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Quantum algorithms: tough to design and interpret

Despite beautiful work in QPLs [1, 2], we still
reason at gate level, most of the time

What can quantum programming techniques &
abstractions learn from their classical cousins?
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Quantum algorithm design
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Overview

Pinpoint strengths of algorithmic class:

Argue function-first algorithmic design with above is
(1) desirable but (2) not immediately possible

Turn a desire into a formal problem

Show solution utility, ,
, and introduce package
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QSP: functional interpretability
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Space- and query-efficient algorithms for spectral
mapping; unifies most quantum algorithms [3, 4]
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The temptation

QSP and QSVT achieve® polynomial transforms
(0]U(®,x)[0) = P(x)

Given protocols achieving (x), , and
it feels like we should be able to achieve
o(f,g) = h(f(x)

Moreover, the composite protocol ought to be able
to use f(x) and as contiguous subroutines
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The problem

QSP encodes privileged basis: expects X rotations
as input but does not produce them as output

Even worse lifting to QSVT or with many oracles

QSP protocols aren't first class functions
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Why bother

Modularity and reusability in coherent setting

QSP is great: space efficient, infinity norm
dependent, strong numerical footing ...

Multivariable analogues of QSP are hard, while
multivariable functions (comparators, control-flow,
loss) are ubiquitous [5]
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A note on QSVT

Commuting operators and spectral mapping

Anything we do in SU(2) is done in preserved QSVT
subspaces. Let II, Il proj. and A = [1U!I, then

IIl in IIl in
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Gadgets
An (a, b) gadget is a unitary” superoperator:

® eiﬂko'x — ® ei(ﬁjO’thﬁjdxe—i(bjO'z’
kela] IS

over  in known range. Each of b output legs
achieves cos 1);, often polynomial in cos by, k € [a].

Functionally interpretable boxes: a inputs, b outputs
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Gadget Rosetta Stone

(a) Self-composition of circuits

Thm. IL.1 Uy Uy (b) Self-composition of polynomials
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Thm 1: linking gadgets ¢%

Let €,6 > 0, & an (a, b) gadget and (£, S) an atomic (c, ©) gadget,
where == {®q,...,® _1} and S={sy,...,5 —1). Suppose & achieves

F(X)E{ (X()a"'axa 1)7 (X(]7"';Xa 1)7"'7 (X()a"'axa l)}
over x € [—1,1]*?, and (Z, S) achieves
G(y)E{ (y']v""ycfl)v (M'""aycf\)w“a (yﬂa"'v)/cf\)}

over y € [-1,1]*°. Let 3 = (B, C, W) an interlink. Then, there exists a
gadget &’ which e-approximately achieves

H(x,y') = U U (X0y - vy Xam1) U Uyk UU (X0 - vy Xa1)
ke[ ] jeB kg C k¢B

over (F(x),y’) € D, where y’ is the subset of yi such that k ¢ C and D
is a domain determined by the correction protocol used.
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®' uses description of (Z,5) and O(d|E|4 ¢) black-box calls

to result of running &.
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Generally, ¢ = O(polylog(z~")poly(§~1)) for § = O(1). Note

|=]oo is max length of elem in =.
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Thm 2: gadget-poly equivalence []1

Let £(xi,...,X,) polynomials achievable by atomic gadgets
over xi, ..., X,. Suppose P(xi,...,x,) has degree D and can
be split into a tower of m = O(log(D)) interlinked
polynomials,

p — p(m-1) o5, (p(m—2) 03, _, 0 ( . (p(l) 03, p(O)) . ))

such that P,-(J) € L(x1,...,X,) forall i,j. If the Py are
separated from {0, £1} by 6 € O(1) for all k over Dj. Then,
there exists an assemblage of m atomic, snappable gadgets
which e-approximately achieves P on D with aggregate query

cost 5(po|y(D) polylog(¢)).
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Algebraic structure

QSP/M-QSP

Polynomial ring?

Composition monoid

General gadgets

Provided examples

Manipulation

Polynomial application

Multivariable variant
Addition
Multiplication

Scalar multiplication

Polynomial composition

Gadget linking

Negation/inversion (Ex. IV.1)

Angle sum/difference (Ex
Affine shift (Ex. IV.7)
Step function (Ex. IV.8)
General mean (Ex. IV.10)

Algebraic form

x0 — P(x),
0, - -+, Tn > P(0,. .., Tn),

z0, 1 = (T0 + 71)/2,
To,T1 > Tox1,
2o — min(azo, 1), @ € R,

f(z0), g(z0) = (f © g)(w0),

6,6 — &I/,

L 1V.2)

Reference

Thm. D.1
Thm. D.2

Thm. IV.3
Thm. IV.2
Ex. IV.4/5

Thm. IIL.1

Thm. IIL.1

Bandpass function (Ex. IV.11)
Majority vote (Ex. IV.12)

Functional interpolation (Ex. IV.13)
Chebyshev inverse (Thm. IV.1)
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Sum gadget

(a)

o (zo + 1)
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4

Z2

A: square root gadget, B, C: angle sum/difference
gadgets, D: product gadgets.

]
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Prior work

Cascaded classical filters for sharpening. [6, 7]

Recursively defined quantum (computational)
subroutines. [8, 9, 10, 11, 12, 13, 14]

Single-variable self-embedded QSP/QSVT. [15, 16]
Multivariable QSP/QET and LCU-based methods.

Functional programming techniques: quantum and
classical. [1, 2, 17]
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Correction protocol &

Main idea: repeated use of twisted signal to
obliviously, cancel twist

ei(baz eiwax e—i¢az — {ei¢azeiwox e—iqbaz’ 62i¢az} — e’ng.

Off diagonal element's phase sent to ~ 7/2
{P iQvV1 — x2 [P i\/l—PQ\
}_>
* * * *
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Computing costs L £

For P(x) close to 1, QSP suffers ‘gimbal lock’

Take § = O(1), and P(x) € [-1+ 6,1 — 6]° over
x € [-1+ 9,1 — §]°: simple bounding box

Cost per correction is O(poly(6~1) polylog(e™1))
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On query/space complexity [

An (a, b) gadget has a cost , up
to desired precision, in queries to each input leg:
a X b cost matrix C

Up to padding rows & cols, C of gadget computed
by multiplying Cj of sub-gadgets.

Space/query complexity breaks into cases:
single-variable, psd @, controlled access.
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Is this efficient?

Poly-many, poly-size gadgets, log depth.

Maintains QSP’s infinity norm scaling.
Poly-logarithmic in inverse precision.

No post-selection required.

Hierarchical, distributed, modular.

Linking high-degree gadgets is where method shines.
Potentially huge space saving (psd Q); coupled to
questions in poly decomposition theorems.
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Method | Queries Space Norm

[18] poly(r)dPM) poly(r)[poly(d) + poly(s)] |- |
Ours d s+c Il oo

Table: Asymptotic query and space complexity, as well as
relevant norm. Here d is generalized degree, r is number of
variables, and s is qubits needed for block encodings. Note the
case that ¢ = 0 is well-understood.
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Functional programming ™

and

Monad: monoid in the category of endofunctors

unit: T - M T,
bind: M T, T - MU) - MU,

Unwrapped type is scalar value (or X rotation),
wrapped is QSP output; this work constructs bind

Bonus: attribute grammar & language of gadgets
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Python package &g

gadget_init.py
[[e, 0, 0, 0], [0, 0, 0, 0]]
[[e, 0, 0, 0], [0, 0, 0, 0]]

[[e, 1, o], [1, o, 1]]

s_0
s_1=1[[o, 1, o], [1, o, 1]]

g0 = AtomicGadget(2, 2, ' i s_0)
gl = AtomicGadget(2, 2, "gl1", xi_@, s_1)

linking_guide = [(("g0", @), ('gl", @))]
ad - g0.wrap_gadget()
al = gl.wrap_gadget()

15 a2 = al.link_assemblage(al, linking guideﬂ

Line 15, Column 43 Tab Size: 4

github.com/ichuang/pyqsp/tree/beta
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To take home &y

Efficient, function-first quantum algorithm design

Coherent use of QSP protocols as QSP oracles with
functional interpretability

Readymade repo at ichuang/pyqsp/tree/beta

Formal syntax and semantics, coupled to deep lit in
(Q)PLs: compilation, verification [1, 19, 20]

Ancilla-free gadgets: minimal functional description?
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