𝑥 − ∇𝑓 𝑥 , 𝑦 − 𝑥 ≤

𝐿
2
𝑥 − 𝑦 +	 ∀𝑥, 𝑦 ∈ ℝ(.

Let 𝜅 ≔ ⁄𝐿 𝜇 be the condition number. 

Examples

1. High-dimensional Gaussian distribution 𝒩 𝜃, Σ  for positive definite Σ.

2. Uniform distribution 𝜋(𝑥) ∝ 𝟏𝒦(𝑥) for a convex and compact 𝒦 ⊂ ℝ(. 

Langevin diffusion:      d𝑋. = −∇𝑓 𝑋. d𝑡	 +	 2d𝐵.
gradient flow Brownian motion

Ø Stationary distribution is 𝜋



Metropolis Adjusted Langevin Algorithm (MALA)
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To sample from the log-concave distribution, we need to simulate the Langevin diffusion.

d𝑋. = −∇𝑓 𝑋. d𝑡 + 2d𝐵.	
	 0123456175	

𝑋89: = 𝑋8 − ℎ∇𝑓 𝑋8 + 2ℎ𝑧8

However, the stationary distribution of the discretized process is not 𝜋. 

MALA combines the Langevin dynamics with the Metropolis–Hastings accept/reject mechanism:

1. Initialize 𝑥; ∼ 𝜇;

2. For 𝑖 = 0, 1, 2, … :

I. Propose   𝑧!"# ∼ 𝒩 𝑥! − ℎ∇𝑓 𝑥! , 2ℎ𝐼

II. Accept     𝑥!"# ← 𝑧!"# with probability

𝑧! ∼ 𝒩(0, 𝐼)

min 1,
exp −𝑓 𝑧!"# − ⁄𝑥! − 𝑧!"# + ℎ∇𝑓 𝑧!"# $ 4ℎ
exp −𝑓 𝑥! − ⁄𝑧!"# − 𝑥! + ℎ∇𝑓 𝑥! $ 4ℎ

Quantum speedup for MALA?

Ø Stationary distribution 𝜋

Ø polylog ⁄1 𝜖 -dependence

Ø Gradient oracle query



Quantum sampling
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Ideally, we want to generate a quantum state (qsample) to represent a classical distributions:

𝜋 𝑥 $∈= 	 ↔ 	 𝜋 = Y
=
𝜋(𝑥) 𝑥 d𝑥.

Reference Complexity Method
(Zalka’98, Grover-Rudolph’02, Kaye-
Mosca’01) 𝑂 log 1/𝜖 controlled rotations only for efficiently 

integrable density functions

(Aharanov-Ta-Shma’03)
Qsampling is hard in general unless SZK ⊆ BQP

𝑂 ⁄1 𝛿 adiabatic evolution for Markov chains

(Wocjan-Abeyesinghe’08) 𝑂 ⁄1 𝛿
Szegedy’s quantum walks + amplitude 
amplification 

(Low-Yoder-Chuang’14, Ozols-Roetteler-
Roland’13, Wiebe-Granade’15) 𝑂∗ ⁄1 𝜖 quantum rejection sampling (Bayesian, 

Gibbs)

𝛿 is the spectral gap of Markov chain and 𝜖 is the approximation error.



Discrete-Time Quantum Walk (DTQW)
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• A classical Markov chain over Ω can be represented by stochastic transition operator 𝑃 such 
that 

=
%∈'

𝑃 𝑥, 𝑦 = 1	 ∀𝑥 ∈ Ω.

• A probability distribution 𝜋 is stationary if 

=
%∈'

𝜋 𝑥 𝑃 𝑥, 𝑦 = 𝜋 𝑦 	 ∀𝑦 ∈ Ω.

Transition operator 𝑃
Acting on two registers 𝑥, 𝑦 ∈ Ω×Ω
• Step 1:

• Step 2: 
𝑥, 𝑦⋆ ⟶ 𝑦⋆, 𝑥

𝑥, 𝑦
	

𝑥, 𝑦⋆ 	 𝑦⋆ ∈ 𝑁(𝑥)

Quantum walk operator 𝑊
Acting on two quantum registers 𝑥 |𝑦⟩
• Step 1:

• Step 2: 
𝑥 𝑦′ ⟶ 𝑦′ 𝑥

reflect 𝑦  through ∑?∈= 𝑃(𝑥, 𝑧) 𝑧



Szegedy’s Quantum Walk Operator
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• Define 𝜓$ ≔ 𝑥 ∑@∈= 𝑃 𝑥, 𝑦 𝑦  for any 𝑥 ∈ Ω.

• Π = ∑$∈= 𝜓$ 𝜓$  is the projection to the subspace span 𝜓$ $∈=.

• 𝑆 = ∑$∈=∑@∈= 𝑦, 𝑥 𝑥, 𝑦  is the swap operator for the two quantum registers.

• The quantum walk operator can be defined as 
𝑊 ≔ 𝑆 2Π − 𝐼 = 𝑆 ⋅ 𝑈 ⋅ 2 𝐼 ⊗ 0 0 − 𝐼 ⋅ 𝑈A,

where 𝑈 implementes the QW update:
𝑈 𝑥, 0 = 𝜓$ 	 ∀𝑥 ∈ Ω.

• Connection to QSVT: let 𝑊' ≔ 𝑈A ⋅ 𝑊 ⋅ 𝑈. Then, 𝑊'B is a block-encoding of 𝑇B 𝑃 , the 𝑘-th 
Chebyshev polynomial, i.e., 

𝐼 ⊗ 0 𝑊'B 𝐼 ⊗ 0 = 𝑇B 𝑃 .

We assume that 𝑃 is symmetric, 
i.e.,

𝑃 𝑥, 𝑦 = 𝑃 𝑦, 𝑥 	 ∀𝑥, 𝑦 ∈ Ω.
In general, we should consider

𝐷 𝑥, 𝑦 = 𝑃 𝑥, 𝑦 𝑃(𝑦, 𝑥).



Spectrum of Quantum Walk Operator
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• 𝑊 has phase gap Δ = Θ 𝛿 , where 𝛿 is the spectral gap of 𝑃.

𝜆!𝜆"𝜆#0−1 1

𝛿

𝜃# 𝜃"
𝜃!

eigenvalues of 𝑃: cos 𝜃!

−1 10

𝑒𝐢%!
𝑒𝐢%"

𝑒𝐢%#

𝑒&𝐢%#
𝑒&𝐢%"

𝑒&𝐢%!

𝛿

eigenvalues of 𝑊: e±𝐢*!

1st eigenvalue of 𝑊' 2nd eigenvalue 3rd eigenvalue 4th eigenvalue



DTQW for Searching
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DTQW can quadratically speed up the hitting time of a reversible MC. 
§ Hitting time: the expected time to hit a marked vertex starting from the stationary distribution.

§ Reversible: 𝑃 satisfies the detailed balance condition: 𝜋 𝑥 ⋅ 𝑃 𝑥, 𝑦 = 𝜋 𝑦 ⋅ 𝑃 𝑦, 𝑥 	 ∀𝑥, 𝑦 ∈ Ω, which is 
required by the spectral analysis of 𝑃.

𝐽 5,2

+ +

+

− −

−

+ +

+

− −

+Examples of gapped systems:

• Johnson graph 𝐽 𝑛,𝑚 : 𝛿 = +
,(+.,)

.

• Ising model with Glauber dynamics: 

  𝜋 𝑥 ∝ exp 𝑥0𝐽𝑥 + ℎ0𝑥 	 ∀𝑥 ∈ ±1 +.

There are numerous classical papers studying the spectral gaps 
in different parameter regimes, e.g., (Dobrushin’68, Jerrum-Sinclair’93, 
Mossel-Sly’13, Chen et al.’21, Eldan et al.’21, Jain et al.’22,…).



DTQW for Sampling
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Question: how to generate a sample from the stationary distribution 𝜋?

• Classically, the #steps needed in the worst-case is the mixing time of the Markov chain. 

• For a reversible MC, the mixing time is bounded by ⁄1 𝛿 ⋅ log T1 min
1∈'

𝜋 𝑥 .

• DTQW can be used to prepare the quantum sample (qsample) of the stationary distribution:

𝜋 = Y
=

𝜋 𝑥 𝑥 d𝑥 .

In the most general case, the cost is ⁄1 𝛿 ⋅ ⁄1 min𝜋 𝑥 .

Can we do better under some assumptions?



Speedup for Slowly-Varying Markov Chains
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Theorem (Wocjan-Abeyesinghe’08) 
Let 𝑀;, 𝑀:, … ,𝑀C be classical reversible Markov chains with stationary distribution 𝜋;, 𝜋:, … , 𝜋C 
such that
1.  Each chain has spectral gap ≥ 𝛿. 
2. 𝜋8 𝜋89:⟩ + ≥ 𝑝 for all 𝑖 ∈ {0,1, … , 𝑟 − 1} (Quantum Simulated Annealing (QSA) condition). 
3. 𝜋;  is easy to prepare.
Then 𝜋C  can be approximately prepared using y𝑂 :

D
⋅ C
E

 calls to the quantum walk operators.

Remark
To implement the quantum walk operator 𝑊, it suffices to implement 𝑈:

𝑈 𝑥, 0 = 𝑥 Y
'
𝑃(𝑥, 𝑦) 𝑦 d𝑦	 ∀𝑥 ∈ Ω.

Ø For MALA, you can do it with 𝑂(1) queries to 𝒪# and 𝒪∇#. 
𝒪2 𝑥, 𝑦 = 𝑥, 𝑦 + 𝑓 𝑥
𝒪∇2 𝑥, 𝑦 = 𝑥, 𝑦 + ∇𝑓 𝑥



Intractable Spectral Gap in Continuous Space
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In continuous space, the spectral gap of “useful” Markov chains (e.g., MALA) are difficult to bound, 
since it characterizes the mixing behavior in the worst-case (i.e., for any initial distribution). 

Classically, there are several techniques to overcome the spectral gap barrier:
• Discounting the ill-effect of small (and problematic) sets in measuring mixing time (in the 

average-case). 
→ 𝑠-conductance (Lovász-Simonovits’93), average conductance (Lovász-Kannan’99), blocking 

conductance (Kannan-Lovász-Montenegro’06), approximate spectral gap (Atchadé’19)

• Only focusing on “good’’ distributions with some warmness 𝛽 ≥ sup G%(H)
G(H)

: 𝐴 ⊆ Ω . 

→ For MALA with a “warm-start”, see e.g. (Lee-Shen-Tian’20, Wu-Schmidler-Chen’22)

Can we adapt these techniques to the quantum walk?



Effective Spectral Gap for Warm-Start
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Lemma (Childs-Li-Liu-Wang-Zhang’22, Chakrabarti et al.’23) 
Let 𝑀 be a Markov chain with stationary distribution 𝜋. Let 𝜋; be an initial distribution mixing in 𝑡 
steps. Furthermore, assuming 𝜋; is a warm-start with respect to 𝜋. Then, those “bad” eigenvalues 
in 1 − 𝑡!:, 1  will not be effective during the quantum walk on 𝜋; .

Spectral density of 𝜋;
𝜆11 − 𝑡.#0

Effective 
spectral gap

Overlap

Childs, Li, Liu, Wang, Z. Quantum Algorithms for Sampling Log-Concave Distributions and Estimating Normalizing Constants. (NeurIPS 22, QIP 23)
Chakrabarti, Childs, Hung, Li, Wang, Wu. Quantum algorithm for estimating volumes of convex bodies. ACM Trans. Quantum Computing (2023)



Quantum MALA with Warm-Start
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Theorem (Childs-Li-Liu-Wang-Zhang’22)
Let 𝜋; be a warm start for the log-concave distribution 𝜋 ∝ 𝑒!#. Given access to a unitary 𝑈I that 
prepares the initial state 𝜋; , there is a quantum algorithm that outputs a state �𝜋  that is 𝜖-close to 
𝜋  with query complexity to the evaluation oracle 𝒪# and gradient oracle 𝒪∇#:

y𝑂 𝜅𝑑 ⁄: J .

Ø Classically, 𝑡K1L = y𝑂 𝜅 𝑑  for MALA with a warm-start (Wu-Schmidler-Chen’22). 

Ø A special instance of state preparation with large initial overlap. The (query) cost of our 
algorithm is sublinear in log(system size).

Wu, Schmidler, Chen. Minimax mixing time of the Metropolis-adjusted Langevin algorithm for log-concave sampling. JMLR (2022)



Quantum MALA without Warm-Start
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A warm-start MALA is not always accessible. What about starting from a Gaussian distribution?

• 𝛽 = 𝜅 ⁄( + and 𝑡 = y𝑂 𝜅𝑑  (Lee et al.’21, Chen et al.’21). 

• We cannot directly apply our theorem since the overlap 𝜋; 𝜋 ∼ 𝜅!(/J is too small!

Idea: using a simulated annealing process to construct a slowly-varying MCs. 

Ø 𝜋;  is easy to prepare. Then, we use quantum walk to evolve 𝜋8 ⟶ 𝜋89:  for 𝑖 = 0,1, … ,𝑀.

Ø The overlaps 𝜋8 𝜋89:  should be large for all stages. 

𝜋4

𝑒
. 1 "

56#"

𝜋7"# = 𝜋 

𝑒.2

𝜋#

𝑒
.2. 1 "

56#"

𝜋5

𝑒
.2. 1 "

56""

𝜋7

𝑒
.2. 1 "

56$
"

⋯



Quantum MALA without Warm-Start
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Theorem (Childs-Li-Liu-Wang-Zhang’22) 

If we take 𝜎89:+ = 𝜎8+ ⋅ 1 + :
(
	 and 𝑀 = y𝑂( 𝑑), Quantum MALA (without warm-start) can 

approximately prepare the state 𝜋  for 𝜋 ∝ 𝑒!# with query complexity: 
!𝑂 𝑑	 ×	 𝜅𝑑 = �𝑂 𝜅𝑑 .

Ø Classical query complexity of MALA is y𝑂 𝜅𝑑 .

#stages cost-per-stage



Application: Estimating the Normalizing Constant
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Problem (Normalizing constant estimation)

  Let 𝜋 ∝ 𝑒!# be a 𝑑-dimensional log-concave distribution. Define the normalizing constant:  

𝑍 ≔ Y
ℝ&
𝑒!# $ d𝑥.

  Given black-box access to 𝑓, output y𝑍 ∈ ℝ such that y𝑍 ∈ 1 ± 𝜖 𝑍.

This problem is also called the partition function estimation in statistical physics and has been 
studied in both classical (Dyer et al.’91, Gelman-Meng’98, Brosse et al.’18, Ge-Lee-Lu’21, …) and 
quantum (Montanaro’15, Harrow-Wei’20, Arunachalam et al.’21, Cornelissen-Hamoudi’23). 

Ø Prior quantum algorithms mainly focused on discrete systems. 

Ø We focus on the continuous version of this problem.



Simulated Annealing + Log-Concave Sampling

We can rewrite the normalizing constant as: 𝑍 = 𝑍: ⋅ ∏8N:
O P'()

P'
.

• Sample 𝑋8
(:), … , 𝑋8

(Q) from distribution 𝜋8 = 𝑍8!: ⋅ exp −𝑓 − $ *

+R'
* .

•
P'()
P'

= 𝔼G'[𝑔8], where 𝑔8 = exp :
+ 𝜎8!+ − 𝜎89:!+ 𝑥 + . 

Ø Estimator: ⁄𝑍!"# 𝑍! ≈
#
+
∑,-#+ 𝑔! 𝑋!

(,) .

Ø This annealing schedule has bounded relative variance, i.e., 𝔼() 1)
*

𝔼() 1)
* = 𝑂(1) (Ge-Lee-Lu’21).

𝜋4

𝑒
. 1 "

56#"

𝜋8"# = 𝜋 

𝑒.2

𝜋#

𝑒
.2. 1 "

56#"

𝜋5

𝑒
.2. 1 "

56""

𝜋7

𝑒
.2. 1 "

56$
"

⋯

𝑍# 𝑍5 𝑍7 𝑍7"# = 𝑍

Log-concave 
sampling

Mean estimation

Annealing schedule: 

Normalizing 
constants:

Ge, Lee, Lu. Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds. (STOC 21)
19October 5, 2023



Quantum MALA for Estimating Normalizing Constant
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Theorem (Childs-Li-Liu-Wang-Zhang’22)
Let 𝑍 be the normalizing constant. There is a quantum algorithm which outputs an estimate y𝑍, such 
that y𝑍 ∈ 1 ± 𝜖 𝑍 with high probability using y𝑂 𝑑 ⁄S +𝜅 ⁄: +𝜖!:  queries to the evaluation oracle 𝒪# and 
gradient oracle 𝒪∇#.

Proof idea:
It suffices to estimate each ratio P'()

P'
= 𝔼G'[𝑔8] within error T

O
 with 𝑀 = y𝑂 𝑑 .

i. By the non-destructive mean estimation (Harrow-Wei’21, Chakrabarti et al.’21), we need �̀� 7
9

 copies of 
a𝜋!.#  and �̀� 𝜅𝑑 ⁄𝑀 𝜖  calls of the quantum walk operator 𝑊!.

ii. We need to apply 𝑊! for �̀� 𝜅𝑑  times to evolve each state a𝜋!.#
(:)  to a𝜋!

(:) .

Query complexity: y𝑂 𝑑 	 ×	 y𝑂 ⁄𝑀 𝜖 	 ×	 y𝑂 𝜅𝑑 	 ×	 𝑂 1 	 = y𝑂 𝑑 ⁄S +𝜅 ⁄: +𝜖!: .

#stages #qsamples Q-MALA cost of 𝑊!



Further Improvements?
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Langevin dynamics can also be simulated by the randomized midpoint method for underdamped 
Langevin diffusion (ULD-RMM) (Shen-Lee’19, Durmus-Moulines’17).

• In the log-concave sampling problem, ULD-RMM has poly ⁄1 𝜖  dependence in the query 
complexity, while MALA has only log ⁄1 𝜖  dependence. However, ULD-RMM improves the 
dependence on 𝑑.

• Multi-level Monte-Carlo method is used by (Ge-Lee-Lu’21) to achieve a nearly-optimal 𝜖-
dependence for ULD-RMM.

Methods Sampling Estimation
MALA 𝜅𝑑 𝜅𝑑5𝜖.5

ULD-RMM 𝜅 ⁄< =𝑑#∕=𝜖. ⁄# ? + 𝜅𝑑#∕?𝜖. ⁄5 ? 𝜅 ⁄< =𝑑<∕=𝜖.5 + 𝜅𝑑@∕?𝜖.5

Classical query complexities. log factors are omitted.

ULD ULD-RMM



Multi-Level Monte Carlo (MLMC)
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• Consider estimating P'()
P'

= 𝔼G' 𝑔8 . We can express it as a telescoping sum: 

𝔼 𝑔! 𝑿 = 𝔼 𝑔! 𝑿4 + 𝔼 𝑔! 𝑿# − 𝑔! 𝑿4 + 𝔼 𝑔! 𝑿5 − 𝑔! 𝑿# +⋯+ 𝔼 𝑔! 𝑿A − 𝑔! 𝑿A.#

• 𝑿U is sampled by simulating the Langevin dynamics with time step size 𝜂U. MLMC chooses 
different number of samples 𝑁U to balance the total cost. 

• (An et al.’21) developed a quantum-accelerated MLMC (QA-MLMC), which can quadratically 
reduce the 𝜖-dependence of the sample complexity of MLMC.

Theorem (Childs-Li-Liu-Wang-Zhang’22) 
There exist quantum algorithms for estimating 𝑍 with relative error 𝜖 using the quantum inexact 
ULD-RMM with y𝑂 𝜅 ⁄V W𝑑 ⁄V W𝜖!: + 𝜅𝑑 ⁄J S𝜖!:  queries to 𝒪#.

The variance Var 𝑔+ 𝑿, − 𝑔+ 𝑿,&-  is decreasing 

The sampling cost of 𝑿, is increasing 

An, Linden, Liu, Montanaro, Shao, Wang. Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. 
Quantum (2021)



Quantum Log-Concave Sampling and Estimation

October 5, 2023 23

Problem Method Complexity Oracle

Log-concave 
sampling

MALA
𝜅𝑑

𝜅 𝑑 (warm) 𝒪2, 𝒪∇2

Q-MALA
𝜅𝑑

𝜅𝑑#∕@ (warm) 𝒪2, 𝒪∇2

Normalizing 
constant 
estimation

MALA 𝜅𝑑5𝜖.5 𝒪2, 𝒪∇2

Q-MALA 𝜅 ⁄# 5𝑑 ⁄? 5𝜖.# 𝒪2, 𝒪∇2

ULD-RMM 𝜅 ⁄< =𝑑<∕=𝜖.5 + 𝜅𝑑@∕?𝜖.5 𝒪2, 𝒪∇2

Q-ULD-RMM 𝜅 ⁄< =𝑑<∕=𝜖.# + 𝜅𝑑@∕?𝜖.# 𝒪2

Quantum query complexity lower bound: 𝜖#.B(#)

log factors are omitted.



Quantum Query Complexity Lower Bound 
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Theorem (Childs-Li-Liu-Wang-Zhang’22) 
Given query access to a function 𝑓:ℝ( → ℝ that is 1.5-smooth and 0.5-strongly convex, the 
quantum query complexity of estimating the normalizing constant 𝑍 with relative error 𝜖 with 
probability at least ⁄2 3 is 𝜖!:9X(:).

Proof idea: 
• The construction of 𝑓 is motivated by (Ge-Lee-Lu’21). 

• A hypercube is partitioned into 𝑛 cells with two types (blue 
and yellow). Estimating normalizing constant is reduced to 
approximately counting the number of blue cells.

• Then, we apply the quantum lower bound on the Hamming 
weight problem (Nayak-Wu’99): given 𝑥 ∈ 0,1 Y, decide 
whether 𝑥  is ℓ: or ℓ+. 

0 1 1 0 1 ⋯
#1.s = 1 − 𝛿

𝑛
2
	

or 1 + 𝛿
𝑛
2
?

Ω ⁄1 𝛿  queries!



Recent Progress in Log-Concave Sampling
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• Very recently, (Fan-Yuan-Chen’23) and (Altschuler-Chewi’23) concurrently improved the 
classical query complexity of log-concave sampling to y𝑂 𝜅 𝑑 , without a warm-start.

• Our Q-MALA has query complexity y𝑂 𝜅𝑑 .

→ Can be improved to �̀� 𝜅𝑑 ⁄? @  by directly quantizing (Fan-Yuan-Chen’23).

→ The extra 𝑑 factor comes from the length of the annealing schedule.

Open question 1: is there a quantum log-concave sampling algorithm that beats classical 
algorithms in both 𝜅 and 𝑑?

Open question 2: can ULD or ULD-RMM, which are irreversible MCs, be quantumly sped up?

• (Chewi et al.’23) proved an �Ω log 𝜅  query complexity lower bound for log-concave sampling.

Open question 3: quantum query complexity lower bound? Tighter classical lower bound? 

Fan, Yuan, Chen. Improved dimension dependence of a proximal algorithm for sampling. (COLT 23)
Altschuler, Chewi. Faster high-accuracy log-concave sampling via algorithmic warm starts. (FOCS 23)
Chewi, de Dios Pont, Li, Lu, Narayanan. Query lower bounds for log-concave sampling. (FOCS 23)
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Problem (Approximately convex optimization)

We say 𝐹:ℝ( → ℝ is approximately convex over a convex set 𝒦 if there is a convex function 
𝑓:𝒦 → ℝ such that 

sup
$∈𝒦

𝐹 𝑥 − 𝑓 𝑥 ≤ ⁄𝜖 𝑑 .

Given access to the evaluation oracle of 𝐹, find an 𝑥∗ ∈ 𝒦 such that
𝐹 𝑥∗ −min

$∈𝒦
	𝐹 𝑥 ≤ 𝜖.

Convex Optimization Nonconvex Optimization



Stochastic Convex Optimization 
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Problem (Stochastic convex optimization)

We say 𝐹:𝒦 → ℝ is a stochastic convex function if 
𝐹 𝑥 = 𝑓 𝑥 + 𝜖$	 ∀𝑥 ∈ 𝒦

for some convex function 𝑓:𝒦 → ℝ and 𝜖$ is a sub-Gaussian random variable.

Given access to the stochastic evaluation oracle 𝒪#26[3, find an 𝑥∗ such that 

𝑓 𝑥∗ −min
$∈𝒦

𝑓 𝑥 ≤ 𝜖 .

Applications:
• Optimization with private data (Belloni et al.’15)

• Stochastic programming (Dyer et al.’13)

• Online learning (Rakhlin et al.’12, Lattimore’20, … )



Overview of Our Results
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Approximately convex optimizer

Ø The best classical algorithm due to (Belloni et al.’15) has query complexity y𝑂 𝑑J.] .

Ø (Li-Zhang’22) gives a quantum algorithm with query complexity y𝑂 𝑑S .

Stochastic convex optimizer

Ø The best classical algorithm uses y𝑂 ⁄𝑑V.] 𝜖+ 	queries.

Ø We show a quantum algorithm with y𝑂 ⁄𝑑] 𝜖  queries to the quantum stochastic oracle:

𝒪#26[3 𝑥 0 = 𝑥 Y
ℝ
𝑔$(𝜉) 𝑓 𝑥 + 𝜉 d𝜉

where 𝑔$ is the density of sub-gaussian random variable 𝜖$.

Belloni, Liang, Narayanan, Rakhlin. Escaping the local minima via simulated annealing: Optimization of approximately convex functions. (COLT 15)
Li, Z. Quantum Speedups of Optimizing Approximately Convex Functions with Applications to Logarithmic Regret Stochastic Convex Bandits. (NeurIPS 22)



Application: Stochastic Bandit Problem
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We consider the quantum version of the zeroth-order stochastic convex bandit problem:

Definition: Let 𝑓:𝒦 → [0,1] be a convex function over 𝒦 ⊆ ℝ(. An online quantum learner and 
environment interact alternatively over 𝑇 rounds. In each round:

The goal is to minimize the regret: 𝑅% = 𝔼 ∑8N:% 𝑓 𝑥8 − 𝑓⋆ , where 𝑓⋆ = min
$∈𝒦

𝑓(𝑥).

Ø Classically, the regret has an upper bound y𝑂 𝑑J.] 𝑇  and a lower bound Ω 𝑑 𝑇 .

Ø We show a quantum algorithm with regret 𝑑] poly(log 𝑇 ), achieving an exponential quantum 
advantage in terms of 𝑇.

𝜓C = ∑1 𝑐1 𝑥 0  

𝒪2DEFG 𝜓C  

𝑥C (guess of the minimizer) 



How to Achieve Logarithmic Regret
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Quantum 
approximately 

convex optimizer

Quantum stochastic 
convex optimizer

Quantum stochastic 
bandit



Quantum Bandit Algorithm
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⋯ ⋯

𝒯# 𝒯5 𝒯? 𝒯!

• 𝑇 rounds:

2!"# ∕ log 𝑇 ⋯log 𝑇  blocks:

• log(𝑇) 
intervals:

Ø Run the quantum stochastic 
optimizer with 5

!%#

HFI J
 queries:

𝑥!,# 𝑥!,5 ⋯ 𝑥!,HFI(J)

𝑋! ≔ argmin
:
𝑓 𝑥!,:

Quantum stochastic optimizer guarantees: 

𝑓 𝑥! −min
8∈𝒦

𝑓 𝑥 ≤ ?𝑂
𝑑; log 𝑇
2!<#

Ø In the next interval 𝒯!"# (round-2! to round-
2!"# − 1 ), quantum learner always outputs 𝑋!.

Classically, here is 2 !.# ∕5, 
resulting in a 𝑇 factor.Take-home message: the exponential improvement comes 

from the quadratically faster error-decay rate in quantum.

Ø Each interval accumulates regret: 
2! ⋅ �̀� ⁄𝑑L 2!.# = �̀�(𝑑L).

⟹ Total regret: 𝑑L ⋅ poly log 𝑇 .



Optimization to Sampling Reduction
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§ Our goal is to find 𝑥 ∈ 𝒦 that minimizes 𝐹.

§ Define a distribution 𝜋 in 𝒦 with density 
𝜋 𝑑𝑥 ∝ 𝑒! ⁄^ $ %

for the approximately convex function 𝐹 and 𝑇 ∈ ℝ9. 

§ If we can sample from 𝜋 with small enough 𝑇, then

𝔼G 𝐹 𝑋 ≈ min
$∈𝒦

𝐹 𝑥 .



Quantum Approximately Convex Optimizer

October 5, 2023 33

Classical three-level framework
• High-level: Perform a simulated annealing with 𝐾 = �̀� 𝑑  stages. At the 𝑖-th stage, the target 

distribution 𝜋8 has density ∝ 𝑔8(𝑥) = 𝑒!^($)∕%', where 𝑇! ∶= 1 − ⁄1 𝑑
!.

→ The same annealing schedule also satisfies the QSA condition.
• Middle-level: Use 𝑁 = y𝑂(𝑑) samples from 𝜋8 to construct a linear transformation 𝛴8, rounding 

the distribution to near-isotropic position.
→ Maintain 𝑁 copies of the qsample �𝜋8 , and apply a non-destructive rounding procedure.

• Low-level:  Run the hit-and-run walk to evolve from 𝜋8 to 𝜋89: with mixing time y𝑂 𝑑S .
→ Quantum walk with y𝑂 𝑑:.]  queries to obtain �𝜋89: .

• Finally, measure the 𝑁 copies of �𝜋Q  to obtain 𝑁 classical samples and output the best one.

Total quantum query complexity: y𝑂 𝑑 	×	 y𝑂 𝑑 	×	 y𝑂 𝑑:.] = y𝑂(𝑑S).

Quantum



Hit-and-run walk
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In each iteration,

1. Pick a uniformly distributed random line ℓ through the current point. 

2. Move to a random point 𝑦 along the line ℓ chosen from the restricted distribution 𝜋ℓ.

𝑥#

𝑥5
𝑥?

𝑥@

𝑥L



Quantum Speedup for Stochastic Convex Optimization
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• Classically, (Belloni et al.’15) gave an algorithm with y𝑂 ⁄𝑑V.] 𝜖+ 	queries:
y𝑂 ⁄𝑑S 𝜖+ 	 ×	 y𝑂 𝑑J.] 	 = y𝑂 ⁄𝑑V.] 𝜖+

• (Li-Zhang’22) gives a quantum algorithm with y𝑂 ⁄𝑑] 𝜖  queries to the quantum stochastic oracle:

𝒪2DEFG 𝑥 0 = 𝑥 Y
ℝ
𝑔1(𝜉) 𝑓 𝑥 + 𝜉 d𝜉,

where 𝑔$ is the density of sub-gaussian random variable 𝜖$.

Proof idea: 
Ø We use the quantum sub-gaussian mean estimator (Hamoudi’21) to improve the reduction cost 

to y𝑂 ⁄𝑑+ 𝜖  queries.

Ø Quantum approximately convex optimization costs y𝑂 𝑑S  queries.

Reduction cost approx. convex 
optimization cost
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1. Is there a quantum log-concave sampling algorithm that beats classical algorithms in both 𝜅 and 𝑑?

2. Can ULD or ULD-RMM, which are irreversible MCs, be quantumly sped up?

3. Quantum query complexity lower bound for log-concave sampling? Tighter classical lower bound? 

4. Is it possible to achieve exponential quantum advantages in some sampling problems? 

5. Apply classical techniques (e.g., warm-start, average-conductance,…) to analyze the mixing time of 
some Lindbladians?

6. Quantum algorithm for stochastic differential equations (SDEs)?

7. More applications of provable quantum algorithms for reinforcement learning or online learning?

8. Near-term or early fault-tolerant quantum algorithm for sampling? End-to-end cost analysis for 
quantum algorithms for sampling problems in practice?

Thank you! Questions?


