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Quantum Computation
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Quantum computers can outperform classical ones for certain tasks. Potential
exponential speedups for
• integer factoring;
• quantum physics;
• linear algebra problems.
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Quantum Revolution and Challenge
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Potential killer-apps: large-scale computational models, e.g. epidemic spreading, climate
change, and training large language models?

Challenges:
• From linear quantum mechanics to nonlinear realistic systems.
• End-to-end design: interface between classical and quantum data.
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Research Agenda
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

From“quantum for quantum”toward
“quantum for science”, by cracking the
nonlinear problem and end-to-end setting.

Quantum Physics

quantum simulations

quantum linear algebra

Natural Science

ODE/PDE solvers

epidemics and fluids

Data Science

gradient descent

sparse fine-tuning

Quantum for Science
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Quantum Simulation
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Given a description of an s-sparse n× n Hamiltonian system

i
d
dt

|Ψ(t)⟩ = H|Ψ(t)⟩, |Ψ(0)⟩ = |Ψin⟩, (Ŵ)

produce the final state

|Ψ(t)⟩ = e−iHt|Ψ(0)⟩ ≈ UK · · ·U2U1|Ψ(0)⟩. (ŵ)

• Complexity: sTpoly(log n, log(1/ϵ))Ŵ.
• Applications to quantum physics and quantum chemistry.
Ŵ[LLoyd żŹ; Berry et al. ŴŸ; Low, Chuang Ŵź]
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Quantum Linear System Algorithms
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Given a description of an s-sparse n× n linear system

Ax = b, (Ŷ)

produce a quantum encoding of the solution proportional to x = A−1b.

• Complexity: sκpoly(log n, log(1/ϵ))Ŵ, κ = ∥A∥ · ∥A−1∥.
• Generalization to linear algebra problems.

Ŵ[Harrow, Hassidim, Lloyd ųż; Ambainis Ŵŵ; Childs, Kothari, Somma ŴŸ]
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Quantum Linear ODE Solvers
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Given a description of an s-sparse n× n linear ODE system

du(t)
dt

− A(t)u(t) = f(t), u(0) = uin, (ŷ)

produce a quantum encoding of the solution proportional to u(T).

• Complexity: sTqpoly(log n, log(1/ϵ))Ŵ, q = ∥uin∥/∥u(T)∥.
• Applied to PDEs, open quantum systems, fast-forwarding and lower bounds.

Ŵ[Berry Ŵŷ; Berry et al. Ŵź; Childs,Liu Ŵż; Krovi ŵŵ; Berry, Costa ŵŵ]
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Trilogy of Quantum Computation
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

It is natural to simulate quantum (unitary) dynamics.

It takes extra cost to simulate linear and non-quantum (non-unitary) dynamics, e.g. linear
combinations of unitaries.

It is exponentially expensive to simulate nonlinear dynamics! Longstanding open problem.
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Nonlinearity is Difficult in Quantum Computing
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Inefficient quantum algorithm

dui
dt

=

n∑
j,k=1

α
(i)
jk ujuk ≈

ui(t+∆t)− ui(t)
∆t

. (Ÿ)

Consider |ϕt⟩ =
∑

j uj|j⟩, and use |ϕt⟩|ϕt⟩ =
∑

jk ujuk|jk⟩ to generate |ϕt+∆t⟩.
No-cloning theorem: need to maintain totally 2O(T) multiple copies of |ϕ0⟩ for one |ϕT⟩Ŵ.

Quantum lower bound
Nonlinearity implies poly-time solution for #P and PSPACE problemsŵ.

Ŵ[Leyton, Osborne ųŻ]
ŵ[Abrams, Lloyd żŻ; Aaronson ųŸ; Childs, Young ŴŹ]
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Our Contributions
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

“The research Liu conducted at UMD on quantum algorithms for nonlinear differential equations
exponentially improves over the previous best quantum algorithm in ŴŸ years.”–Andrew Childs, June ŵųŵŶ

“While these are significant steps, they are still among the first in cracking nonlinear systems. More
researchers will likely analyze and refine each method—even before the hardware needed to implement
them becomes a reality.”–John Preskill, Jan ŵųŵŴ

Ŵŵ/ŶŶ



Recent Progress
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Linear approximation approach
• Carleman Koopman, non-Hermitian Hamiltonian, homotopy, etcŴ.
• n-dim nonlinear ODEs→ poly(n)-dim linear ODEs with truncation.
• Need to control the truncation error.

Phase space representation approach
• Liouville, Koopman, level set, etcŵ.
• n-dim nonlinear ODEs→ Rn-dim linear PDEs (exp(n) grids after discretization).
• Hard to obtain exponential quantum speedup.
Ŵ[Liu et al. ŵŴ; Lloyd et al. ŵŴ; Engel et al. ŵŴ; Xue et al. ŵŴ; Ameri et al. ŵŵ; Itani, Succi ŵŵ; Li et al. ŵŶ]
ŵ[Joseph ŵŴ; Dodin and Startsev ŵŴ; Jin and Liu ŵŵ; Jin, Liu, Yu ŵŵ]
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Quantum Nonlinear ODE Problem
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

du
dt

= F2u⊗2 + F1u+ F0(t), u(0) = uin. (Ź)

F1 is dissipative: Re(λn) ≤ · · · ≤ Re(λ1) < 0, e.g. Burgers equation

∂tu = −1

2
∂xu2 + ν∂2

x u+ f. (ź)

We define
R =

1

|Re(λ1)|

(
∥uin∥∥F2∥+

∥∥F0∥
∥uin∥

)
. (Ż)

It quantifies nonlinear and inhomogeneous strengths relative to dissipation.

R varies when it is generalized to polynomial nonlinearities.
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First Poly-time Quantum Algorithm
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Theorem Ŵ of [Liu et al. ŵŴ]
Assume R < 1. Let q = ∥uin∥/∥u(T)∥. There is a quantum algorithm that outputs the
quantum state |u(T)⟩ proportional to u(T) within ϵ, with complexity

sT2q
ϵ

poly(log n). (ż)

• Improved complexity: sTqpoly(log n, log(1/ϵ)), and better convergence criteriaŴ.
• Applied to classical nonlinear control and classical computational fluid dynamicsŵ.

Ŵ[Krovi ŵŴ; An et al. ŵŵ]
ŵ[Foret, Schilling ŵŴ; Itani, Succi ŵŵ; Itani, Sreenivasan, Succi ŵŶ; Li et al. ŵŶ]
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Quantum Carleman Linearization
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Considering a 1-dim quadratic ODE: dudt = au2 + bu+ c.
Naive linearization u2 ≈ u(0)u does not work in long time.

Carleman linearization
• Embed an n-dim nonlinear ODEs to an infinite-dim linear ODEs.
• Truncate the dimension to obtain a poly(n)-dim system, for which we prove the
convergence when R < 1.

• Develop a quantum algorithm for the linearized ODEs with complexity poly(log n).

1-dim example: du
dt = au2 + bu+ c, du

2

dt = 2au3 + 2bu2 + cu, . . ., du
N

dt ≈ NbuN +NcuN−1,
giving linear ODEs with observable variables yj ≈ uj.
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Quantum Lower Bound for Nonlinear ODEs
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Theorem ŵ of [Liu et al. ŵŴ]
Assume R ≥

√
2. Then there is an instance of the quantum quadratic ODE problem such

that any quantum algorithm must have worst-case time complexity exponential in T.

• Hardness of distinguishing nonorthogonal quantum states.
• Butterfly effect: a small initial divergence results in a large violation.

A recent paper give a tighter instance with R ≥ 1 and close the gapŴ.
Ŵ[Lewis, Eidenbenz, Nadiga, Subasi ŵŶ]

Ŵź/ŶŶ



Applications in Scientific Computation
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

• Biology/epidemiology: SEIR model
• Fluid and plasma dynamics

• Nonlinear control: find attractors
• Uncertainty quantification
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Applications in Biology and Epidemiology
Ŵ Efficient Quantum Algorithm for Nonlinear Dynamics

Reaction-diffusion system
∂u
∂t

(x, t) = D∆u(x, t) + f(u(x, t)), x ∈ [0, 1]d. (Ŵų)

• f(u) = u− u2: biological/ecological networks, spin glasses.
• f(u) = u− u3: phase separation, Ginzburg-Landau theory.
• f(u) =

∑
K aku

k: disorder systems, branching processes.

We develop quantum algorithm for |u⟩ and estimate kinetic energy with complexity
O(T2d2/ϵ)Ŵ, a potential exp speedup compared to classical PDE solvers.

Improved analysis may indicate that linearization works better for gradient flows.
Ŵ[An et al. ŵŵ]
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QuantumMachine Learning
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

ChatGPT and DALL·E Ŷ

Training language models like GPT-Ŷ with over 1011 parameters is costly: 1.2× 107 dollars
and over 500 tons of CO2 are produced.

N = 1011, logN = 36.54. Quantum: ų.ųųŴs v.s. Classical: Ŵ month. Is it possible?
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Illustration of Model
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

ŵŵ/ŶŶ



Efficient Quantum Algorithm
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

Theorem Ŵ and ŵ of [Liu et al. ŵŶ]
For a sparse and almost dissipative machine learning model with sparsity s, size n, running
in T iterations, a quantum algorithm for approximating the training dynamics takes

s2T2 poly(log n). (ŴŴ)

Moreover, the algorithm outputs s-sparse weight vectors with tomographic cost O(s3/ϵ2).

• In sparse training, the sparsity doesn’t scale with the size of the model.
• For Hessian of gradient dynamics, dissipative modes≫ divergent modes.
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Training Dynamics of Neural Networks
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

Given loss function LA, input weights θ(0), training setA, we consider the gradient
descent on the MSE loss

θ(t+ 1) = θ(t)− η
dLA
dt

, LA =
1

2

∑
α∈A

|z(L)(xα; θ)− y|2. (Ŵŵ)

Multilayer perceptron (MLP) model
For l ∈ [L]0, the l-th layer preactivation is defined as

z(l+1)(x) = b(l+1) +W(l+1)σ
(
z(l)(x)

)
, (ŴŶ)

where x is the input data vector,W(l) and b(l) are the l-th layer trainable weights and
biases, vectorized as θ, and σ is a polynomial activation.
ŵŷ/ŶŶ



End-to-end Algorithm
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

Quantum data upload
Quantum state preparation to upload s-sparse initial |θ(0)⟩ with O(s); or QRAM for dense
parameters.

Quantum training process
For almost dissipative traing dynamics, we develop a probabilistic Carleman linearization
and truncated quantum linear system algorithm with O(s2T2).

Quantum data download
Shadow tomography to download s-sparse trained |θ(T)⟩ with O(s3/ϵ2); or QRAM for
dense parameters.
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Classical Experiments
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models
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Single-hidden-layer neural network
We examine a simple neural network (Ŵ input, ŵ hidden units, Ŵ output), applied to Iris
data set

zα = θ5(xαθ1 + θ3)
2 + θ6(xαθ2 + θ4)

2. (Ŵŷ)

The error scales exponentially in N, and has a power law scaling of time.
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Classical Experiments
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models
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Possible
quantum

advantage

exploding
error

Possible
quantum

advantage

Sparse ResNet for vision
ResNet with depth 32 and 7× 106 parameters, by sparse pruning and linearization,
applied to CIFAR-Ŵųų data set. We record the Hessian spectra during sparse training to
track the error propagation.
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Classical Experiments
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

(a) (b)

(c)

Possible
quantum

advantage

possible quantum advantage

Possible
quantum

advantage

Sparse ResNet for vision
ResNet with depth 422 and 1.03× 108 parameters, by sparse pruning and linearization,
applied to CIFAR-Ŵųų data set. Possible quantum advantage in early-stage training process.
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Classical Experiments
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

Sparse ResNet for vision
To reset the error proxy as zero, we download the quantum trained parameters sparsely
and re-upload to the quantum computer to continue training every 100 steps.
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Intuitive Explanations
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

Information Bottleneck Theory
• When a system is actually learning knowledge, the Fisher information matrix (and
second-order Hessian) has more positive modes, i.e. dissipative.

• Unitary models like variational quantum algorithms have numerous saddle points
and are possibly hard to train.

Lottery Ticket Hypothesis
• A dense network contains good enough sparse subnetworks (winning ticket).
• In pre-training, data are typically dense; in fine-tuning, most parameters are
reasonably pruned to zero throughout the training.
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Quantum-enhanced Machine Learning
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

Classical Data

Dense neural network Sparse neural network

Pre-training

Weight
pruning

Loading sparse
weight vector

Quantum ODE system

Measurement

Output sparse
neural network

Quantum trained
sparse weight vector

• First efficient quantum algorithm for training classical neural networks.
• 103M parameter classical experiments to validate possible quantum advantage.
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Future Improvements
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

• Analysis of linearization beyond polynomial nonlinearities.
• Better criteria with weak/no dissipation.
• Connections to other PDE/ML models, such as diffusion models.
• Develop near-term or early fault-tolerant quantum algorithms.
• Estimate detailed running costs and resource counts.
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Current and Future Research
ŵ Efficient Quantum Algorithm for Large-scale Machine Learning Models

Quantum for Science

Quantum Physics Natural Science Data Science

quantum chemistry
electronic structure
open quantum systems

PRL23, JCP23, Quantum22,

Proc.R.Soc.A21

robust near-term
quantum simulations

epidemic spreading
fluid dynamics
protein folding

PNAS21, Quantum21,

Comm.Math.Phys.23&21

efficient quantum
scientific computation

option pricing
Bayesian inference
sparse neural network

Nat.Comm.23, QIP23,

NeurIPS22, TQC21

scalable quantum
machine learning
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